• [1]
    Stetter, K.O (1988) Hyperthermophiles – physiology and enzymes. J. Chem. Technol. Biotechnol. 42, 315317.
  • [2]
    Stetter, K.O. (1999) Hyperthermophiles: isolation, classification, and properties. In: Extremophiles. Microbial Life in Extreme Environments (Horikoshi, K. and Grant, W.D., Eds.), pp. 1–24. Wiley and Sons, Inc., New York.
  • [3]
    Stetter, K.O. (2000) Volcanoes, hydrothermal venting, and the origin of life. In: Volcanoes and the Environment (Marti, J. and Ernst, G.J., Eds.), Cambridge University Press, Cambridge (in press).
  • [4]
    Blöchl, E, Rachel, R, Burggraf, S, Hafenbradl, D, Jannasch, H.W., Stetter, K.O (1997) Pyrolobus fumarii, gen. and sp. nov., represents a novel group of archaea, extending the upper temperature limit for life to 113°C. Extremophiles 1, 1421.
  • [5]
    Stetter, K.O (1999) Extremophiles and their adaptation to hot environments. FEBS Lett. 452, 2225.
  • [6]
    Woese, C.R., Kandler, O, Wheelis, M.L (1990) Towards a natural system of organisms. Proposal for the domains Archaea, Bacteria, and Eucarya. Proc. Natl. Acad. Sci. USA 87, 45764579.
  • [7]
    Stetter, K.O. (1994) The lesson of Archaebacteria. In: Nobel Symposium, No. 84 (Bengtson, S., Ed.), pp. 143–151. Columbia University Press, New York.
  • [8]
    Stetter, K.O. (1999). Hyperthermophiles and their possible role as ancestors of modern life. In: The Molecular Origins of Life: Assembling Peaces of the Puzzle (Brack, A., Ed.), pp. 315–335. Cambridge University Press, Cambridge.
  • [9]
    Stetter, K.O., Hoffmann, A. and Huber, R. (1993) Microorganisms adapted to high temperature environments. In: Trends in Microbial Ecology (Guerrero, R. and Pedrós-Alió, C., Eds.), pp. 25–28. Spanish Society for Microbiology.
  • [10]
    Huber, H, Stetter, K.O (1998) Hyperthermophiles and their possible potential in biotechnology. J. Biotechnol. 64, 3952.
  • [11]
    Huber, R, Stoffers, P, Cheminee, J.L., Richnow, H.H., Stetter, K.O (1990) Hyperthermophilic archaebacteria within the crater and open-sea plume of erupting Macdonald Seamount. Nature 345, 179182.
  • [12]
    Stetter, K.O., Huber, R, Blöchl, E, Kurr, M, Eden, R.D., Fiedler, M, Cash, H, Vance, I (1993) Hyperthermophilic archaea are thriving in deep North Sea and Alaskan oil reservoirs. Nature 300, 743745.
  • [13]
    Stetter, K.O. and Huber, R. (2000) The role of hyperthermophilic prokaryotes in oil fields. In: Microbial Biosystems: new Frontiers (Bell, C.R., Brylinsky, M. and Johnson-Green, P., Eds.), Proceedings of the 8th International Symposium on Microbial Ecology. Atlantic Canada Society for Microbial Ecology, Halifax.
  • [14]
    Marsland, S.D., Dawe, R.A., Kelsall, G.H (1990) An electrochemical approach to oil reservoir souring. Trans. Inst. Chem. Eng. 68, 357364.
  • [15]
    Fuchs, T, Huber, H, Teiner, K, Burggraf, S, Stetter, K.O (1995) Metallosphaera prunae, sp. nov., a novel metal-mobilizing thermoacidophilic Archaeum, isolated from a uranium mine in Germany. Syst. Appl. Microbiol. 18, 560566.
  • [16]
    Barns, S.M., Fundyga, R.E., Jeffries, M.W., Pace, N.R (1994) Remarkable archaeal diversity detected in a Yellowstone National Park hot spring environment. Proc. Natl. Acad. Sci. USA 91, 16091613.
  • [17]
    Stahl, D.A., Flesher, B, Mansfield, H.R., Montgomery, L (1988) Use of phylogenetically based hybridization probes for studies of ruminal microbial ecology. Appl. Environ. Microbiol. 54, 10791084.
  • [18]
    Amann, R.I., Ludwig, W, Schleifer, K.-H (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59, 143169.
  • [19]
    Kang, K.K., Veeder, G.T., Mirrasoul, P.J., Kaneko, T, Cottrell, I.W (1982) Agar-like polysaccharide produced by a Pseudomonas species: production and basic properties. Appl. Environ. Microbiol. 43, 10861091.
  • [20]
    Huber, R, Burggraf, S, Mayer, T, Barns, S.M., Roßnagel, P, Stetter, K.O (1995) Isolation of a hyperthermophilic archaeum predicted by in situ RNA analysis. Nature 376, 5758.
  • [21]
    Ashkin, A, Dziedzic, J.M., Yamane, T (1987) Optical trapping and manipulation of single cells using infrared laser beams. Nature 330, 769771.
  • [22]
    Ashkin, A, Dziedzic, J.M (1987) Optical trapping and manipulation of viruses and bacteria. Science 235, 15171520.
  • [23]
    Huber, R (1999) Die Laserpinzette als Basis für Einzelzellkultivierungen. BIOspektrum 5, 289291.
  • [24]
    Beck, P, Huber, R (1997) Detection of cell viability in cultures of hyperthermophiles. FEMS Microbiol. Lett. 147, 1114.
  • [25]
    Ludwig, W. and Strunk, O. (1997) ARB: a software environment for sequence data.
  • [26]
    Huber, R, Dyba, D, Huber, H, Burggraf, S, Rachel, R (1997) Characterization of the sulfur-inhibited Thermosphaera aggregans sp. nov., a new genus of hyperthermophilic archaea isolated after its prediction from environmentally derived 16S rRNA sequences. Int. J. Syst. Bacteriol. 48, 3138.
  • [27]
    Burggraf, S, Huber, H, Stetter, K.O (1997) Reclassification of the crenarchaeal orders and families in accordance with 16S rRNA sequence data. Int. J. Syst. Bacteriol. 47, 657660.
  • [28]
    Völkl, P, Huber, R, Drobner, E, Rachel, R, Burggraf, S, Trincone, A, Stetter, K.O (1993) Pyrobaculum aerophilum sp. nov., a novel nitrate-reducing hyperthermophilic archaeum. Appl. Environ. Microbiol. 59, 29182926.
  • [29]
    Segerer, A.H., Trincone, A, Gahrtz, M, Stetter, K.O (1991) Stygiolobus azoricus gen. and sp. nov., represents a novel genus of anaerobic, extremely thermoacidophilic archaea of the order Sulfolobales. J. Bacteriol. 41, 495501.
  • [30]
    Brock, T.D., Brock, K.M., Belly, R.T., Weiss, R.L (1972) Sulfolobus: a new genus of sulfur-oxidizing bacteria living at low pH and high temperature. Arch. Microbiol. 84, 5468.
  • [31]
    Fuchs, T, Huber, H, Burggraf, S, Stetter, K.O (1996) 16S rDNA-based phylogeny of the archaeal order Sulfolobales and reclassification of Desulfurolobus ambivalens as Acidianus ambivalens comb. nov.. Syst. Appl. Microbiol. 19, 5660.
  • [32]
    Hafenbradl, D, Keller, M, Dirmeier, R, Rachel, R, Roßnagel, P, Burggraf, S, Huber, H, Stetter, K.O (1996) Ferroglobus placidus gen. nov., sp. nov., a novel hyperthermophilic archaeum that oxidizes Fe2+ at neutral pH under anoxic conditions. Arch. Microbiol. 166, 308314.
  • [33]
    Stetter, K.O. (2000) Sulfur-containing high temperature environments and their microorganisms. In: Embryonic Encyclopedia of Life Sciences. Nature Publishing Group. []
  • [34]
    Kandler, O. (1993) The early diversification of life. In: Early Life on Earth. Nobel Symposium 84 (Bengtson, S., Ed.), pp. 152–162. Columbia U.P., New York.
  • [35]
    Ishii, M, Miyake, T, Satoh, T, Sugiyama, H, Oshima, Y, Kodama, T, Igarashi, Y (1996) Autotrophic carbon dioxide fixation in Acidianus brierleyi. Arch. Microbiol. 166, 368371.
  • [36]
    Menendez, C, Bauer, Z, Huber, H, Gadòn, N, Stetter, K.O., Fuchs, G (1999) Presence of acetyl Coenzyme A (CoA) carboxylase and propionyl-CoA carboxylase in autotrophic Crenarchaeota and indication for operation of a 3-hydroxypropionate cycle in autotrophic carbon fixation. J. Bacteriol. 181, 10881098.
  • [37]
    Sako, Y, Nomura, N, Uchida, A, Ishida, Y, Morii, H, Koga, Y, Hoaki, T, Maruyama, T (1996) Aeropyrum pernix gen. nov., sp. nov., a novel aerobic hyperthermophilic archaeon growing at temperatures up to 100°C. Int. J. Syst. Bacteriol. 46, 10701077.
  • [38]
    Huber, R, Langworthy, T.A., König, H, Thomm, M, Woese, C.R., Sleytr, U.B., Stetter, K.O (1986) Thermotoga maritima sp. nov. represents a new genus of unique extremely thermophilic eubacteria growing up to 90°C. Arch. Microbiol. 144, 324333.
  • [39]
    Fiala, G, Stetter, K.O (1986) Pyrococcus furiosus sp. nov. represents a novel genus of marine heterotrophic archaebacteria growing optimally at 100°C. Arch. Microbiol. 145, 5661.
  • [40]
    Bonch-Osmolovskaya, E.A., Stetter, K.O (1991) Interspecies hydrogen transfer in cocultures of thermophilic Archaea. Syst. Appl. Microbiol. 14, 263269.
  • [41]
    Kengen, S.W.M., Stams, A.J.M (1994) Formation of l-alanine as a reduced end product in carbohydrate fermentation by the hyperthermophilic archaeon Pyrococcus furiosus. Arch. Microbiol. 161, 168175.
  • [42]
    Huber, R, Sacher, M, Vollmann, A, Huber, H, Rose, D (2000) Respiration of arsenate and selenate by hyperthermophilic archaea. Syst. Appl. Microbiol. 23, 305314.
  • [43]
    Eary, L.E (1992) The solubility of amorphous As2S2 from 25 to 90°C. Geochim. Cosmochim. Acta 56, 22672280.
  • [44]
    Migdisov, A, Bychkov, A.Y (1998) The behaviour of metals and sulfur during the formation of hydrothermal mercury-antimony-arsenic mineralization, Uzon caldera, Kamchatka, Russia. J. Volcanol. Geotherm. Res. 84, 153171.