SEARCH

SEARCH BY CITATION

References

  • [1]
    Jones, J.G., Simon, B.M (1981) Differences in microbial decomposition processes in profundal and littoral lake sediments, with particular references to the nitrogen cycle. J. Gen. Microbiol. 123, 297312.
  • [2]
    Binnerup, S.J., Jensen, K, Revsbech, N.P., Jensen, M.H., Sørensen, J (1992) Denitrification, dissimilatory reduction of nitrate to ammonium and nitrification in a bioturbated estuarine sediment as measured with 15N and microsensor techniques. Appl. Environ. Microbiol. 58, 303313.
  • [3]
    Straub, K.L., Benz, M, Schink, B, Widdel, F (1996) Anaerobic, nitrate-dependent microbial oxidation of ferrous iron. Appl. Environ. Microbiol. 62, 14581460.
  • [4]
    Amann, R.I., Ludwig, W, Schleifer, K.H (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59, 143169.
  • [5]
    Staley, J.T., Konopka, A (1985) Measurement of in situ activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats. Annu. Rev. Microbiol. 39, 321346.
  • [6]
    Olsen, G.J., Lane, D.J., Giovannoni, S.J., Pace, N.R., Stahl, D.A (1986) Microbial ecology and evolution: a ribosomal RNA approach. Annu. Rev. Microbiol. 40, 337365.
  • [7]
    Nealson, K.H (1997) Sediment bacteria: Who's there, what are they doing, and what's new. Annu. Rev. Earth Planet. Sci. 25, 403434.
  • [8]
    Madsen, E.L (2000) Nucleic-acid characterization of the identity and activity of subsurface microorganisms. Hydrogeol. J. 8, 112125.
  • [9]
    Green, C.T., Scow, K.M (2000) Analysis of phospholipid fatty acids (PLFA) to characterize microbial communities in aquifers. Hydrogeol. J. 8, 126141.
  • [10]
    Theron, J, Cloete, T.E (2000) Molecular techniques for determining microbial diversity and community structure in natural environments. Crit. Rev. Microbiol. 26, 3757.
  • [11]
    Wagner, M, Amann, R, Lemmer, H, Schleifer, K.H (1993) Probing activated sludge with oligonucleotides specific for proteobacteria: inadequacy of culture-dependent methods for describing microbial community structure. Appl. Environ. Microbiol. 59, 15201525.
  • [12]
    Suzuki, M.T., Rappé, M.S., Haimberger, Z.W., Winfield, H, Adair, N, Ströbel, J, Giovannoni, S.J (1997) Bacterial diversity among small-subunit rRNA gene clones and cellular isolates from the same seawater sample. Appl. Environ. Microbiol. 63, 983989.
  • [13]
    Felske, A, Wolterink, A, van Lis, R, de Vos, W.M., Akkermans, A.D.L (1999) Searching for predominant soil bacteria: 16S rDNA cloning versus strain cultivation. FEMS Microbiol. Ecol. 30, 137145.
  • [14]
    Hiorns, W.D., Methé, B.A., Nierzwicki-Bauer, S.A., Zehr, J.P (1997) Bacterial diversity in Adirondack mountain lakes as revealed by 16S rRNA gene sequences. Appl. Environ. Microbiol. 63, 29572960.
  • [15]
    Huber, I. (1997) Bakterielle Diversität von ‘Lake Snow’: Phylogenetische und in situ-Analysen. Ph.D. Thesis, Technische Universität, Munich.
  • [16]
    Schulze, R.D. (1999) Phylogenetische Analyse der mikrobiellen Population in Süßwassersedimenten und Anreicherung, Isolierung und Identifizierung von bisher nicht kultivierten Bakterien. Ph.D. Thesis, Technische Universität, Munich.
  • [17]
    Miskin, I.P., Farrimond, P, Head, I.M (1999) Identification of novel bacterial lineages as active members of microbial populations in a freshwater sediment using a rapid RNA extraction procedure and RT-PCR. Microbiology 145, 19771987.
  • [18]
    Wise, M.G., McArthur, J.V., Shimkets, L.J (1997) Bacterial diversity of a Carolina Bay as determined by 16S rRNA gene analysis: Confirmation of novel taxa. Appl. Environ. Microbiol. 63, 15051514.
  • [19]
    Glöckner, F.O., Fuchs, B.M., Amann, R (1999) Bacterioplankton compositions of lakes and oceans: a first comparison based on fluorescence in situ hybridization. Appl. Environ. Microbiol. 65, 37213726.
  • [20]
    Bosshard, P.P., Santini, Y, Gruter, D, Stettler, R, Bachofen, R (2000) Bacterial diversity and community composition in the chemocline of the meromictic alpine Lake Cadagno as revealed by 16S rDNA analysis. FEMS Microbiol. Ecol. 31, 173182.
  • [21]
    Ludwig, W, Bauer, S.H., Bauer, M, Held, I, Kirchhof, G, Schulze, R, Huber, I, Spring, S, Hartmann, A, Schleifer, K.H (1997) Detection and in situ identification of representatives of a widely distributed new bacterial phylum. FEMS Microbiol. Lett. 153, 181190.
  • [22]
    von Wintzingerode, F, Gobel, U.B., Stackebrandt, E (1997) Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. FEMS Microbiol. Rev. 21, 213229.
  • [23]
    Weller, R, Ward, D.M (1989) Selective recovery of 16S rRNA sequences from natural microbial communities in the form of cDNA. Appl. Environ. Microbiol. 55, 18181822.
  • [24]
    Felske, A, Engelen, B, Nübel, U, Backhaus, A (1996) Direct ribosome isolation from soil to extract bacterial rRNA for community analysis. Appl. Environ. Microbiol. 62, 41624167.
  • [25]
    Llobet-Brossa, E, Rosselló-Mora, R, Amann, R (1998) Microbial community composition of Wadden Sea sediments as revealed by fluorescence in situ hybridization. Appl. Environ. Microbiol. 64, 26912696.
  • [26]
    Li, J, Purdy, K.J., Takii, S, Hayashi, H (1999) Seasonal changes in ribosomal RNA of sulfate-reducing bacteria and sulfate reducing activity in a freshwater lake sediment. FEMS Microbiol. Ecol. 28, 3139.
  • [27]
    Hastings, R.C., Saunders, J.R., Hall, G.H., Pickup, R.W., McCarthy, A.J (1998) Application of molecular biological techniques to a seasonal study of ammonia oxidation in a eutrophic freshwater lake. Appl. Environ. Microbiol. 64, 36743682.
  • [28]
    Whitby, C.B., Saunders, J.R., Rodriguez, J, Pickup, R.W., McCarthy, A (1999) Phylogenetic differentiation of two closely related Nitrosomonas spp. that inhabit different sediment environments in an oligotrophic freshwater lake. Appl. Environ. Microbiol. 65, 48554862.
  • [29]
    MacGregor, B.J., Moser, D.P., Wheeler Alm, E, Nealson, K.H., Stahl, D.A (1997) Crenarchaeota in Lake Michigan sediment. Appl. Environ. Microbiol. 63, 11781181.
  • [30]
    DeLong, E.F (1992) Archaea in coastal marine environments. Proc. Natl. Acad. Sci. USA 89, 56855689.
  • [31]
    Schleper, C, Holben, W, Klenk, H.P (1997) Recovery of crenarchaeotal ribosomal DNA sequences from freshwater-lake sediments. Appl. Environ. Microbiol. 63, 321323.
  • [32]
    Kane, M.D., Poulsen, L.K., Stahl, D.A (1993) Monitoring the enrichment and isolation of sulfate-reducing bacteria by using oligonucleotide probes designed from environmentally derived 16S rRNA sequences. Appl. Environ. Microbiol. 59, 682686.
  • [33]
    Schulze, R, Spring, S, Amann, R, Huber, I, Ludwig, W, Schleifer, K.H., Kämpfer, P (1999) Genotypic diversity of Acidovorax strains isolated from activated sludge and description of Acidovorax defluvii sp. nov.. Syst. Appl. Microbiol. 22, 205214.
  • [34]
    Huber, R, Burggraf, S, Mayer, T, Barns, S.M., Rossnagel, P, Stetter, K.O (1995) Isolation of a hyperthermophilic archaeum predicted by in situ RNA analysis. Nature 376, 5758.
  • [35]
    Stackebrandt, E, Goebel, M (1994) Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int. J. Syst. Bacteriol. 44, 846849.
  • [36]
    Novitsky, J.A (1990) Evidence for sedimenting particles as the origin of the microbial community in a coastal marine sediment. Mar. Ecol. Prog. Ser. 60, 161167.
  • [37]
    Felske, A, Wolterink, A, van Lis, R, Akkermans, A.D.L (1998) Phylogeny of the main bacterial 16S rRNA sequences in Drentse A grassland soils (The Netherlands). Appl. Environ. Microbiol. 64, 871879.
  • [38]
    Nogales, B, Moore, E.R.B., Abraham, W.R., Timmis, K.N (1999) Identification of the metabolically active members of a bacterial community in a polychlorinated biphenyl-polluted moorland soil. Environ. Microbiol. 1, 199212.
  • [39]
    Radajewski, S, Ineson, P, Parekh, N.R., Murrell, J.C (2000) Stable-isotope probing as a tool in microbial ecology. Nature 403, 646649.
  • [40]
    Rheinheimer, G (1977) Mikrobiologische Untersuchungen in Flüssen. II. Die Bakterienbiomasse in einigen norddeutschen Flüssen. Arch. Hydrobiol. 81, 259267.
  • [41]
    Teske, A, Ramsing, N.B., Küver, J, Fossing, H (1995) Phylogeny of Thioploca and related filamentous sulfide-oxidizing bacteria. Syst. Appl. Microbiol. 18, 517526.
  • [42]
    Spring, S, Schleifer, K.H (1995) Diversity of magnetotactic bacteria. Syst. Appl. Microbiol. 18, 147153.
  • [43]
    Schüler, D, Frankel, R.B (1999) Bacterial magnetosomes: microbiology, biomineralization and biotechnological applications. Appl. Microbiol. Biotechnol. 52, 464473.
  • [44]
    Schleifer, K.H., Schüler, D, Spring, S, Weizenegger, M, Amann, R, Ludwig, W, Köhler, M (1991) The genus Magnetospirillum gen. nov., description of Magnetospirillum gryphiswaldense sp. nov. and transfer of Aquaspirillum magnetotacticum to Magnetospirillum magnetotacticum comb. nov.. Syst. Appl. Microbiol. 14, 379385.
  • [45]
    Spring, S, Amann, R, Ludwig, W, Schleifer, K.H., Petersen, N (1992) Phylogenetic diversity and identification of nonculturable magnetotactic bacteria. Syst. Appl. Microbiol. 15, 116122.
  • [46]
    Spring, S, Amann, R, Ludwig, W, Schleifer, K.H., van Gemerden, H, Petersen, N (1993) Dominating role of an unusual magnetotactic bacterium in the microaerobic zone of a freshwater sediment. Appl. Environ. Microbiol. 59, 23972403.
  • [47]
    Spring, S, Amann, R, Ludwig, W, Schleifer, K.H., Schüler, D, Poralla, K, Petersen, N (1994) Phylogenetic analysis of uncultured magnetotactic bacteria from the alpha-subclass of Proteobacteria. Syst. Appl. Microbiol. 17, 501508.
  • [48]
    Meldrum, F.C., Heywood, B.R., Mann, S, Frankel, R.B., Bazylinski, D.A (1993) Electron microscopy study of magnetosomes in a cultured coccoid magnetotactic bacterium. Proc. R. Soc. Lond. B 251, 231236.
  • [49]
    Frankel, R.B., Bazylinski, D.A., Johnson, M, Taylor, B.L (1997) Magneto-aerotaxis in marine, coccoid bacteria. Biophys. J. 73, 9941000.
  • [50]
    De Graeff, M.R., Alexeeva, S, Snoep, J.L., De Mattos, M.J.T (1999) The steady-state internal redox state (NADH/NAD) reflects the external redox state and is correlated with catabolic adaptation in Escherichia coli. J. Bacteriol. 181, 23512357.
  • [51]
    Jørgensen, B.B., Gallardo, V.A (1999) Thioploca spp.: filamentous sulfur bacteria with nitrate vacuoles. FEMS Microbiol. Ecol. 28, 301313.
  • [52]
    Spring, S, Kämpfer, P, Ludwig, W, Schleifer, K.H (1996) Polyphasic characterization of the genus Leptothrix: New descriptions of Leptothrix mobilis sp. nov. and Leptothrix discophora sp. nov. nom. rev. and emended description of Leptothrix cholodnii emend. Syst. Appl. Microbiol. 19, 634643.
  • [53]
    Gray, N.D., Pickup, R.W., Jones, J.G., Head, I.M (1997) Ecophysological evidence that Achromatium oxaliferum is responsible for the oxidation of reduced sulfur species to sulfate in a freshwater sediment. Appl. Environ. Microbiol. 63, 19051910.
  • [54]
    Head, I.M., Gray, N.D., Clarke, K.J., Pickup, R.W., Jones, J.G (1996) The phylogenetic position and ultrastructure of the uncultured bacterium Achromatium oxaliferum. Microbiology 142, 23412354.
  • [55]
    Glöckner, F.O., Babenzien, H.D., Wulf, J, Amann, R (1999) Phylogeny and diversity of Achromatium oxaliferum. Syst. Appl. Microbiol. 22, 2838.
  • [56]
    Gray, N.D., Howarth, R, Rowan, A, Pickup, R.W., Jones, J.G., Head, I.M (1999) Natural communities of Achromatium oxaliferum comprise genetically, morphologically, and ecologically distinct subpopulations. Appl. Environ. Microbiol. 65, 50895099.
  • [57]
    Babenzien, H.D (1991) A. oxaliferum and its ecological niche. Zent.bl. Mikrobiol. 146, 4149.
  • [58]
    Gray, N.D., Howarth, R, Pickup, R.W., Jones, J.G., Head, I.M (1999) Substrate uptake by uncultured bacteria from the genus Achromatium determined by microautoradiography. Appl. Environ. Microbiol. 65, 51005106.
  • [59]
    Lauterborn, R (1915) Die sapropelische Lebewelt. Verh. Nat.hist. Med. Ver. Heidelberg 13, 395481.
  • [60]
    West, G.S., Griffiths, B.M (1913) The lime-sulphur bacteria of the genus Hillhousia. Ann. Bot. 27, 8391.
  • [61]
    Balkwill, D.L., Leach, F.R., Wilson, J.T., McNabb, J.F., White, D.C (1988) Equivalence of microbial biomass measures based on membrane lipid and cell wall components, adenosine triphosphate, and direct counts in subsurface aquifer sediments. Microb. Ecol. 16, 7384.
  • [62]
    White, D.C., Davis, W.M., Nickels, J.S., King, J.D., Bobbie, R.J (1979) Determination of the sedimentary microbal biomass by extractable lipid phosphate. Oecologia (Berlin) 40, 5162.
  • [63]
    Boon, P.I., Virtue, P, Nichols, P.D (1996) Microbial consortia in wetland sediments: a biomarker analysis of the effect of hydrological regime, vegetation and season on benthic microbes. Mar. Freshwater Res. 47, 2741.
  • [64]
    Haack, S.K., Grachow, H, Odelson, D.A., Forney, L.J., Klug, M.J (1994) Accuracy, reproducibility, and interpretation of fatty acid methyl ester profiles of model bacterial communities. Appl. Environ. Microbiol. 60, 24832493.
  • [65]
    Lechevalier, H. and Lechevalier, M.P. (1988) Chemotaxonomic use of lipids – an overview. In: Microbial Lipids, Vol. 1 (Ratledge, C. and Wilkinson, S.G., Eds.), pp. 869–902. Academic Press, London.
  • [66]
    Cavigelli, M.A., Robertson, G.P., Klug, M.J (1995) Fatty acid methyl ester (FAME) profiles as measures of soil microbial community structure. Plant Soil 170, 99113.
  • [67]
    Bobbie, R.J., White, D.C (1980) Characterization of benthic microbial community structure by high-resolution gas chromatography of fatty acid methyl esters. Appl. Environ. Microbiol. 39, 12121222.
  • [68]
    Findlay, R.H., Trexler, M.B., Guckert, J.B., White, D.C (1990) Laboratory study of disturbance in marine sediments: response of a microbial community. Mar. Ecol. Prog. Ser. 62, 121133.
  • [69]
    Nordby, H.E., Nemec, S, Nagy, S (1981) Fatty acids and sterols associated with citrus root mycorrhizae. J. Agric. Food Chem. 29, 396401.
  • [70]
    Bowman, J.P., McCammon, S.A., Nichols, D.S., Skerratt, J.H., Rea, S.M., Nichols, P.D., McMeekin, T.A (1997) Shewanella gelidimarina sp. nov. and Shewanella frigidimarina sp. nov., novel antarctic species with the ability to produce eicopentaenoic acid (20ω3) and grow anaerobically by dissimilatory Fe(III) reduction. Int. J. Syst. Bacteriol. 47, 10401047.
  • [71]
    Erwin, J.A. (1973) Comparative biochemistry of fatty acids in eukaryotic microorganisms. In: Lipids and Biomembranes of Eukaryotic Microorganisms (Erwin, J.A., Ed.), pp. 41–144. Academic Press, London.
  • [72]
    Bowman, J.P., Gosink, J.J., McCammon, S.A., Lewis, T.E., Nichols, D.S., Nichols, P.D., Skerratt, J.H., Staley, J.T., McMeekin, T.A (1998) Colwellia demingiae sp. nov., Colwellia hornerae sp. nov., Colwellia rossensis and Colwellia psychrotropica sp. nov. psychrophilic Antarctic species with the ability to synthesize docosahexaneoic acid (22ω3). Int. J. Syst. Bacteriol. 48, 11711180.
  • [73]
    White, D.C (1988) Validation of quantitative analysis for microbial biomass, community structure, and metabolic activity. Arch. Hydrobiol. Beih. Ergeb. Limnol. 31, 118.
  • [74]
    Guezennec, J, Fiala-Medioni, A (1996) Bacterial abundance and diversity in the Barbados Trench determined by phospholipid analysis. FEMS Microbiol. Ecol. 19, 8393.
  • [75]
    Findlay, R.H., Moriarty, D.J.W., White, D.C (1983) Improved method of determining muramic acid from environmental samples. Geomicrobiology 3, 133150.
  • [76]
    Bowman, J.P., Lindsay, I.S., Nichols, P.D., Hayward, A.C (1993) Revised taxonomy of the methanotrophs: description of Methylobacter gen. nov., emendation of Methylococcus, validation of Methylosinus and Methylocystis species, and a proposal that the family Methylococcaceae includes only the group I methanotrophs. Int. J. Syst. Bacteriol. 43, 735753.
  • [77]
    Parkes, R.J., Calder, A.G (1985) The cellular fatty acids of three strains of Desulfobulbus, a propionate-utilising sulphate-reducing bacterium. FEMS Microbiol. Ecol. 31, 361363.
  • [78]
    Dowling, N.J.E., Widdel, F, White, D.C (1986) Phospholipid ester-linked fatty acid biomarkers of acetate-oxidizing sulfate reducers and other sulfide forming bacteria. J. Gen. Microbiol. 132, 18151825.
  • [79]
    Kroppenstedt, R.M. (1985) Fatty acid and menaquinone analysis of actinomycetes and related organisms. In: Chemical Methods in Bacterial Systematics (Goodfellow, M. and Minnikin, D.E., Eds.), pp. 173–199. Academic Press, London.
  • [80]
    Edlund, A, Nichols, P.D., Roffey, R, White, D.C (1985) Extractable and lipopolysaccharide fatty acid and hydroxy acid profiles from Desulfovibrio species. J. Lipid Res. 26, 982988.
  • [81]
    Oude Elferink, S.J.W.H., Boschker, H.T.S., Stams, A.J.M (1998) Identification of sulfate reducers and Syntrophobacter sp. in anaerobic granular sludge by fatty-acid biomarkers and 16S rRNA probing. Geomicrobiol. J. 15, 317.
  • [82]
    Toriyama, S, Yano, I, Masui, M, Kusunose, M, Kusunose, E, Akimori, N (1980) Regulation of cell wall mycolic acid biosynthesis in acid-fast bacteria. J. Biochem. 88, 211221.
  • [83]
    Sprott, G.D (1992) Structures of archaebacterial membrane lipids. J. Bioenerg. Biomembr. 24, 555566.
  • [84]
    Ohtsubo, S, Kanno, M, Miyahara, H, Kohno, S, Koga, Y, Miura, I (1993) A sensitive method for quantification of aceticlastic methanogens and estimation of total methanogenic cells in natural environments based on an analysis of ether-linked glycerolipids. FEMS Microbiol. Ecol. 12, 3950.
  • [85]
    Gardner, R.M., Tindall, G.W., Cline, S.M., Brown, K.L (1993) Ergosterol determination in activated sludge and its application as a biochemical marker for monitoring fungal biomass. J. Microbiol. Methods 17, 4960.
  • [86]
    Kannenberg, E.L., Poralla, K (1999) Hopanoid biosynthesis and function in bacteria. Naturwissenschaften 86, 168176.
  • [87]
    Hedrick, D.B., White, D.C (1986) Microbial respiratory quinones in the environment: a sensitive liquid chromatographic method. J. Microbiol. Methods 5, 243254.
  • [88]
    Macalady, J.L., Mack, E.E., Nelson, D.C., Scow, K.M (2000) Sediment microbial community structure and mercury methylation in mercury-polluted Clear Lake, California. Appl. Environ. Microbiol. 66, 14791488.
  • [89]
    Kaneda, T (1991) Iso-fatty and anteiso-fatty acids in bacteria-biosynthesis, function, and taxonomic significance. Microbiol. Rev. 55, 288302.
  • [90]
    Guckert, J.B., Hood, M.A., White, D.C (1986) Phospholipid ester-linked fatty acid profile changes during nutrient deprivation of Vibrio cholerae increases the trans/cis ratio and proportions of cycloproyl fatty acids. Appl. Environ. Microbiol. 52, 794801.
  • [91]
    Heipieper, H.-J, Diefenbach, R, Keweloh, H (1992) Conversion of cis unsaturated fatty acids to trans, a possible mechanism for the protection of phenol-degrading Pseudomonas putida P8 from substrate toxicity. Appl. Environ. Microbiol. 58, 18471852.
  • [92]
    Yano, Y, Nakayama, A, Ishihara, K, Saito, H (1998) Adaptive changes in membrane lipids of barophilic bacteria in response to changes in growth pressure. Appl. Environ. Microbiol. 64, 479485.
  • [93]
    White, D.C., Stair, J.O., Ringelberg, D.B (1996) Quantitative comparisons of in situ microbial biodiversity by signature biomarker analysis. J. Ind. Microbiol. 17, 185196.
  • [94]
    Hinrichs, K.-U, Hayes, J.M., Sylva, S.P., Brewer, P.G., DeLong, E.F (1999) Methane-consuming archaebacteria in marine sediments. Nature 398, 802805.
  • [95]
    Holmes, A.J., Roslev, P, McDonald, I.R., Iversen, N, Henriksen, K, Murrell, J.C (1999) Characterization of methanotrophic bacterial populations in soil showing atmospheric methane uptake. Appl. Environ. Microbiol. 65, 33123318.
  • [96]
    Roslev, P, Iversen, N (1999) Radioactive fingerprinting of microorganisms that oxidize atmospheric methane in different soils. Appl. Environ. Microbiol. 65, 40644070.
  • [97]
    Abraham, W.-R, Hesse, C, Pelz, O (1998) Ratios of carbon isotopes in microbial lipids as an indicator of substrate usage. Appl. Environ. Microbiol. 64, 42024209.
  • [98]
    Boschker, H.T.S., de Brouwer, J.F.C., Cappenberg, T.E (1999) The contribution of macrophyte-derived organic matter to microbial biomass in salt-marsh sediments: Stable isotope analysis of microbial biomarkers. Limnol. Oceanogr. 44, 309319.
  • [99]
    DeNiro, M, Epstein, S (1977) Mechanism of carbon isotope fractionation associated with lipid synthesis. Science 197, 261263.
  • [100]
    Summons, R.E., Jahnke, L.L., Roksandic, Z (1994) Carbon isotopic fractionation in lipids from methanotrophic bacteria: Relevance for interpretation of the geochemical record of biomarkers. Geochim. Cosmochim. Acta 58, 28532863.
  • [101]
    Boschker, H.T.S., Nold, S.C., Wellsbury, P, Bos, D, de Graaf, W, Pel, R, Parkes, R.J., Cappenberg, T.E (1998) Direct linking of microbial populations to specific biogeochemical processes by 13C-labelling of biomarkers. Nature 392, 801805.
  • [102]
    Roslev, P, Iversen, N, Henriksen, K (1998) Direct fingerprinting of metabolically active bacteria in environmental samples by substrate specific radiolabelling and lipid analysis. J. Microbiol. Methods 31, 99111.
  • [103]
    Carman, K.R. (1993) Microautoradiographic detection of microbial activity. In: Handbook of Methods in Aquatic Microbiology (Kemp, P. et al., Eds.), pp. 397–404. Lewis Publishers, Boca Raton, FL.
  • [104]
    Lee, N, Nielsen, P.H., Andreasen, K.H., Juretschko, S, Nielsen, J.L., Schleifer, K.H., Wagner, M (1997) Combination of fluorescent in situ hybridization and microautoradiography – a new tool for structure-function analyses in microbial ecology. Appl. Environ. Microbiol. 65, 12891297.
  • [105]
    Horz, H.P., Rotthauwe, J.H., Lukow, T, Liesack, W (2000) Identification of major subgroups of ammonia-oxidizing bacteria in environmental samples by T-RFLP analysis of amoA PCR products. J. Microbiol. Methods 39, 197204.
  • [106]
    Wagner, M, Roger, A.J., Flax, J.L., Brusseau, G.A., Stahl, D.A (1998) Phylogeny of dissimilatory sulfite reductases supports an early origin of sulfate respiration. J. Bacteriol. 180, 29752982.
  • [107]
    Wilson, M.S., Bakermans, C. and Madsen, E.L. (1999) In situ, real-time catabolic gene expression: Extraction and characterization of naphthalene dioxygenase mRNA transcripts from groundwater.