• [1]
    Roslev, P., Iversen, N., Henriksen, K. (1997) Oxidation and assimilation of atmospheric methane by soil methane oxidizers. Appl. Environ. Microbiol. 63, 874880.
  • [2]
    Dunfield, P.F., Liesack, W., Henckel, T., Knowles, R., Conrad, R. (1999) High-affinity methane oxidation by a soil enrichment culture containing a type II methanotroph. Appl. Environ. Microbiol. 65, 10091014.
  • [3]
    van de Graaf, A.A., Mulder, A., de Bruijn, P., Jetten, M.S.M., Robertson, L.A., Kuenen, J.G. (1995) Anaerobic oxidation of ammonium is a biologically mediated process. Appl. Environ. Microbiol. 61, 12461251.
  • [4]
    Hansen, L.B., Finster, K., Fossing, H., Iversen, N. (1998) Anaerobic methane oxidation in sulfate depleted sediments: effects of sulfate and molybdate additions. Aquat. Microb. Ecol. 14, 195204.
  • [5]
    Widdel, F., Schnell, S., Heising, S., Ehrenreich, A., Assmus, B., Schink, B. (1993) Ferrous iron oxidation by anoxygenic phototrophic bacteria. Nature (Lond.) 362, 834836.
  • [6]
    Heising, S., Richter, L., Ludwig, W., Schink, B. (1999) Chlorobium ferrooxidans sp. nov., a phototrophic green sulfur bacterium that oxidizes ferrous iron in coculture with a ‘Geospirillum’ sp. strain. Arch. Microbiol. 172, 116124.
  • [7]
    Garlick, S., Oren, A., Padan, E. (1977) Occurrence of facultative anoxygenic photosynthesis among filamentous and unicellular cyanobacteria. J. Bacteriol. 129, 623629.
  • [8]
    Jørgensen, B.B., Kuenen, J.G., Cohen, Y. (1979) Microbial transformations of sulfur compounds in a stratified lake (Solar Lake, Sinai). Limnol. Oceanogr. 24, 799822.
  • [9]
    Bak, F., Cypionka, H. (1987) A novel type of energy metabolism involving fermentation of inorganic sulphur compounds. Nature (Lond.) 326, 891892.
  • [10]
    Jørgensen, B.B., Gallardo, V.A. (1999) Thioploca spp.: filamentous sulfur bacteria with nitrate vacuoles. FEMS Microbiol. Ecol. 28, 301313.
  • [11]
    Bartscht, K., Cypionka, H., Overmann, J. (1999) Evaluation of cell activity and of methods for the cultivation of bacteria from a natural lake community. FEMS Microbiol. Ecol. 28, 249259.
  • [12]
    Fry, J.C. (1990) Direct methods and biomass estimation. Methods Microbiol. 22, 4185.
  • [13]
    Karner, M., Fuhrman, J.A. (1997) Determination of active marine bacterioplankton: a comparison of universal 16S rRNA probes, autoradiography, and nucleoid staining. Appl. Environ. Microbiol. 63, 12081213.
  • [14]
    Rodriguez, G.G., Phipps, D., Ishiguro, K., Ridgway, H.F. (1992) Use of a fluorescent redox probe for direct visualization of actively respiring bacteria. Appl. Environ. Microbiol. 58, 18011808.
  • [15]
    Amann, R.I., Ludwig, W., Schleifer, K.-H. (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59, 143169.
  • [16]
    Visscher, P.T. and van Gemerden, H. (1993) Sulfur cycling in laminated marine microbial ecosystems. In: Biogeochemistry of Global change: Radiatively Active Trace Gases (Oremland, Ed.), pp. 672–690. Chapman and Hill, New York.
  • [17]
    Torsvik, V., Goksør, J., Daae, F.L. (1990) High diversity in DNA of soil bacteria. Appl. Environ. Microbiol. 56, 782787.
  • [18]
    Torsvik, V., Goksør, J., Daae, F.L., Sørheim, R., Michalsen, J. and Salte, K. (1994) Use of DNA analysis to determine the diversity of microbial communities. In: Beyond The Biomass: Compositional and Functional Analysis of Soil Microbial Communities (Ritz, K., Dighton, J., Giller and K.E., Eds.), pp. 39–48. British Society of Soil Science, John Wiley, Chichester.
  • [19]
    Dykhuisen, D.E. (1998) Santa Rosalia revisited: why are there so many species of bacteria. Antonie van Leeuwenhoek Int. J. Gen. Mol. Microbiol. 73, 2533.
  • [20]
    DSMZ, Deutsche Sammlung für Mikroorganismen und Zellkulturen (2000) Bacterial nomenclature up-to date. A service provided by the DSMZ, Deutsche Sammlung für Mikroorganismen und Zellkulturen GmbH, Braunschweig, Germany.
  • [21]
    DeLong, E. (1992) Archaea in coastal marine environments. Proc. Natl. Acad. Sci. USA 89, 56855689.
  • [22]
    Kuske, C.R., Barns, S.M., Busch, J.D. (1997) Diverse uncultivated bacterial groups from soils of the arid southwestern United States that are present in many geographical regions. Appl. Environ. Microbiol. 63, 36143621.
  • [23]
    Ludwig, W., Bauer, S.H., Bauer, H., Held, I., Kirchhof, G., Schulze, R., Huber, I., Spring, S., Hartmann, A., Schleifer, K.H. (1997) Detection and in situ identification of representatives of a widely distributed bacterial phylum. FEMS Microbiol. Lett. 153, 181190.
  • [24]
    Ward, D.M., Weller, R., Bateson, M.M. (1990) 16S rRNA sequences reveal numerous uncultured microorganisms in a natural community. Nature (Lond.) 344, 6365.
  • [25]
    Hiorns, W.D., Methé, B.A., Nierzwicki-Bauer, S.A., Zehr, J.P. (1997) Bacterial diversity in AdirondackMountain lakes as revealed by 16S rRNA gene sequence analysis. Appl. Environ. Microbiol. 63, 29572960.
  • [26]
    Hugenholtz, P., Pitulle, C., Hershberger, K.L., Pace, N.R. (1998) Novel division level bacterial diversity in a Yellowstone hot spring. J. Bacteriol. 180, 366376.
  • [27]
    Suzuki, M.T., Rappé, M.S., Haimberger, Z.W., Winfield, H., Adair, N., Ströbel, J., Giovannoni, S.J. (1997) Bacterial diversity among small-subunit rRNA gene clones and cellular isolates from the same seawater sample. Appl. Environ. Microbiol. 63, 983989.
  • [28]
    Felske, A., Wolterink, A., van Lis, R., de Vos, W.M., Akkermans, A.D.L. (1999) Searching for predominant soil bacteria: 16S rDNA cloning versus strain cultivation. FEMS Microbiol. Ecol. 30, 137145.
  • [29]
    Kalmbach, S., Manz, W., Szewzyk, U. (1997) Isolation of new bacterial species from drinking water biofilms and proof of their in situ dominance with highly specific 16S rRNA probes. Appl. Environ. Microbiol. 63, 41644170.
  • [30]
    Ferris, M.J., Ruff-Roberts, A.L., Kopczynski, E.D., Bateson, M.M., Ward, D.M. (1996) Enrichment culture and microscopy conceal diverse thermophilic Synechococcus populations in a single hot spring microbial mat habitat. Appl. Environ. Microbiol. 62, 10451050.
  • [31]
    Broecker, W.S., Peng, T.H. (1974) Gas exchange rates between air and sea. Tellus 26, 2135.
  • [32]
    Alldredge, A.L., Youngbluth, M.J. (1985) The significance of macroscopic aggregates (marine snow) as sites for heterotrophic bacterial production in the mesopelagic zone of the subtropical Atlantic. Deep-Sea Res. 32, 14451456.
  • [33]
    Weise, W., Rheinheimer, G. (1978) Scanning electron microscopy and epifluorescence investigation of bacterial colonization of marine sand sediments. Microb. Ecol. 4, 175188.
  • [34]
    van Gemerden, H., Tughan, C.S., De Wit, R., Herbert, R.A. (1989) Laminated microbial ecosystems on sheltered beaches in Scapa Flow, Orkney Islands. FEMS Microbiol. Ecol. 62, 87102.
  • [35]
    Krembs, C., Juhl, A.R., Long, R.A., Azam, F. (1998) Nanoscale patchiness of bacteria in lake water studied with the spatial information preservation method. Limnol. Oceangr. 43, 307314.
  • [36]
    Jørgensen, B.B. (1982) Ecology of the bacteria of the sulphur cycle with special reference to the anoxic–oxic interface. Phil. Trans. R. Soc. Lond. 298, 543561.
  • [37]
    Visscher, P.T., Prins, R.A., van Gemerden, H. (1992) Rates of sulfate reduction and thiosulfate consumption in a marine microbial mat. FEMS Microbiol. Ecol. 86, 283294.
  • [38]
    Visscher, P.T., van den Ende, F.P., Schaub, B.E.M., van Gemerden, H. (1992) Competition between anoxygenic phototrophic bacteria and colorless sulfur bacteria in a microbial mat. FEMS Microbiol. Ecol. 101, 5158.
  • [39]
    de Wit, R., van Gemerden, H. (1987) Chemolithotrophic growth of the phototrophic sulfur bacterium Thiocapsa roseopersicina. FEMS Microbiol. Ecol. 45, 117126.
  • [40]
    van Gemerden, H. (1993) Microbial mats: a joint venture. Marine Geology 113, 325.
  • [41]
    van Gemerden, H. and Mas, J. (1995) Ecology of phototrophic sulfur bacteria. In: Advances in Photosynthesis vol. 2: Anoxygenic Photosynthetic Bacteria (Blankenship, R.E., Madigan, M.T. and Bauer, C.E., Eds.), pp. 49–85. Kluwer, Dordrecht.
  • [42]
    van den Ende, F.P., van Gemerden, H. (1993) Sulfide oxidation under oxygen limitation by a Thiobacillus thioparus isolated from a marine microbial mat. FEMS Microbiol. Ecol. 13, 6978.
  • [43]
    van den Ende, F.P., Laverman, A.M., van Gemerden, H. (1996) Coexistence of aerobic chemotrophic and anaerobic phototrophic sulfur bacteria under oxygen limitation. FEMS Microbiol. Ecol. 19, 141151.
  • [44]
    van den Ende, F.P., Meier, J., van Gemerden, H. (1997) Syntrophic growth of sulfate-reducing bacteria and colorless sulfur bacteria during oxygen limitation. FEMS Microbiol. Ecol. 23, 6580.
  • [45]
    Biebl, H., Pfennig, N. (1978) Growth yields of green sulfur bacteria in mixed cultures with sulfur and sulfate reducing bacteria. Arch. Microbiol. 117, 916.
  • [46]
    Warthmann, R., Cypionka, H., Pfennig, N. (1992) Photoproduction of H2 from acetate by syntrophic cocultures of green sulfur bacteria and sulfur-reducing bacteria. Arch. Microbiol. 157, 343348.
  • [47]
    Pfennig, N. (1980) Syntrophic mixed cultures and symbiotic consortia with phototrophic bacteria: a review. In: Anaerobes and Anerobic Infections (Gottschalk, G., Pfennig, N., Werner, Eds.), pp. 127–131, Fischer, Stuttgart.
  • [48]
    Visscher, P.T. and van Gemerden, H. (1988) Growth of Chlorobium limicola f. thiosulfatophilum on polysulfide. In: Green Photosynthetic Bacteria (Olson, J.M., Ormerod, J.G., Amesz, J., Stackebrandt, E. and Trüper, H.G., Eds.), pp 287–294. Plenum, New York.
  • [49]
    Schink, B. (1991) Syntrophism among prokaryotes. In: The Prokaryotes (Balows, A., Trüper, H.G., Dworkin, M., Harder, W. and Schleifer, K.-H., Eds.), pp. 276–299. Springer, New York.
  • [50]
    Lauterborn, R. (1906) Zur Kenntnis der sapropelischen Flora. Allg. Bot. Z. 12, 196197.
  • [51]
    Overmann, J. (2000) Green Sulfur Bacteria. Bergey's Manual of Systematic Bacteriology, vol. 1. Williams and Wilkins, Baltimore, MD, in press.
  • [52]
    Abella, C.A., Cristina, X.P., Martinez, A., Pibernat, I., Vila, X. (1998) Two new motile phototrophic consortia: ‘Chlorochromatium lunatum’ and ‘Pelochromatium selenoides. Arch. Microbiol. 169, 452459.
  • [53]
    Mechsner, K. (1957) Physiologische und morphologische Untersuchungen an Chlorobakterien. Arch. Mikrobiol. 26, 3251.
  • [54]
    Fröstl, J.M., Overmann, J. (1998) Physiology and tactic response of the phototrophic consortium ‘Chlorochromatium aggregatum. Arch. Microbiol. 169, 129135.
  • [55]
    Caldwell, D.E., Tiedje, J.M. (1974) A morphological study of anaerobic bacteria from the hypolimnia of two Michigan lakes. Can. J. Microbiol. 21, 362376.
  • [56]
    Overmann, J., Tuschak, C. (1997) Phylogeny and molecular fingerprinting of green sulfur bacteria. Arch. Microbiol. 167, 302309.
  • [57]
    Overmann, J., Coolen, M.J.L., Tuschak, C. (1999) Specific detection of different phylogenetic groups of chemocline bacteria based on PCR and denaturing gradient gel electrophoresis of 16S rRNA gene fragments. Arch. Microbiol. 172, 8394.
  • [58]
    Tuschak, C., Glaeser, J., Overmann, J. (1999) Specific detection of green sulfur bacteria by in situ hybridization with a fluorescently labeled oligonucleotide probe. Arch. Microbiol. 171, 265272.
  • [59]
    Overmann, J., Tuschak, C., Fröstl, J.M., Sass, H. (1998) The ecological niche of the consortium ‘Pelochromatium roseum. Arch. Microbiol. 169, 120128.
  • [60]
    Fröstl, J., Overmann, J. (2000) Phylogenetic affiliation of the bacteria which constitute phototrophic consortia. Arch. Microbiol. 174, 5058.
  • [61]
    Fröhlich, J., König, H. (1999) Rapid isolation of single microbial cells from mixed natural and laboratory populations with the aid of a micromanipulator. Syst. Appl. Microbiol. 22, 249257.
  • [62]
    Buder, J. (1914) Chloronium mirabile. Ber. Dtsch. Bot. Ges. 31, 8097.
  • [63]
    Culver, D.A., Brunskill, G.J. (1969) Fayetteville Green Lake, New York. V. Studies of primary production and zooplankton in a meromictic marl lake. Limnol. Oceanogr. 14, 862873.
  • [64]
    Nicholson, J.A.M., Stolz, J.F., Pierson, B.K. (1987) Structure of a microbial mat at Great Sippewissett Marsh, Cape Cod, Massachusetts. FEMS Microbiol. Ecol. 45, 343364.
  • [65]
    Overmann, J., Beatty, J.T., Krouse, H.R., Hall, K.J. (1996) The sulfur cycle in the chemocline of a meromictic salt lake. Limnol. Oceanogr. 41, 147156.
  • [66]
    Overmann, J. (1997) Mahoney Lake: a case study of the ecological significance of phototrophic sulfur bacteria. Adv. Microb. Ecol. 15, 251288.
  • [67]
    Gasol, J.M., Jürgens, K., Massana, R., Calderón-Paz, J.I., Pedrós-Alió, C. (1995) Mass development of Daphnia pulex in a sulfide-rich pond (Lake Cisó). Arch. Hydrobiol. 132, 279296.
  • [68]
    Overmann, J., Tilzer, M.M. (1989) Control of primary productivity and the significance of photosynthetic bacteria in a meromictic kettle lake. Mittlerer Buchensee, West-Germany. Aquat. Sci. 51, 261278.
  • [69]
    Overmann, J., Lehmann, S., Pfennig, N. (1991) Gas vesicle formation and buoyancy regulation in Pelodictyon phaeoclathratiforme (green sulfur bacteria). Arch. Microbiol. 157, 2937.
  • [70]
    Fuhrman, J.A., McCallum, K., Davis, A.A. (1993) Phylogenetic diversity of subsurface marine microbial communities from the Atlantic and Pacific Oceans. Appl. Environ. Microbiol. 59, 12941302.
  • [71]
    Wong, F.Y.K., Stackebrandt, E., Ladha, J.K., Fleischman, D.E., Date, R.A., Fuerst, J.A. (1994) Phylogenetic analysis of Bradyrhizobium japonicum and photosynthetic stem-nodulating bacteria from Aeschynomene species grown in separated geographical regions. Appl. Environ. Microbiol. 60, 940946.
  • [72]
    Fulthorpe, R.R., Rhodes, A.N., Tiedje, J.M. (1998) High levels of endemicity of 3-chlorobenzoate-degrading soil bacteria. Appl. Environ. Microbiol. 64, 16201627.