• [1]
    Henrici, A.T. (1933) Studies of freshwater bacteria. I. A direct microscopic method. J. Bacteriol. 25, 277286.
  • [2]
    Cholodny, N. (1924) Zur Morphologie der Eisenbakterien Gallionella und Spirophyllum. Ber. Dtsch. Bot. Ges. 42, 3544.
  • [3]
    ZoBell, C.E. (1943) The effect of solid surfaces upon bacterial activity. J. Bacteriol. 46, 3956.
  • [4]
    ZoBell, C.E., Allen, E.C. (1935) The significance of marine bacteria in the fouling of submerged surfaces. J. Bacteriol. 29, 239251.
  • [5]
    Allen, M.J., Taylor, R.H., Geldreich, E.E. (1980) The occurrence of microorganisms in water main encrustations. J. Am. Water Works Assoc. 72, 614625.
  • [6]
    Hermansson, M., Marshall, K.C. (1985) Utilization of surface localized substrate by non-adhesive marine bacteria. Microb. Ecol. 11, 91105.
  • [7]
    Kefford, B., Kjelleberg, S., Marshall, K.C. (1982) Bacterial scavenging: utilization of fatty acids localized at a solid–liquid interface. Arch. Microbiol. 133, 257260.
  • [8]
    Power, K., Marshall, K.C. (1988) Cellular growth and reproduction of marine bacteria on surface-bound substrate. Biofouling 1, 163174.
  • [9]
    Costerton, J.W., Irvin, R.T., Cheng, K.J. (1981) Role of bacterial surface structures in pathogenesis. Crit. Rev. Microbiol. (CRC) 8, 303338.
  • [10]
    Wilderer, P.A. and Characklis, W.G. (1989) Structure and function of biofilms. In: Structure and Function of Biofilms (Characklis, W.G. and Wilderer, P.A., Eds.), pp 5–17. John Wiley and Sons, Chichester.
  • [11]
    Nyvad, B., Fejerskov, O. (1997) Assessing the stage of caries lesion activity on the basis of clinical and microbiological examination. Commun. Dent. Oral Epidem. 25, 6975.
  • [12]
    Keevil, C.W., Walker, J.T. (1992) Normarski DIC microscopy and image analysis of biofilms. BINARY 4, 9395.
  • [13]
    de Beer, D., Stoodley, P., Roe, F., Lewandowski, Z. (1994) Effects of biofilm structures on oxygen distribution and mass transport. Biotechnol. Bioeng. 43, 11311138.
  • [14]
    Stoodley, P., DeBeer, D., Lewandowski, Z. (1994) Liquid flow in biofilm systems. Appl. Environ. Microbiol. 60, 27112716.
  • [15]
    Szewzyk, U., Schink, B. (1987) Surface colonization by and life cycle of Pelobacter acidigallici studied in a continuous-flow microchamber. J. Gen. Microbiol. 134, 183190.
  • [16]
    van Loosdrecht, M.C.M., Eikelboom, D., Gjaltema, A., Mulder, A., Tijhuis, L., Heijnen, J.J. (1995) Biofilm structures. Wat. Sci. Tech. 32, 3543.
  • [17]
    Hirsch, P., Pankratz, S.H. (1970) Study of bacterial populations in natural environments by use of submerged electron microscope grids. Z. Allg. Mikrobiol. 10, 589605.
  • [18]
    Caldwell, D.E., Korber, D.R., Lawrence, J.R. (1992) Confocal laser microscopy and digital image analysis in microbial ecology. Adv. Microb. Ecol. 12, 167.
  • [19]
    Vroom, J.M., de Grauw, K.J., Gerritsen, H.C., Bradshaw, D.J., Marsh, P.D., Watson, G.K., Birmingham, J.J., Allison, C. (1999) Depth penetration and detection of pH gradients in biofilms by two-photon excitation microscopy. Appl. Environ. Microbiol. 65, 35023511.
  • [20]
    Chen, Y.S., Bungay, H.R. (1981) Micro-electrode studies of oxygen transfer in trickling filter slimes. Biotechnol. Bioeng. 23, 781792.
  • [21]
    Wimpenny, J.W., Coombs, J.P. (1983) Penetration of oxygen into bacterial colonies. J. Gen. Microbiol. 129, 12391242.
  • [22]
    Revsbech, N.P. (1989) Diffusion characteristics of microbial communities determined by use of oxygen microsensors. J. Microbiol. Methods 9, 111122.
  • [23]
    de Beer, D., van den Heuvel, J.C., Ottengraf, S.P. (1993) Microelectrode measurements of the activity distribution in nitrifying bacterial aggregates. Appl. Environ. Microbiol. 59, 573579.
  • [24]
    Nielsen, L.P., Christensen, P.B., Revsbech, N.P., Sørensen, J. (1990) Denitrification and oxygen respiration in biofilms studied with a microsensor for nitrous oxide and oxygen. Microb. Ecol. 19, 6372.
  • [25]
    Jørgensen, B.B., Revsbech, N.P. (1983) Colorless sulfur bacteria, Beggiatoa spp. and Thiovulum spp., in O2 and H2S microgradients. Appl. Environ. Microbiol. 45, 12611270.
  • [26]
    Kuhl, M., Jørgensen, B.B. (1992) Microsensor measurements of sulfate reduction and sulfide oxidation in compact microbial communities of aerobic biofilms. Appl. Environ. Microb. 58, 11641174.
  • [27]
    Bishop, P.L., Zhang, T.C., Fu, Y.-C. (1995) Effects of biofilm structure, microbial distributions and mass transport on biodegradation processes. Water Sci. Tech. 31, 143152.
  • [28]
    Woese, C.R. (1987) Bacterial evolution. Microb. Rev. 51, 221271.
  • [29]
    Woese, C., Fox, G.E. (1977) Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc. Natl. Acad. Sci. USA 74, 50885090.
  • [30]
    Olsen, G.J., Lane, D.J., Giovannoni, S.J., Pace, N.R., Stahl, D.A. (1986) The microbial ecology and evolution: a ribosomal RNA approach. Annu. Rev. Microbiol. 40, 337365.
  • [31]
    Amann, R.I., Ludwig, W., Schleifer, K.H. (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59, 143169.
  • [32]
    Manz, W., Amann, R., Ludwig, W., Wagner, M., Schleifer, K.H. (1992) Phylogenetic oligodeoxynucleotide probes for the major subclasses of Proteobacteria: problems and solutions. Syst. Appl. Microbiol. 15, 593600.
  • [33]
    Kalmbach, S., Manz, W., Szewzyk, U. (1997) Dynamics of biofilm formation in drinking water: phylogenetic affiliation and metabolic potential of single cells assessed by formazan reduction and in situ hybridization. FEMS Microbiol. Ecol. 22, 265279.
  • [34]
    Kalmbach, S., Manz, W., Szewzyk, U. (1997) Isolation of new bacterial species from drinking water biofilms and proof of their in situ dominance with highly specific 16S rRNA probes. Appl. Environ. Microbiol. 63, 41644170.
  • [35]
    Kalmbach, S., Manz, W., Wecke, J., Szewzyk, U. (1999) Aquabacterium gen. nov., with description of Aquabacterium citratiphilum sp. nov., Aquabacterium parvum sp. nov. and Aquabacterium commune sp. nov., three in situ dominant bacterial species from the Berlin drinking water system. Int. J. Syst. Bacteriol. 49, 769777.
  • [36]
    Kalmbach, S., Manz, W., Bendinger, B., Szewzyk, U. (2000) In situ probing reveals Aquabacterium commune as a widespread and highly abundant bacterial species in drinking water biofilms. Water Res. 34, 575581.
  • [37]
    Characklis, W.G. (1983) Process analysis in microbial systems: biofilms as a case study. In: Mathematics in Microbiology (Bazin, M., Ed.), pp. 171–234. Academic Press, London, 0.
  • [38]
    Wanner, O., Cunningham, A.B., Lundman, R. (1995) Modeling biofilm accumulation and mass transport in a porous medium under high substrate loading. Biotechnol. Bioeng. 47, 703712.
  • [39]
    Shellis, R.P., Dibdin, G.H. (1988) Analysis of the buffering system in dental plaque. J. Dent. Res. 67, 438446.
  • [40]
    Dibdin, G.H. (1990) Plaque fluid and diffusion: study of the cariogenic challenge by computer modeling. J. Dent. Res. 69, 13241331.
  • [41]
    Dibdin, G.H. (1992) A finite-difference computer model of solute diffusion in bacterial films with simultaneous metabolism and chemical reaction. Comp. Appl. Biosci. 8, 489500.
  • [42]
    Dibdin, G., Wimpenny, J. (1999) Steady-state biofilm: practical and theoretical models. Methods Enzymol. 310, 296322.
  • [43]
    Wimpenny, J.W., Colasanti, R. (1997) A unifying hypothesis for the structure of microbial biofilms based on cellular automation models. FEMS Microbiol. Ecol. 22, 116.
  • [44]
    Picioreanu, C., van Loosdrecht, M.C., Heijnen, J.J. (1998) A new combined differential-discrete cellular automaton approach for biofilm modeling: application for growth in gel beads. Biotechnol. Bioeng. 57, 718731.
  • [45]
    Hermanowicz, S.W. (1998) A model of two-dimensional biofilm morphology. Water Sci. Tech. 37, 219222.
  • [46]
    Kreft, J.U., Booth, G., Wimpenny, J.W. (1998) BacSim, a simulator for individual-based modelling of bacterial colony growth. Microbiology 144, 32753287.
  • [47]
    Poulsen, L.K., Ballard, G., Stahl, D.A. (1993) Use of rRNA fluorescence in situ hybridization for measuring the activity of single cells in young and established biofilms. Appl. Environ. Microbiol. 59, 13541360.
  • [48]
    Prigent-Combaret, C., Vidal, O., Dorel, C., Lejeune, P. (1999) Abiotic surface sensing and biofilm-dependent regulation of gene expression in Escherichia coli. J. Bacteriol. 181, 59936002.
  • [49]
    Nielsen, A.T., Tolker Nielsen, T., Barken, K.B., Molin, S. (2000) Role of commensal relationships on the spatial structure of a surface-attached microbial consortium. Environ. Microbiol. 2, 5968.
  • [50]
    Laramée, L., Lawrence, J.R., Greer, C.W. (2000) Molecular analysis and development of 16S rRNA oligonucleotide probes to characterize a diclofop-methyl-degrading biofilm consortium. Can. J. Microbiol. 46, 133142.
  • [51]
    Davies, D.G., Parsek, M.R., Pearson, J.P., Iglewski, B.H., Costerton, J.W., Greenberg, E.P. (1998) The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280, 295298.
  • [52]
    O'Toole, G.A., Gibbs, K.A., Hager, P.W. P.V. Phibbs Jr., Kolter, R. (2000) The global carbon metabolism regulator Crc is a component of a signal transduction pathway required for biofilm development by Pseudomonas aeruginosa. J. Bacteriol. 182, 425431.
  • [53]
    Loo, C.Y., Corliss, D.A., Ganeshkumar, N. (2000) Streptococcus gordonii biofilm formation: identification of genes that code for biofilm phenotypes. J. Bacteriol. 182, 13741382.
  • [54]
    Jensen, P.R., Fenical, W. (1994) Strategies for the discovery of secondary metabolites from marine bacteria: ecological perspectives. Annu. Rev. Microbiol. 48, 559584.
  • [55]
    Jahn, T., König, G.M., Wright, A.D., Wöhrheide, G., Reitner, J. (1997) Manzacidin D: an unprecended secondary metabolite from the ‘living fossil’ sponge Astrosclera willeyana. Tetrahedron Lett. 38, 38833884.