• [1]
    Roger, P.A., Zimmerman, W.J. and Lumpkin, T.A. (1993) Microbiological management of wetland rice fields. In: Soil Microbial Ecology: Applications in Agricultural and Environmental Management (Metting Jr., F.B., Ed.), pp. 417–455. Marcel Dekker, New York.
  • [2]
    Lelieveld, J., Crutzen, P.J., Brül, C. (1993) Climate effect of atmospheric methane. Chemosphere 26, 739768.
  • [3]
    Lelieveld, J., Crutzen, P.J., Dentener, F.J. (1998) Changing concentration, lifetime and climate forcing of atmospheric methane. Tellus Ser. B Chem. Phys. Meteorol. 50, 128150.
  • [4]
    Wahlen, M., Tanaka, N., Henry, R., Deck, B., Zeglen, J., Vogel, J.S., Southon, J., Shemesh, A., Fairbanks, R., Broecker, W. (1989) Carbon-14 in methane sources and in atmospheric methane: the contribution from fossil carbon. Science 245, 286290.
  • [5]
    Prinn, R.G. (1994) Global atmospheric-biospheric chemistry. In: Global atmospheric-biospheric chemistry, pp. 1–18. Plenum, New York.
  • [6]
    Cicerone, R.J., Oremland, R.S. (1988) Biogeochemical aspects of atmospheric methane. Glob. Biogeochem. Cycles 2, 299327.
  • [7]
    Galchenko, V.F., Lein, A. and Ivanov, M. (1989) Biological sinks of methane. In: Exchange of Trace Gases Between Terrestrial Ecosystems and the Atmosphere (Andreae, M.O. and Schimel, D.S., Eds.), pp. 59–71. John Wiley and Sons, Chichester.
  • [8]
    Ponnamperuma, F.N. (1972) The chemistry of submerged soils. Adv. Agron. 24, 2996.
  • [9]
    Zehnder, A.J.B. and Stumm, W. (1988) Geochemistry and biogeochemistry of anaerobic habitats. In: Biology of anaerobic microorganisms (Zehnder, A.J.B., Ed.), pp. 1–38. Wiley Interscience Publications, New York.
  • [10]
    Chin, K.-J., Rainey, F.A., Janssen, P.H., Conrad, R. (1998) Methanogenic degradation of polysaccharides and the characterization of polysaccharolytic clostridia from anoxic rice field soil. Syst. Appl. Microbiol. 21, 185200.
  • [11]
    Ferguson, R.L., Buckley, E.N., Palumbo, A.V. (1984) Response of marine bacterioplankton to differential filtration and confinement. Appl. Environ. Microbiol. 47, 4955.
  • [12]
    Bakken, L.R., Olsen, R.A. (1987) The relationship between cell size and viability of soil bacteria. Microb. Ecol. 13, 103114.
  • [13]
    Amann, R., Ludwig, W., Schleifer, K.-H. (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59, 143169.
  • [14]
    Liesack, W., Stackebrandt, E. (1992) Occurrence of novel groups of the domain Bacteria as revealed by analysis of genetic material isolated from an Australian terrestrial environment. J. Bacteriol. 174, 50725078.
  • [15]
    Liesack, W., Janssen, P.H., Rainey, F.A., Ward-Rainey, N. and Stackebrandt, E. (1997) Microbial diversity in soil: The need for a combined approach using molecular and cultivation techniques. In: Modern Soil Microbiology (van Elsas, J.D., Trevors, J.T. and Wellington, E.M.H., Eds.), pp. 375–439. Marcel Dekker, New York.
  • [16]
    DeLong, E.F. (1998) Everything in moderation: archaea as ‘non-extremophiles’. Curr. Opin. Genet. Dev. 8, 649654.
  • [17]
    Hugenholtz, P., Goebel, B.M., Pace, N.R. (1998) Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J. Bacteriol. 180, 47654774.
  • [18]
    Dojka, M.A., Harris, J.K., Pace, N.R. (2000) Expanding the known diversity and environmental distribution of an uncultured phylogenetic division of bacteria. Appl. Environ. Microbiol. 66, 16171621.
  • [19]
    von Wintzingerode, F., Göbel, U.B., Stackebrandt, E. (1997) Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. FEMS Microbiol. Rev. 21, 213229.
  • [20]
    Hansen, M.C., Tolkernielsen, T., Givskov, M., Molin, S. (1998) Biased 16S rDNA PCR amplification caused by interference from DNA flanking the template region. FEMS Microbiol. Ecol. 26, 141149.
  • [21]
    Frostegard, A., Courtois, S., Ramisse, V., Clerc, S., Bernillon, D., Le Gall, F., Jeannin, P., Nesme, X., Simonet, P. (1999) Quantification of bias related to the extraction of DNA from soils. Appl. Environ. Microbiol. 65, 54095420.
  • [22]
    Button, D.K., Schut, F., Quang, P., Martin, R., Robertson, B.R. (1993) Viability and isolation of typical marine oligotrophic bacteria by dilution culture: theory, procedures and initial results. Appl. Environ. Microbiol. 59, 881891.
  • [23]
    Chin, K.-J., Hahn, D., Hengstmann, U., Liesack, W., Janssen, P.H. (1999) Characterization and identification of numerically abundant culturable bacteria from the anoxic bulk soil of rice paddy microcosms. Appl. Environ. Microbiol. 65, 50425049.
  • [24]
    Postgate, J.R., Hunter, J.R. (1964) Accelerated death of Aerobacter aerogenes starved in the presence of growth limiting substrates. J. Gen. Microbiol. 34, 459473.
  • [25]
    Straškrabová, V. (1983) The effect of substrate shock on populations of starving aquatic bacteria. J. Appl. Bacteriol. 54, 217224.
  • [26]
    Hengstmann, U., Chin, K.-J., Janssen, P.H., Liesack, W. (1999) Comparative phylogenetic assignment of environmental sequences of genes encoding 16S rRNA and numerically abundant culturable bacteria from an anoxic rice paddy soil. Appl. Environ. Microbiol. 65, 50505058.
  • [27]
    Hedlund, B.P., Gosink, J.J., Staley, J.T. (1997) Verrucomicrobia div. nov., a new division of the Bacteria containing three new species of Prosthecobacter. Antonie van Leeuwenhoek Int. J. Gen. Mol. Microbiol. 72, 2938.
  • [28]
    Collins, M.D., Lawson, P.A., Willems, A., Cordoba, J.J., Fernandez-Garayzabal, J., Garcia, P., Cai, J., Hippe, H., Farrow, J.A.E. (1994) The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int. J. Syst. Bacteriol. 44, 812826.
  • [29]
    Janssen, P.H., Schuhmann, A., Mörschel, E., Rainey, F.A. (1997) Novel anaerobic ultramicrobacteria belonging to the Verrucomicrobiales lineage of bacterial descent isolated by dilution culture from anoxic rice paddy soil. Appl. Environ. Microbiol. 63, 13821388.
  • [30]
    Morita, R.Y. (1985) Starvation and miniaturisation of heterotrophs, with special emphasis on maintenance of the starved viable state. In: Bacteria in Their Natural Environment (Fletcher, M. and Floodgate, G.D., Eds.), pp. 111–130. Academic Press, London.
  • [31]
    Kjelleberg, S., Albertson, N., Flärdh, K., Holmquist, L., Jouper-Jaan, Å., Marouga, R., Östling, J., Svenblad, B., Weichart, D. (1993) How do non-differentiating bacteria adapt to starvation. Antonie van Leeuwenhoek 63, 333341.
  • [32]
    Petroni, G., Spring, S., Schleifer, K.-H., Verni, F., Rosati, G. (2000) Defensive extrusive ectosymbionts of Euplotidium (Ciliophora) that contain microtubule-like structures are bacteria related to Verrucomicrobia. Proc. Natl. Acad. Sci. USA 97, 18131817.
  • [33]
    Schlesner, H. (1987) Verrucomicrobium spinosum gen. nov., sp. nov. a fimbriated prosthecate bacterium. Syst. Appl. Microbiol. 10, 5456.
  • [34]
    Hedlund, B.P., Gosink, J.J., Staley, J.T. (1996) Phylogeny of Prosthecobacter, the fusiform caulobacters: members of a recently discovered division of the Bacteria. Int. J. Syst. Bacteriol. 46, 960966.
  • [35]
    Chandler, D.P., Li, S.-M., Spadoni, C.M., Drake, G.R., Balkwill, D.L., Fredrickson, J.K., Brockman, F.J. (1997) A molecular comparison of culturable aerobic heterotrophic bacteria and 16S rDNA clones derived from a deep subsurface sediment. FEMS Microbiol. Ecol. 23, 131144.
  • [36]
    Rosencrantz, D., Rainey, F.A., Janssen, P.H. (1999) Culturable populations of Sporomusa spp. and Desulfovibrio spp. in the anoxic bulk soil of flooded rice microcosms. Appl. Environ. Microbiol. 65, 35263533.
  • [37]
    Ward, D.M., Santegoeds, C.M., Nold, S.C., Ramsing, N.B., Ferris, M.J., Bateson, M.M. (1997) Biodiversity within hot spring microbial mat communities: molecular monitoring of enrichment cultures. Antonie van Leeuwenhoek 71, 143150.
  • [38]
    Schut, F., De Vries, E.J., Gottschal, J.C., Robertson, B.R., Harder, W., Prins, R.A., Button, D.K. (1993) Isolation of typical marine bacteria by dilution culture: growth, maintenance and chracteristics of isolates under laboratory conditions. Appl. Environ. Microbiol. 59, 21502160.
  • [39]
    Felske, A., Wolterink, A., van Lis, R., de Vos, W.M., Akkermans, A.D.L. (1999) Searching for predominant soil bacteria: 16S rDNA cloning versus strain cultivation. FEMS Microbiol. Ecol. 30, 137145.
  • [40]
    Roszka, D.B., Colwell, R.R. (1987) Survival strategies of bacteria in the natural environment. Microbiol. Rev. 51, 365379.
  • [41]
    Hattori, T., Mitsui, H., Haga, H., Wakao, N., Shikano, S., Gorlach, K., Kasahara, Y., El-Beltagy, A., Hattori, R. (1997) Advances in soil microbial ecology and the biodiversity. Antonie van Leeuwenhoek 72, 2128.
  • [42]
    Li, T., Bisaillon, J.-G., Villemur, R., Létourneau, L., Bernard, K., Lépine, F., Beaudet, R. (1996) Isolation and characterization of a new bacterium carboxylating phenol to benzoic acid under anaerobic conditions. J. Bacteriol. 178, 25512558.
  • [43]
    Rosencrantz, D. (1998) Diversität und strukturelle Zusammensetzung der wurzelassoziierten Bakteriengemeinschaft von Reispflanzen. Ph.D. thesis, University of Marburg, Marburg.
  • [44]
    Lüdemann, H., Arth, I., Liesack, W. (2000) Spatial changes in the bacterial community structure along a vertical oxygen gradient in flooded paddy soil cores. Appl. Environ. Microbiol. 66, 754762.
  • [45]
    Lüdemann, H. (1999) Bakterielle Besiedlung des Rhizosphärenbodens und der Flutwasser/Boden-Grenzschicht von Reisfeldbodensystemen. Ph.D. thesis, University of Marburg, Marburg.
  • [46]
    Bossio, D.A., Scow, K.M. (1995) Impact of carbon and flooding on the metabolic diversity of microbial communities in soils. Appl. Environ. Microbiol. 61, 40434050.
  • [47]
    Ueki, A., Ono, K., Tsuchiya, A., Ueki, K. (1997) Survival of methanogens in air-dried paddy field soil and their heat tolerance. Water Sci. Technol. 36, 517522.
  • [48]
    Mayer, H.P., Conrad, R. (1990) Factors influencing the population of methanogenic bacteria and the initiation of methane production upon flooding of paddy soil. FEMS Microbiol. Ecol. 73, 103112.
  • [49]
    Joulian, C., Ollivier, B., Neue, H.U., Roger, P.A. (1996) Microbiological aspects of methane emission by a ricefield soil from the Camargue (France). 1. Methanogenesis and related microflora. Eur. J. Soil Biol. 32, 6170.
  • [50]
    Fetzer, S., Bak, F., Conrad, R. (1993) Sensitivity of methanogenic bacteria from paddy soil to oxygen and desiccation. FEMS Microbiol. Ecol. 12, 107115.
  • [51]
    Pitts, G., Allam, A.I., Hollis, J.P. (1972) Aqueous iron-sulfur systems in rice field soils of Louisiana. Plant Soil 36, 251260.
  • [52]
    Canfield, D.E. and Raiswell, R. (1991) Pyrite formation and fossil preservation. In: Topics in Geobiology (Allison, P.A. and Briggs, D.E.G., Eds.), pp. 337–387. Plenum, New York.
  • [53]
    Conrad, R., Bak, F., Seitz, H.J., Thebrath, B., Mayer, H.P., Schütz, H. (1989) Hydrogen turnover by psychrotrophic homoacetogenic and mesophilic methanogenic bacteria in anoxic paddy soil and lake sediment. FEMS Microbiol. Ecol. 62, 285294.
  • [54]
    Schütz, H., Seiler, W., Conrad, R. (1989) Processes involved in the formation and emission of methane in rice paddies. Biogeochemistry 7, 3353.
  • [55]
    Conrad, R. (1999) Contribution of hydrogen to methane production and control of hydrogen concentrations in methanogenic soil and sediments. Minirev. FEMS Microbiol. Ecol. 28, 569578.
  • [56]
    Chidthaisong, A., Rosenstock, B., Conrad, R. (1999) Measurement of monosaccharides and conversion of glucose to acetate in anoxic rice field soil. Appl. Environ. Microbiol. 65, 23502355.
  • [57]
    Rothfuss, F., Conrad, R. (1993) Vertical profiles of CH4 concentrations, dissolved substrates and processes involved in CH4 production in a flooded Italian rice field. Biogeochemistry 18, 137152.
  • [58]
    Krumböck, M., Conrad, R. (1991) Metabolism of position-labelled glucose in anoxic methanogenic paddy soil and lake sediment. FEMS Microbiol. Ecol. 85, 247256.
  • [59]
    Großkopf, R., Janssen, P.H., Liesack, W. (1998) Diversity and structure of the methanogenic community in anoxic rice paddy soil microcosms as examined by cultivation and direct 16S rDNA sequence retrieval. Appl. Environ. Microbiol. 64, 960969.
  • [60]
    Zinder, S.H., Anguish, T. (1991) Carbon monoxide, hydrogen, and formate metabolism during methanogenesis from acetate by thermophilic Methanosarcina and Methanothrix strains. Appl. Environ. Microbiol. 58, 33233329.
  • [61]
    Rajagopal, B.S., Belay, N., Daniels, L. (1988) Isolation and characterization of methanogenic bacteria from rice paddies. FEMS Microbiol. Ecol. 53, 153158.
  • [62]
    Asakawa, S., Morii, H., Akagawa-Matsushita, M., Koga, Y., Hayano, K. (1993) Characterization of Methanobrevibacter arboriphilicus SA isolated from a paddy field soil and DNA–DNA hybridization among M. arboriphilicus strains. Int. J. Syst. Bacteriol. 43, 683686.
  • [63]
    Asakawa, S., Akagawa-Matsushita, M., Morii, H., Koga, Y., Hayano, K. (1995) Characterization of Methanosarcina mazei TMA isolated from a paddy field soil. Curr. Microbiol. 31, 3438.
  • [64]
    Min, H., Zhao, Y.H., Chen, M.C., Zhao, Y. (1997) Methanogens in paddy rice soil. Nutr. Cycl. Agroecosyst. 49, 163169.
  • [65]
    Joulian, C., Ollivier, B., Patel, B.K.C., Roger, P.A. (1998) Phenotypic and phylogenetic characterization of dominant culturable methanogens isolated from rice field soils. FEMS Microbiol. Ecol. 25, 135145.
  • [66]
    Kudo, Y., Nakajima, T., Miyaki, T., Oyaizu, H. (1997) Methanogen flora of paddy soils in Japan. FEMS Microbiol. Ecol. 22, 3948.
  • [67]
    Adachi, K. (1999) Isolation of hydrogenotrophic methanogenic archaea from a subtropical paddy field. FEMS Microbiol. Ecol. 30, 7785.
  • [68]
    Jetten, M.S.M., Stams, A.J.M., Zehnder, A.J.B. (1992) Methanogenesis from acetate – A comparison of the acetate metabolism in Methanothrix soehngenii and Methanosarcina spp. FEMS Microbiol. Rev. 88, 181197.
  • [69]
    Yao, H., Conrad, R. (1999) Thermodynamics of methane production in different rice paddy soils from China, the Philippines and Italy. Soil Biol. Biochem. 31, 463473.
  • [70]
    Yao, H., Conrad, R., Wassmann, R., Neue, H.U. (1999) Effect of soil characteristics on sequential reduction and methane production in sixteen rice paddy soils from China, the Philippines, and Italy. Biogeochemistry 47, 269295.
  • [71]
    Chin, K.-J., Lukow, T., Conrad, R. (1999) Effect of temperature on structure and function of the methanogenic archaeal community in an anoxic rice field soil. Appl. Environ. Microbiol. 65, 23412349.
  • [72]
    Chin, K.-J., Conrad, R. (1995) Intermediary metabolism in methanogenic paddy soil and the influence of temperature. FEMS Microbiol. Ecol. 18, 85102.
  • [73]
    Conrad, R., Schütz, H., Babbel, M. (1987) Temperature limitation of hydrogen turnover and methanogenesis in anoxic paddy soil. FEMS Microbiol. Ecol. 45, 281289.
  • [74]
    Conrad, R., Mayer, H.P., Wüst, M. (1989) Temporal change of gas metabolism by hydrogen-syntrophic methanogenic bacterial associations in anoxic paddy soil. FEMS Microbiol. Ecol. 62, 265274.
  • [75]
    Chin, K.-J., Lukow, T., Stubner, S., Conrad, R. (1999) Structure and function of the methanogenic archaeal community in stable cellulose-degrading enrichment cultures at two different temperatures (15 and 30°C). FEMS Microbiol. Ecol. 30, 313326.
  • [76]
    Lehmann-Richter, S., Großkopf, R., Liesack, W., Frenzel, P., Conrad, R. (1999) Methanogenic archaea and CO2-dependent methanogenesis on washed rice roots. Environ. Microbiol. 1, 159166.
  • [77]
    Lueders, T., Friedrich, M. (2000) Archaeal population dynamics during sequential reduction processes in rice field soil. Appl. Environ. Microbiol. 66, 27322742.
  • [78]
    Ramakrishnan, B., Lueders, T., Conrad, R., Friedrich, M. (2000) Effect of soil aggregate size on methanogenesis and archaeal community structure in anoxic rice field soil. FEMS Microbiol. Ecol. 32, 261270.
  • [79]
    Großkopf, R., Stubner, S., Liesack, W. (1998) Novel euryarchaeotal lineages detected on rice roots and in the anoxic bulk soil of flooded rice microcosms. Appl. Environ. Microbiol. 64, 49834989.
  • [80]
    Hales, B.A., Edwards, C., Ritchie, D.A., Hall, G., Pickup, R.W., Saunders, J.R. (1996) Isolation and identification of methanogen-specific DNA from blanket bog peat by PCR amplification and sequence analysis. Appl. Environ. Microbiol. 62, 668675.
  • [81]
    DeLong, E.F. (1992) Archaea in coastal marine environments. Proc. Natl. Acad. Sci. USA 89, 56855689.
  • [82]
    Bintrim, S.B., Donohue, T.J., Handelsman, J., Roberts, G.P., Goodman, R.M. (1997) Molecular phylogeny of archaea from soil. Proc. Natl. Acad. Sci. USA 94, 277282.
  • [83]
    Holmer, M., Kristensen, E. (1994) Coexistence of sulfate reduction and methane production in an organic-rich sediment. Mar. Ecol. Progr. Ser. 107, 177184.
  • [84]
    Oremland, R.S., Marsh, L.M., Polcin, S. (1982) Methane production and simultaneous sulphate reduction in anoxic, salt marsh sediments. Nature 296, 143148.
  • [85]
    Kühl, M., Jørgensen, B.B. (1992) Microsensor measurements of sulfate reduction and sulfide oxidation in compact microbial communities of aerobic biofilms. Appl. Environ. Microbiol. 58, 11641174.
  • [86]
    Jensen, K., Revsbech, N.P., Nielsen, L.P. (1993) Microscale distribution of nitrification activity in sediment determined with a shielded microsensor for nitrate. Appl. Environ. Microbiol. 59, 32873296.
  • [87]
    Jensen, K., Sloth, N.P., Risgaard-Petersen, N., Rysgaard, S., Revsbech, N.P. (1994) Estimation of nitrification and denitrification from microprofiles of oxygen and nitrate in model sediment systems. Appl. Environ. Microbiol. 60, 20942100.
  • [88]
    Nielsen, L.P., Christensen, P.B., Revsbech, N.P., Sørensen, J. (1990) Denitrification and oxygen respiration in biofilms studied with a microsensor for nitrous oxide and oxygen. Microb. Ecol. 19, 6370.
  • [89]
    Canfield, D.E., Thamdrup, B., Hansen, J.W. (1993) The anaerobic degradation of organic matter in Danish coastal sediments: iron reduction, manganese reduction, and sulfate reduction. Geochim. Cosmochim. Acta 57, 38673883.
  • [90]
    Armstrong, W. (1979) Aeration in higher plants. Adv. Bot. Res. 7, 226332.
  • [91]
    Armstrong, W. (1994) Polarographic oxygen electrodes and their use in plant aeration studies. Proc. R. Soc. Edinb. Sect. B 102, 511527.
  • [92]
    Ando, T., Yoshida, S., Nishiyama, I. (1983) Nature of oxidizing power of rice roots. Plant Soil 72, 5771.
  • [93]
    Christensen, P.B., Revsbech, N.P., Sand-Jensen, K. (1994) Microsensor analysis of oxygen in the rhizosphere of the aquatic macrophyte Littorella uniflora (L.) Ascherson. Plant Physiol. 105, 847852.
  • [94]
    Flessa, H., Fischer, W.R. (1992) Plant-induced changes in the redox potential of rice rhizospheres. Plant Soil 143, 5560.
  • [95]
    Frenzel, P., Rothfuss, F., Conrad, R. (1992) Oxygen profiles and methane turnover in a flooded rice microcosm. Biol. Fertil. Soils 14, 8489.
  • [96]
    Revsbech, N.P., Pedersen, O., Reichardt, W., Brions, A. (1999) Microsensor analysis of oxygen and pH in the rice rhizosphere under field and laboratory conditions. Biol. Fertil. Soils 29, 379385.
  • [97]
    DeBont, J.A.M., Lee, K.K., Bouldin, D.F. (1978) Bacterial oxidation of methane in a rice paddy. Ecol. Bull. (Stockh.) 26, 9196.
  • [98]
    Gerard, G., Chanton, J. (1993) Quantification of methane oxidation in the rhizosphere of emergent aquatic macrophytes – defining upper limits. Biogeochemistry 23, 7997.
  • [99]
    Gilbert, B., Frenzel, P. (1995) Methanotrophic bacteria in the rhizophere of rice microcosms and their effect on porewater methane concentration and methane emission. Biol. Fertil. Soils 20, 93100.
  • [100]
    Holzapfel-Pschorn, A., Conrad, R., Seiler, W. (1985) Production, oxidation and emission of methane in rice paddies. FEMS Microbiol. Ecol. 31, 343351.
  • [101]
    King, G.M. (1994) Association of methanotrophs with the roots and rhizomes of aquatic vegetation. Appl. Environ. Microbiol. 60, 32203227.
  • [102]
    Arth, I., Frenzel, P., Conrad, R. (1998) Denitrification coupled to nitrification in the rhizosphere of rice. Soil Biol. Biochem. 30, 509515.
  • [103]
    Reddy, K.R., Patrick, W.H.Jr., Lindau, C.W. (1989) Nitrification–denitrification at the plant root-sediment interface in wetlands. Limnol. Oceanogr. 34, 10041013.
  • [104]
    Wind, T., Conrad, R. (1995) Sulfur compounds, potential turnover of sulfate and thiosulfate, and numbers of sulfate-reducing bacteria in planted and unplanded paddy soil. FEMS Microbiol. Ecol. 18, 257266.
  • [105]
    Ahmad, A.R., Nye, P.H. (1990) Coupled diffusion and oxidation of ferrous iron in soils. I. Kinetics of oxygenation of ferrous iron in soil suspension. J. Soil Sci. 41, 395409.
  • [106]
    Begg, C.B.M., Kirk, G.J.D., Mackenzie, A.F., Neue, H.-U. (1994) Root-induced iron oxidation and pH changes in the lowland rice rhizosphere. New Phytol. 128, 469477.
  • [107]
    Kirk, G.J.D. (1993) Root ventilation, rhizosphere modification, and nutrient uptake by rice. In: System Approaches for Agricultural Development. (Penning de Vries, F., Teng, P., and Metselaar, K., Eds.), pp. 221–232. Kluwer Academic Publishers, Dordrecht.
  • [108]
    Kirk, G.J.D., Bajita, J.B. (1995) Root-induced iron oxidation, pH changes and zinc solubilization in the rhizosphere of lowland rice. New Phytol. 131, 129137.
  • [109]
    Jørgensen, B.B. (1978) A comparison of methods for the quantification of bacterial sulfate reduction in coastal marine sediments. I. Measurement with radiotracer techniques. Geomicrobiol. J. 1, 1127.
  • [110]
    Wind, T., Conrad, R. (1997) Localization of sulfate reduction in planted and unplanted rice field soil. Biogeochemistry 37, 253278.
  • [111]
    Wind, T., Stubner, S., Conrad, R. (1999) Sulfate-reducing bacteria in rice field soil and on rice roots. Syst. Appl. Microbiol. 22, 269279.
  • [112]
    Ratering, S., Schnell, S. (2000) Localization of iron-reducing activity in paddy soil by profile studies. Biogeochemistry 48, 341365.
  • [113]
    Ratering, S. and Schnell, S. (2000) Nitrate-dependent iron(II) oxidation in paddy soil, submitted.
  • [114]
    Klüber, H.D., Conrad, R. (1998) Effects of nitrate, nitrite, NO, and N2O on methanogenesis and other redox processes in anoxic rice soil. FEMS Microbiol. Ecol. 25, 301318.
  • [115]
    Frenzel, P., Bosse, U., Janssen, P.H. (1999) Rice roots and methanogenesis in a paddy soil: ferric iron as an alternative electron acceptor in rooted soil. Soil Biol. Biochem. 31, 421430.
  • [116]
    Tanaka, A., Loe, R., Navasero, S.A. (1966) Some mechanisms involved in the development of iron toxicity symptoms in the rice plant. Soil Sci. Plant Nutr. 12, 158164.
  • [117]
    Green, M.S., Etherington, J.R. (1977) Oxidation of ferrous iron by rice (Oryza sativa L.) roots: a mechanism for water logging tolerance. J. Exp. Bot. 104, 678690.
  • [118]
    Zhang, X.K., Zhang, F.S., Mao, D.R. (1998) Effect of iron plaque outside roots on nutrient uptake by rice (Oryza sativa L.). Zinc uptake by Fe-deficient rice. Plant Soil 202, 3339.
  • [119]
    Howeler, R.H. (1973) Iron-induced oranging disease of rice in relation to physicochemical changes in a flooded oxisol. Soil Sci. Soc. Am. Proc. 37, 898903.
  • [120]
    Emerson, D., Weiss, J.V., Megonigal, J.P. (1999) Iron-oxidizing bacteria are associated with ferric hydroxide precipitates (Fe-Plaque) on the roots of wetland plants. Appl. Environ. Microbiol. 65, 27582761.
  • [121]
    Karim, Z. (1984) Formation of alumiunium-substituted goethite in seasonally waterlogged rice soils. Soil Sci. Soc. Am. J. 48, 410413.
  • [122]
    Chen, C.C., Dixon, J.B., Turner, F.T. (1980) Iron coatings on rice roots: mineralogy and quantity influencing factors. Soil Sci. Soc. Am. J. 44, 635639.
  • [123]
    Bacha, R.E., Hossner, L.R. (1977) Characteristics of coating formed on rice roots as affected by iron and managanese additions. Soil Sci. Soc. Am. J. 41, 931935.
  • [124]
    Munch, J.C., Ottow, J.C.G. (1980) Preferential reduction of amorphous to crystalline iron oxides by bacterial activity. Science 129, 1521.
  • [125]
    Phillips, E.J.P., Lovley, D.R., Roden, E.E. (1993) Composition of non-microbially reducible Fe(III) in aquatic sediments. Appl. Environ. Microbiol. 59, 27272729.
  • [126]
    Roden, E.E., Zachara, J.M. (1996) Microbial reduction of crystalline iron(III) oxides: Influence of oxide surface area and potential for cell growth. Environ. Sci. Technol. 30, 16181628.
  • [127]
    Schwertmann, U. and Cornell, R.M. (1991) Iron oxides in the laboratory. Preparation and characterization. VCH Verlagsgesellschaft, Weinheim.
  • [128]
    Lovley, D.R., Phillips, E.J.P. (1986) Availability of ferric iron for microbial reduction in bottom sediment of the freshwater tidal Potomac River. Appl. Environ. Microbiol. 52, 751757.
  • [129]
    Lovley, D.R., Phillips, E.J.P. (1987) Rapid assay for microbially reducible ferric iron in aquatic sediments. Appl. Environ. Microbiol. 53, 15361540.
  • [130]
    Revsbech, N.P., Jørgensen, B.B., Blackburn, T.H. (1980) Oxygen in the sea bottom measured with a microelectrode. Science 207, 13551356.
  • [131]
    Jäckel, U. and Schnell, S. (1999) Role of microbial iron reduction in paddy soil. In: Second international symposium on non-CO2 greenhouse gases (van Ham, J., Baede, A.P.M., Meyer, L.A. and Ybema, R., Eds.), pp. 143–144. Kluwer, Dordrecht.
  • [132]
    Luther, G.W., Brendel, P.J., Lewis, B.L., Sundby, B., Lefrencois, L., Silverberg, N., Nuzzio, D.B. (1998) Simultaneous measurement of O2, Mn, Fe, I, and S(-II) in marine porewaters with a solid-state voltammetric microelectrode. Limnol. Oceanogr. 43, 325333.
  • [133]
    Krämer, H., Conrad, R. (1993) Measurement of dissolved H2 concentrations in methanogenic environments with a gas diffusion probe. FEMS Microbiol. Ecol. 12, 149158.
  • [134]
    Rothfuss, F., Conrad, R. (1994) Development of gas diffusion probe for the determination of methane concentrations and diffusion characteristics in flooded paddy soil. FEMS Microbiol. Ecol. 14, 307318.
  • [135]
    Kirk, G.J.D., Saleque, M.A. (1995) Solubilization of phosphate by rice plants growing in reduced soil: prediction of the amount solubilized and the resultant increase in uptake. Eur. J. Soil Sci. 46, 247255.
  • [136]
    Revsbech, N.P. (1989) An oxygen microelectrode with a guard cathode. Limnol. Oceanogr. 34, 472476.
  • [137]
    De Datta, S.K., Buresh, R.J. (1989) Integrated nitrogen management in irrigated rice. Adv. Soil Sci. 10, 143169.
  • [138]
    de Beer, D., Sweerts, J.-P.R.A. (1989) Measurement of nitrate gradients with an ionselective microelectrode. Anal. Chim. Acta 219, 351356.
  • [139]
    de Beer, D., van den Heuvel, J.C. (1988) Response of ammonium-selective microelectrodes based on the neutral carrier nonactin. Talanta 35, 728730.
  • [140]
    Larsen, L.H., Kjær, T., Revsbech, N.P. (1997) A microscale NO3 biosensor for environmental applications. Anal. Chem. 69, 35273531.
  • [141]
    Kjær, T., Larsen, L.H., Revsbech, N.P. (1999) Electrophoretic sensitivity control of microscale biosensors. Anal. Chim. Acta 391, 5763.
  • [142]
    Verschuren, P.G., Baan, J.L.v.d., Blaauw, R., Beer, D., van den Heuvel, J.C. (1999) A nitrate-selective microelectrode based on a lipophilic derivative of iodocobalt(III)salen. Fresenius J. Anal. Chem. 364, 595598.
  • [143]
    Damgaard, L.R., Revsbech, N.P. (1997) A microscale biosensor for methane. Anal. Chem. 69, 22622267.
  • [144]
    Damgaard, L.R., Revsbech, N.P., Reichardt, W. (1998) An oxygen insensitive microscale biosensor for methane used to measure methane concentration profiles in a rice paddy. Appl. Environ. Microbiol. 64, 867870.
  • [145]
    Holzapfel-Pschorn, A., Conrad, R., Seiler, W. (1986) Effects of vegetation on the emission of methane from submerged paddy soil. Plant Soil 92, 223233.
  • [146]
    Horz, H.P. (1997) Vergleichende molekularbiologische Charakterisierung methanogener Populationen an Wurzeln verschiedener Reisvarietäten. Diploma thesis, University of Marburg, Marburg.