SEARCH

SEARCH BY CITATION

References

  • [1]
    Jørgensen, B.B., Revsbech, N.P., Cohen, Y (1983) Photosynthesis and structure of benthic microbial mats: microelectrode and SEM studies of four cyanobacterial communities. Limnol. Oceanogr. 28, 10751093.
  • [2]
    Canfield, D.E., des Marais, D.J (1993) Biogeochemical cycles of carbon, sulfur, and free oxygen in a microbial mat. Geochim. Cosmochim. Acta 57, 39713984.
  • [3]
    Thauer, R.K., Jungermann, K, Decker, K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol. Rev. 41, 100180.
  • [4]
    Wilhelm, E, Battino, R, Wilcock, R.J (1977) Low-pressure solubility of gases in liquid water. Chem. Rev. 77, 219262.
  • [5]
    Wimpenny, J.U., Szewzyk, U. and Manz, W. (2000) Heterogeneity in biofilms. FEMS Microbiol. Rev., this issue.
  • [6]
    Murray, J.W., Grundmanis, V (1980) Oxygen consumption in pelagic marine sediment. Science 209, 15271529.
  • [7]
    Overmann, J., Coolen, M., Smock, A., Sass, H., and Cypionka, H. (1999) Microbial activities and populations in upper sediment and sapropel layers. In: Meteor-Berichte 99-2 (Hieke, W., Hemleben, C., Linke, P., Türkay, M. and Weikert, H., Eds.), pp. 148–157.
  • [8]
    Carlton, R.G., Walker, G.S., Klug, M.J., Wetzel, R.G (1989) Relative values of oxygen, nitrate, and sulfate to terminal microbial processes in the sediments of Lake Superior. J. Great Lakes Res. 15, 133140.
  • [9]
    Revsbech, N.P., Jørgensen, B.B., Blackburn, T.H (1980) Oxygen in the sea bottom measured with a microelectrode. Science 207, 13551356.
  • [10]
    Frenzel, P (1990) The influence of chironomid larvae on sediment oxygen microprofiles. Arch. Hydrobiol. 119, 427437.
  • [11]
    Sweerts, J.-P.R.A., Bär-Gillesen, M.-J, Cornelese, A.A., Cappenberg, T.E (1991) Oxygen-consuming processes at the profundal and littoral sediment-water interface of a small meso-eutrophic lake (Lake Vechten, The Netherlands). Limnol. Oceanogr. 36, 11241133.
  • [12]
    Ziebis, W, Forster, S, Huettel, M, Jørgensen, B.B (1996) Complex burrows of the mud shrimp Callianassa truncata and their geochemical impact in the sea bed. Nature 382, 619622.
  • [13]
    Jónasson, P.M (1972) Ecology and production of the profundal benthos in relation to phytoplankton in Lake Esrom. Oikos 14 (Suppl.), 1148.
  • [14]
    Frank, C (1982) Ecology, production and anaerobic metabolism of Chironomus plumosus L. larvae in a shallow lake. I. Ecology and production. Arch. Hydrobiol. 94, 460491.
  • [15]
    Cappenberg, T.E (1988) Quantification of aerobic and anaerobic carbon mineralization at the sediment-water interface. Arch. Hydrobiol. Beih. Ergebn. Limnol. 31, 307317.
  • [16]
    Archer, D, Emerson, S, Smith, C.R (1989) Direct measurement of the diffusive sublayer at the deep sea floor using microelectrodes. Nature 340, 623626.
  • [17]
    Gundersen, J.K., Jørgensen, B.B (1990) Microstructure of diffusive boundary layers and the oxygen uptake of the sea floor. Nature 345, 604607.
  • [18]
    Jørgensen, B.B., Revsbech, N.P (1985) Diffusive boundary layers and oxygen uptake of sediment and detritus. Limnol. Oceanogr. 30, 111122.
  • [19]
    Aller, R.C. (1988) Benthic fauna and biogeochemical processes in marine sediments: the role of burrow structures. In: Nitrogen Cycling in Coastal Marine Environments (Blackburn, T.H. and Soerensen, J., Eds.), pp. 301–339. John Wiley and Sons, Chichester.
  • [20]
    Huettel, M, Gust, G (1992) Impact of bioroughness on interfacial solute exchange in permeable sediments. Mar. Ecol. Prog. Ser. 89, 253267.
  • [21]
    Broecker, W.S., Peng, T.H (1974) Gas exchange rates between air and sea. Tellus 26, 12.
  • [22]
    Berner, R.A. (1980) Early Diagenesis. A Theoretical Approach, pp. 1–241. Princeton University Press, Princeton, NJ.
  • [23]
    Jørgensen, B.B. (1996) Material flux in the sediment. In: Eutrophication in Coastal Marine Ecosystems, Vol. 52 (Jørgensen, B.B. and Richardson, K., Eds.), pp. 115–135. American Geophysical Union, Washington DC.
  • [24]
    Nealson, K.H., Myers, C.R (1992) Microbial reduction of manganese and iron: new approaches to carbon cycling. Appl. Environ. Microbiol, 58, 439443.
  • [25]
    Nealson, K.H., Saffarini, D (1994) Iron and manganese in anaerobic respiration: Environmental significance, physiology, and regulation. Annu. Rev. Microbiol. 48, 311343.
  • [26]
    Jørgensen, B.B (1982) Ecology of the bacteria of the sulphur cycle with special reference to the anoxic-oxic interface environments. Phil. Trans. R. Soc. Lond. B 298, 543561.
  • [27]
    Thamdrup, B., Fossing, H. and Jørgensen, B.B. (2000) Manganese, iron and sulfur cycling in a coastal marine sediment (Aarhus Bay, Denmark). Geochim. Cosmochim. Acta, in press.
  • [28]
    Risatti, J.B., Capman, W.C., Stahl, D.A (1994) Community structure of a microbial mat: the phylogenetic dimension. Proc. Natl. Acad. Sci. USA 91, 1017310177.
  • [29]
    Sass, H, Cypionka, H, Babenzien, H.-D (1997) Vertical distribution of sulfate-reducing bacteria at the oxic–anoxic interface of the oligotrophic Lake Stechlin. FEMS Microbiol. Ecol. 22, 245255.
  • [30]
    Sass, H, Wieringa, E, Cypionka, H, Babenzien, H.-D, Overmann, J (1998) Unexpected genetic and physiological diversity of sulfate-reducing bacteria in an oligotrophic lake sediment. Arch. Microbiol. 170, 243251.
  • [31]
    Sahm, K, MacGregor, B.J., Jørgensen, B.B., Stahl, D.A (1999) Sulphate reduction and vertical distribution of sulphate-reducing bacteria quantified by rRNA slot-blot hybridization in a coastal marine sediment. Environ. Microbiol. 1, 6574.
  • [32]
    Stal, L.J., van Gemerden, H, Krumbein, W.E (1985) Structure and development of a benthic marine microbial mat. FEMS Microbiol. Ecol. 31, 111125.
  • [33]
    Castenholz, R. (1994) Microbial mat research: The recent past and new perspectives. In: Microbial Mats (Stal, L.J. and Caumette, P., Eds.), pp. 3–18, NATO ASI Series, Vol. G35. Springer Verlag, Berlin.
  • [34]
    van den Ende, F.P. and van Gemerden, H. (1994) Relationships between functional groups of organisms in microbial mats. In: Microbial Mats (Stal, L.J. and Caumette, P., Eds.), pp. 3–18, NATO ASI Series, Vol. G35. Springer Verlag, Berlin.
  • [35]
    Jørgensen, B.B., Revsbech, N.P (1983) Colorless sulfur bacteria, Beggiatoa spp. and Thiovulum spp., in O2 and H2S microgradients. Appl. Environ. Microbiol. 45, 12611270.
  • [36]
    Fenchel, T, Bernard, C (1995) Mats of colourless sulphur bacteria. I. Major microbial processes. Mar. Ecol. Prog. Ser. 128, 161170.
  • [37]
    Fenchel, T, Glud, R.N (1998) Veil architecture in a sulphide-oxidizing bacterium enhances countercurrent flux. Nature 394, 367369.
  • [38]
    Nelson, D.C., Revsbech, N.P., Jørgensen, B.B (1986) The microoxic/anoxic niche of Beggiatoa spp.: a microelectrode survey of marine and freshwater strains. Appl. Environ. Microbiol. 52, 161168.
  • [39]
    Jørgensen, B.B., Gallardo, V.A (1999) Thioploca spp.: filamentous sulfur bacteria with nitrate vacuoles. FEMS Microbiol. Ecol. 28, 301313.
  • [40]
    McHatton, S.C., Barry, J.P., Jannasch, H.W., Nelson, D.C (1996) High nitrate concentrations in vacuolate, autotrophic marine Beggiatoa spp. Appl. Environ. Microbiol. 62, 954958.
  • [41]
    Schulz, H.N., Brinkhoff, T, Ferdelmann, T.G., Hernández Mariné, M, Teske, A, Jørgensen, B.B (1999) Dense populations of a giant sulfur bacterium in Namibian shelf sediments. Science 284, 493495.
  • [42]
    Taylor, C.D., Wirsen, C.O (1997) Microbiology and ecology of filamentous sulfur formation. Science 277, 14831485.
  • [43]
    Ott, J.A., Bright, M, Schiemer, F (1998) The ecology of a novel symbiosis between a marine peritrich ciliate and chemoautotrophic bacteria. P. S. Z. N. I Mar. Ecol. 19, 229243.
  • [44]
    Ott, J.A., Novak, R, Schiemer, F, Hentschel, U, Nebelsick, M, Polz, M (1991) Tackling the sulfide gradient: a novel strategy involving marine nematodes and chemolithoautotrophic ectosymbionts. P. S. Z. N. I Mar. Ecol. 12, 261279.
  • [45]
    Hentschel, U, Berger, E.C., Bright, M, Felbeck, H, Ott, J.A (1999) Metabolism of nitrogen and sulfur in ectosymbiotic bacteria of marine nematodes (Nematoda, Stilbonematinae). Mar. Ecol. Progr. Ser. 183, 149158.
  • [46]
    Cavanaugh, C.M (1994) Microbial symbiosis: Patterns of diversity in the marine environment. Am. Zool. 34, 7989.
  • [47]
    Overmann, J. and van Gemerden, H. (2000) Microbial interactions involving sulfur bacteria: implications for the ecology and evolution of bacterial communities. FEMS Microbiol. Rev., this issue.
  • [48]
    Fukui, M, Takii, S (1990) Survival of sulfate-reducing bacteria in oxic surface sediment of a seawater lake. FEMS Microbiol. Ecol. 73, 317322.
  • [49]
    Krekeler, D, Teske, A, Cypionka, H (1997) Strategies of sulfate-reducing bacteria to escape oxygen stress in a cyanobacterial mat. FEMS Microbiol. Ecol. 25, 8996.
  • [50]
    Minz, D, Fishbain, S, Green, S.J., Muyzer, G, Cohen, Y, Rittmann, B.E., Stahl, D.A (1999) Unexpected population distribution in a microbial mat community: Sulfate-reducing bacteria localized to the highly oxic chemocline in contrast to a eukaryotic preference for anoxia. Appl. Environ. Microbiol. 65, 46594665.
  • [51]
    Wieringa, E.B.A., Overmann, J, Cypionka, H (2000) Detection of abundant sulphate-reducing bacteria in marine oxic sediment layers by a combined cultivation and molecular approach. Environ. Microbiol. 2, 417427.
  • [52]
    Dilling, W, Cypionka, H (1990) Aerobic respiration in sulfate-reducing bacteria. FEMS Microbiol. Lett. 71, 123128.
  • [53]
    Krekeler, D, Cypionka, H (1995) The preferred electron acceptor of Desulfovibrio desulfuricans CSN. FEMS Microbiol. Ecol. 17, 271278.
  • [54]
    Fitz, R.M., Cypionka, H (1989) A study on electron transport-driven proton translocation in Desulfovibrio desulfuricans. Arch. Microbiol. 152, 369376.
  • [55]
    Marschall, C, Frenzel, P, Cypionka, H (1993) Influence of oxygen on sulfate reduction and growth of sulfate-reducing bacteria. Arch. Microbiol. 159, 168173.
  • [56]
    Johnson, M.S., Zhulin, I.G., Gapuzan, M.E.R., Taylor, B.L (1997) Oxygen-dependent growth of the obligate anaerobe Desulfovibrio vulgaris Hildenborough. J. Bacteriol. 179, 55985601.
  • [57]
    Cypionka, H (2000) Oxygen respiration by Desulfovibrio species. Annu. Rev. Microbiol. 54, 827848.
  • [58]
    Kuhnigk, T, Branke, J, Krekeler, D, Cypionka, H, König, H (1996) A feasible role of sulfate-reducing bacteria in the termite gut. Syst. Appl. Microbiol. 19, 139149.
  • [59]
    Eschemann, A, Kühl, M, Cypionka, H (1999) Aerotaxis in Desulfovibrio. Environ. Microbiol. 1, 489495.
  • [60]
    Gottschal, J.C., Szewzyk, R (1985) Growth of a facultative anaerobe under oxygen-limiting conditions in pure culture and in co-culture with a sulfate-reducing bacterium. FEMS Microbiol. Ecol. 31, 159170.
  • [61]
    van den Ende, F.P., Meier, J, van Gemerden, H (1997) Syntrophic growth of sulfate-reducing bacteria and colorless sulfur bacteria during oxygen limitation. FEMS Microbiol. Ecol. 23, 6580.
  • [62]
    Cypionka, H. (1994) Novel metabolic capacities of sulfate-reducing bacteria and their activities in microbial mats. In: Microbial Mats (Stal, L.J. and Caumette, P., Eds.), pp. 367–376, NATO ASI Series, Vol. G35. Springer Verlag, Berlin.
  • [63]
    Fenchel, T (1996) Worm burrows and oxic microniches in marine sediments. 1. Spatial and temporal scales. Mar. Biol. 127, 289295.
  • [64]
    Banta, G.T., Holmer, M, Jensen, M.H., Kristensen, E (1999) Effects of two polychaete worms, Nereis diversicolor and Arenicola marina, on aerobic and anaerobic decomposition in a sandy marine sediment. Aquat. Microb. Ecol. 19, 189204.
  • [65]
    Christensen, B, Vedel, A, Kristensen, E (2000) Carbon and nitrogen fluxes in sediment inhabited by suspension-feeding (Nereis diversicolor) and non-suspension-feeding (N. virens) polychaetes. Mar. Ecol. Prog. Ser. 192, 203217.
  • [66]
    Pelegrí, S.P., Blackburn, T.H (1995) Effects of Tubifex tubifex (Oligochaeta: Tubificidae) on N-mineralization in freshwater sediments, measured with 15N isotopes. Aquat. Microb. Ecol. 9, 289294.
  • [67]
    Svensson, J.M (1997) Influence of Chironomus plumosus larvae on ammonium flux and denitrification (measured by the acetylene blockage- and the isotope pairing-technique) in eutrophic lake sediment. Hydrobiologia 346, 157168.
  • [68]
    Svensson, J.M (1998) Emission of N2O, nitrification and denitrification in a eutrophic lake sediment bioturbated by Chironomus plumosus. Aquat. Microb. Ecol. 14, 289299.
  • [69]
    Kajan, R, Frenzel, P (1999) The effect of chironomid larvae on production, oxidation and fluxes of methane in a flooded rice soil. FEMS Microbiol. Ecol. 28, 121129.
  • [70]
    Hodkinson, D.I. and Williams, K.A. (1980) Tube formation and distribution of Chironomus plumosus L. (Diptera: Chironomidae) in a eutrophic woodland pond. In: Chironomidae (Murray, D.A., Ed.), pp. 331–337. Franklin, Oxford.
  • [71]
    Leuchs, H, Neumann, D (1990) Tube texture, spinning and feeding behaviour of Chironomus larvae. Zool. Jb. Syst. 117, 3140.
  • [72]
    Jørgensen, B.B (1977) Bacterial sulfate reduction within reduced microniches of oxidized marine sediments. Mar. Biol. 41, 717.
  • [73]
    Lynch, J.M. (1990) Introduction: some consequences of microbial rhizosphere competence for plant and soil. In: The Rhizosphere (Lynch, J.M., Ed.), pp. 1–10. John Wiley and Sons, Chichester.
  • [74]
    Jackson, M.B., Armstrong, W (1999) Formation of aerenchyma and the processes of plant ventilation in relation to soil flooding and submergence. Plant Biol. 1, 274287.
  • [75]
    Armstrong, W, Armstrong, J, Beckett, P.M (1996) Pressurised ventilation in emergent macrophytes – the mechanism and mathematical modelling of humidity-induced convection. Aquat. Bot. 54, 121135.
  • [76]
    Große, W, Armstrong, J, Armstrong, W (1996) A history of pressurised gas-flow studies in plants. Aquat. Bot. 54, 87100.
  • [77]
    Denier van der Gon, H.A.C., van Breemen, N (1993) Diffusion-controlled transport of methane from soil to atmosphere as mediated by rice plants. Biogeochemistry 21, 177190.
  • [78]
    Nouchi, I, Hosono, T, Aoki, K, Minami, K (1994) Seasonal variation in methane flux from rice paddies associated with methane concentration in soil water, rice biomass and temperature, and its modeling. Plant Soil 161, 195208.
  • [79]
    Liesack, W.S., Schnell, S. and Revsbech, N.P. (2000) Microbiology of flooded rice paddies. FEMS Microbiol. Rev., this issue.
  • [80]
    Armstrong, W (1967) The use of polarography in the assay of oxygen diffusing from roots in anaerobic media. Physiol. Plant. 20, 540553.
  • [81]
    Armstrong, W (1970) Rhizosphere oxidation in rice and other species: A mathematical model based on the oxygen flux component. Physiol. Plant. 23, 623630.
  • [82]
    Clark, L.H., Harris, W.H (1981) Observations on the root anatomy of rice (Oryza sativa L.). Am. J. Bot. 68, 154161.
  • [83]
    Armstrong, W (1971) Radial oxygen losses from intact rice roots as affected by distance from the apex, respiration and waterlogging. Physiol. Plant. 25, 192197.
  • [84]
    Gilbert, B, Frenzel, P (1998) Rice roots and CH4 oxidation: the activity of bacteria, their distribution and the microenvironment. Soil Biol. Biochem. 30, 19031916.
  • [85]
    Flessa, H, Fischer, W.R (1992) Plant-induced changes in the redox potentials of rice rhizosphere. Plant Soil 143, 5560.
  • [86]
    Begg, C.B.M., Kirk, G.J.D., Mackenzie, A.F., Neue, H.U (1994) Root-induced iron oxidation and pH changes in the lowland rice rhizosphere. New Phytol. 128, 469477.
  • [87]
    Trolldenier, G (1988) Visualization of oxidizing power of rice roots and of possible participation of bacteria in iron deposition. Z. Pflanzenernähr. Bodenk. 151, 117122.
  • [88]
    Arth, I, Frenzel, P (2000) Nitrification and denitrification in the rhizosphere of rice: the detection of processes by a new multichannel electrode. Biol. Fertil. Soils 31, 427435.
  • [89]
    Frenzel, P, Rothfuss, F, Conrad, R (1992) Oxygen profiles and methane turnover in a flooded rice microcosm. Biol. Fertil. Soils 14, 8489.
  • [90]
    Gilbert, B, Frenzel, P (1995) Methanotrophic bacteria in the rhizosphere of rice microcosms and their effect on porewater methane concentration and methane emission. Biol. Fertil. Soils 20, 93100.
  • [91]
    Revsbech, N.P., Pedersen, O, Reichardt, W, Briones, A (1999) Microsensor analysis of oxygen and pH in the rice rhizosphere under field and laboratory conditions. Biol. Fertil. Soils 29, 379385.
  • [92]
    Henriksen, G.H., Raman, D.R., Walker, L.P., Spanswick, R.M (1992) Measurement of net fluxes of ammonium and nitrate at the surface of barley roots using ion-selective microelectrodes. II. Patterns of uptake along the root axis and evaluation of the microelectrode flux estimation technique. Plant Physiol. 99, 734747.
  • [93]
    Bosse, U, Frenzel, P (1997) Activity and distribution of CH4 oxidizing bacteria in flooded rice microcosms and in rice plants (Oryza sativa). Appl. Environ. Microbiol. 63, 11991207.
  • [94]
    Iversen, N, Jørgensen, B.B (1985) Anaerobic methane oxidation rates at the sulfate-methane transition in marine sediments from Kattegat and Skagerrak (Denmark). Limnol. Oceanogr. 30, 944955.
  • [95]
    Elvert, M, Suess, E, Whiticar, M.J (1999) Anaerobic methane oxidation associated with marine gas hydrates: superlight C-isotopes from saturated and unsaturated C20 and C25 irregular isoprenoids. Naturwissenschaften 86, 295300.
  • [96]
    Hinrichs, K.U., Hayes, J.M., Sylva, S.P., Brewer, P.G., DeLong, E.F (1999) Methane-consuming archaebacteria in marine sediments. Nature 398, 802805.
  • [97]
    Frenzel, P (2000) Plant-associated methane oxidation in ricefields and wetlands. Adv. Microb. Ecol. 16, 85114.
  • [98]
    Miura, Y, Watanabe, A, Murase, J, Kimura, M (1992) Methane production and its fate in paddy fields. 2. Oxidation of methane and its coupled ferric oxide reduction in subsoil. Soil Sci. Plant Nutr. 38, 673679.
  • [99]
    Bowman, J.P., Sly, L.I., Nichols, P.D., Hayward, A.C (1993) Revised taxonomy of the methanotrophs: description of Methylobacter gen. nov., validation of Methylosinus and Methylocystis species, and a proposal that the family Methylococcaceae includes only the group I methanotrophs. Int. J. Syst. Bacteriol. 43, 735753.
  • [100]
    Hanson, R.S, Hanson, T.E. Methanotrophic bacteria,. Microbiol. Rev. 60, 1996. 439
  • [101]
    Bowman, J. (1999) The methanotrophs – The families Methylococcaceae and Methylocystaceae. In: The Prokaryotes (Dworkin, M., Ed.), Online Edition [last time accessed 20 April 2000]. Springer, New York.
  • [102]
    Bodelier, P.L.E., Roslev, P, Henckel, T, Frenzel, P (2000) Stimulation by ammonium-based fertilizers of methane oxidation in soil around rice roots. Nature 403, 421424.
  • [103]
    Dedysh, S.N., Panikov, N.S., Tiedje, J.M (1998) Acidophilic methanotrophic communities from Sphagnum peat bogs. Appl. Environ. Microbiol. 64, 922929.
  • [104]
    Dedysh, S.N., Panikov, N.S., Liesack, W, Großkopf, R, Zhou, J, Tiedje, J.M (1998) Isolation of acidophilic methane-oxidizing bacteria from northern peat wetlands. Science 282, 281284.
  • [105]
    Dedysh, S.N., Liesack, W, Khmelenina, V.N., Suzina, N.E., Trotsenko, Y.A., Semrau, J.D., Bares, A.M., Panikov, N.S., Tiedje, J.M (2000) Methylocella palustris gen. nov., sp. nov., a new methane-oxidizing acidophilic bacterium from peat bogs, representing a novel subtype of serine-pathway methanotrophs. Int. J. Syst. Evol. Microbiol. 50, 955969.
  • [106]
    Bender, M, Conrad, R (1994) Methane oxidation activity in various soils and sediments: occurrence, characteristics, vertical profiles and distribution on grain size fractions. J. Geophys. Res. 99, 1653116540.
  • [107]
    de Bont, J.A.M., Lee, K.K., Bouldin, D.F (1978) Bacterial oxidation of methane in a rice paddy. Ecol. Bull. 26, 9196.
  • [108]
    Joulian, C, Escoffier, S, Le Mer, J, Neue, H.-U, Roger, P.A (1997) Populations and potential activities of methanogens and methanotrophs in rice fields: relations with soil properties. Eur. J. Soil Biol. 33, 105116.
  • [109]
    Le Mer, J, Escoffier, S, Chessel, C, Roger, P.A (1996) Microbiological aspects of methane emission in a ricefield soil from the Camargue (France): 2. Methanotrophy and related microflora. Eur. J. Soil Biol. 32, 7180.
  • [110]
    Gilbert, B. (1997) Methanotrophe Bakterien in der Reisrhizosphäre. Ph.D. Thesis, University of Marburg, Marburg.
  • [111]
    Gilbert, B, Aßmus, B, Hartmann, A, Frenzel, P (1998) In situ localization of two methanotrophic strains in the rhizosphere of rice plants by combined use of fluorescently labeled antibodies and 16S rRNA signature probes. FEMS Microbiol. Ecol. 25, 117128.
  • [112]
    Frenzel, P, Bosse, U (1996) Methyl fluoride, an inhibitor of methane oxidation and methane production. FEMS Microbiol. Ecol. 21, 2536.
  • [113]
    Conrad, R, Klose, M (1999) How specific is the inhibition by methyl fluoride of acetoclastic methanogenesis in anoxic rice field soil. FEMS Microbiol. Ecol. 30, 4756.
  • [114]
    Großkopf, R, Stubner, S, Liesack, W (1998) Novel euryarchaeotal lineages detected on rice roots and in the anoxic bulk soil of flooded rice microcosms. Appl. Environ. Microbiol. 64, 49834989.
  • [115]
    Lehmann-Richter, S, Großkopf, R, Liesack, W, Frenzel, P, Conrad, R (1999) Methanogenic archaea and CO2-dependent methanogenesis on washed rice roots. Environ. Microbiol. 1, 159166.
  • [116]
    Liesack, W., Großkopf, R., Bosse, U. and Frenzel, P. (1997) Molecular analysis of methanogenic populations in flooded rice microcosms. In: Proceedings of the Seventh International Symposium on Microbial Ecology (ISME-7), Santos, Brazil (Martins, M.T., Sato, M.I.Z., Tiedje, J.M., Hagler, L.C.N., Döbereiner, J. and Sanchez, P.S., Eds.), pp. 137–140. Sociedade Brasileira de Microbiologia, Sao Paulo.
  • [117]
    Amaral, J.A., Knowles, R (1995) Growth of methanotrophs in methane and oxygen counter gradients. FEMS Microbiol. Lett. 126, 215220.
  • [118]
    Arts, P.A.M., Robertson, L.A., Kuenen, J.G (1995) Nitrification and denitrification by Thiosphaera pantotropha in aerobic chemostat cultures. FEMS Microbiol. Ecol. 18, 305315.
  • [119]
    van de Graaf, A.A., Mulder, A, de Bruijn, P, Jetten, M.S.M., Robertson, L.A., Kuenen, J.G (1995) Anaerobic oxidation of ammonium is a biologically mediated process. Appl. Environ. Microbiol. 61, 12461251.
  • [120]
    Arth, I, Frenzel, P, Conrad, R (1998) Denitrification coupled to nitrification in the rhizosphere of rice. Soil Biol. Biochem. 30, 509515.
  • [121]
    Bodelier, P, Frenzel, P (1999) The contribution of methanotrophic and nitrifying bacteria to CH4 and NH4+ oxidation in the rice rhizosphere using new methods for discrimination. Appl. Environ. Microbiol. 65, 18261833.
  • [122]
    King, G.M., Schnell, S (1994) Ammonium and nitrite inhibition of methane oxidation by Methylobacter albus BG8 and Methylosinus trichosporium OB3b at low methane concentrations. Appl. Environ. Microbiol. 60, 35083513.
  • [123]
    Schnell, S, King, G.M (1994) Mechanistic analysis of ammonium inhibition of atmospheric methane consumption in forest soils. Appl. Environ. Microbiol. 60, 35143521.
  • [124]
    Hutton, W.E., ZoBell, C.E (1953) Production of nitrite from ammonia by methane-oxidizing bacteria. J. Bacteriol. 65, 216219.
  • [125]
    Whittenbury, R, Philips, K.C., Wilkinson, J.F (1970) Enrichment, isolation, and some properties of methane-utilizing bacteria. J. Gen. Microbiol. 61, 205218.
  • [126]
    Bodelier, P.L.E., Hahn, A.P., Arth, I. and Frenzel, P. (2000) Effects of ammonium-based fertilisation on microbial processes involved in methane emission from soils planted with rice. Biogeochemistry, in press.
  • [127]
    Schimel, J (2000) Rice, microbes and methane. Nature 403, 376377.
  • [128]
    Neue, H.U (1997) Fluxes of methane from rice fields and potential for mitigation. Soil Use Manag. 13, 258267.
  • [129]
    Cassman, K.G., Peng, S, Olk, D.C., Ladha, J.K., Reichardt, W, Doberman, A, Singh, U (1998) Opportunities for increased nitrogen-use efficiency from improved resource management in irrigated rice systems. Field Crops Res. 56, 739.
  • [130]
    Breznak, J.A., Brune, A (1994) Role of microorganisms in the digestion of lignocellulose by termites. Annu. Rev. Entomol. 39, 453487.
  • [131]
    Kane, M.D. (1997) Microbial fermentation in insect guts. In: Gastrointestinal Microbiology, Vol. 1 (Mackie, R.I. and White, B.A., Eds.), pp. 231–265. Chapman and Hall, New York.
  • [132]
    Brune, A (1998) Termite guts: the world's smallest bioreactors. Trends Biotechnol. 16, 1621.
  • [133]
    Breznak, J.A. (2000) Ecology of prokaryotic microbes in the guts of wood- and litter-feeding termites. In: Termites: Evolution, Sociality, Symbiosis, Ecology (Abe, T., Bignell, D.E. and Higashi, M., Eds.), pp. 209–231. Kluwer Academic, Dordrecht.
  • [134]
    Cazemier, A.E., Hackstein, J.H.P., Op den Camp, H.J.M., Rosenberg, J, van der Drift, C (1997) Bacteria in the intestinal tract of different species of arthropods. Microb. Ecol. 33, 189197.
  • [135]
    Brune, A. and Friedrich, M. (2000) Microecology of the termite gut: structure and function on a microscale. Curr. Opin. Microbiol., in press.
  • [136]
    Cleveland, L.R (1925) The ability of termites to live perhaps indefinitely on a diet of pure cellulose. Biol. Bull. 48, 289293.
  • [137]
    Ploug, H, Kühl, M, Buchholz-Cleven, B, Jørgensen, B.B (1997) Anoxic aggregates – an ephemeral phenomenon in the pelagic environment. Aquat. Microb. Ecol. 13, 285294.
  • [138]
    Ebert, A, Brune, A (1997) Hydrogen concentration profiles at the oxic–anoxic interface: a microsensor study of the hindgut of the wood-feeding lower termite Reticulitermes flavipes (Kollar). Appl. Environ. Microbiol. 63, 40394046.
  • [139]
    Brune, A, Emerson, D, Breznak, J.A (1995) The termite gut microflora as an oxygen sink: microelectrode determination of oxygen and pH gradients in guts of lower and higher termites. Appl. Environ. Microbiol. 61, 26812687.
  • [140]
    Schmitt-Wagner, D, Brune, A (1999) Hydrogen profiles and localization of methanogenic activities in the highly compartmentalized hindgut of soil-feeding higher termites (Cubitermes spp.). Appl. Environ. Microbiol. 65, 44904496.
  • [141]
    Kappler, A, Brune, A (1999) Influence of gut alkalinity and oxygen status on mobilization and size-class distribution of humic acids in the hindgut of soil-feeding termites. Appl. Soil Ecol. 13, 219229.
  • [142]
    Tholen, A, Brune, A (1999) Localization and in situ activities of homoacetogenic bacteria in the highly compartmentalized hindgut of soil-feeding higher termites (Cubitermes spp.). Appl. Environ. Microbiol. 65, 44974505.
  • [143]
    Schultz, J.E., Breznak, J.A (1978) Heterotrophic bacteria present in hindguts of wood-eating termites [Reticulitermes flavipes (Kollar)]. Appl. Environ. Microbiol. 35, 930936.
  • [144]
    Tholen, A, Schink, B, Brune, A (1997) The gut microflora of Reticulitermes flavipes, its relation to oxygen, and evidence for oxygen-dependent acetogenesis by the most abundant Enterococcus sp. FEMS Microbiol. Ecol. 24, 137149.
  • [145]
    Berg, R.D (1996) The indigenous gastrointestinal microflora. Trends Microbiol. 4, 430435.
  • [146]
    Mackie, R.I., and White, B.A. (Eds.) (1997) Gastrointestinal Microbiology. Chapman and Hall, New York.
  • [147]
    Bauer, S, Tholen, A, Overmann, J, Brune, A (2000) Characterization of abundance and diversity of lactic acid bacteria in the hindgut of wood- and soil-feeding termites by molecular and culture-dependent techniques. Arch. Microbiol. 173, 126137.
  • [148]
    Kuhnigk, T, König, H (1997) Degradation of dimeric lignin model compounds by aerobic bacteria isolated from the hindgut of xylophagous termites. J. Basic Microbiol. 37, 205211.
  • [149]
    Fröhlich, J, Sass, H, Babenzien, H.D., Kuhnigk, T, Varma, A, Saxena, S, Nalepa, C, Pfeiffer, P, König, H (1999) Isolation of Desulfovibrio intestinalis sp. nov. from the hindgut of the lower termite Mastotermes darwiniensis. Can. J. Microbiol. 45, 145152.
  • [150]
    Condon, S (1987) Responses of lactic acid bacteria to oxygen. FEMS Microbiol. Rev. 46, 269280.
  • [151]
    Tholen, A, Brune, A (2000) Impact of oxygen on metabolic fluxes and in situ rates of reductive acetogenesis in the hindgut of the wood-feeding termite Reticulitermes flavipes. Environ. Microbiol. 2, 436449.
  • [152]
    Radek, R (1999) Flagellates, bacteria, and fungi associated with termites: diversity and function in nutrition – a review. Ecotropica 5, 183196.
  • [153]
    Brauman, A, Kane, M.D., Labat, M, Breznak, J.A (1992) Genesis of acetate and methane by gut bacteria of nutritionally diverse termites. Science 257, 13841387.
  • [154]
    Leadbetter, J.R., Breznak, J.A (1996) Physiological ecology of Methanobrevibacter cuticularis sp. nov. and Methanobrevibacter curvatus sp. nov., isolated from the hindgut of the termite Reticulitermes flavipes. Appl. Environ. Microbiol. 62, 36203631.
  • [155]
    Leadbetter, J.R., Crosby, L.D., Breznak, J.A (1998) Methanobrevibacter filiformis sp. nov., a filamentous methanogen from termite hindguts. Arch. Microbiol. 169, 287292.
  • [156]
    Sugimoto, A, Inoue, T, Tayasu, I, Miller, L, Takeichi, S, Abe, T (1998) Methane and hydrogen production in a termite-symbiont system. Ecol. Res. 13, 241257.
  • [157]
    Leadbetter, J.R., Schmidt, T.M., Graber, J.R., Breznak, J.A (1999) Acetogenesis from H2 plus CO2 by spirochetes from termite guts. Science 283, 686689.
  • [158]
    Lilburn, T.G., Schmidt, T.M., Breznak, J.A (1999) Phylogenetic diversity of termite gut spirochaetes. Environ. Microbiol. 1, 331345.
  • [159]
    Brune, A, Kühl, M (1996) pH profiles of the extremely alkaline hindguts of soil-feeding termites (Isoptera: Termitidae) determined with microelectrodes. J. Insect Physiol. 42, 11211127.
  • [160]
    Ji, R, Kappler, A, Brune, A (2000) Transformation and mineralization of synthetic 14C-labeled humic model compounds by soil-feeding termites. Soil Biol. Biochem. 32, 12811291.
  • [161]
    Kappler, A, Ji, R, Brune, A (2000) Synthesis and characterization of specifically 14C-labeled humic model compounds for feeding trials with soil-feeding termites. Soil Biol. Biochem. 32, 12711280.
  • [162]
    Berchtold, M, Chatzinotas, A, Schönhuber, W, Brune, A, Amann, R, Hahn, D, König, H (1999) Differential enumeration and in situ localization of micro-organisms in the hindgut of the lower termite Mastotermes darwiniensis by hybridization with rRNA-targeted probes. Arch. Microbiol. 172, 407416.
  • [163]
    Amann, R, Kühl, M (1998) In situ methods for assessment of microorganisms and their activities. Curr. Opin. Microbiol. 1, 352358.
  • [164]
    Fröhlich, J. and König, H. (2000) New techniques for isolation of single prokaryotic cells. FEMS Microbiol. Rev., this issue.
  • [165]
    Spring, S., Schulze, R., Overmann, J. and Schleifer, K.H. (2000) Identification and characterization of ecologically significant prokaryotes in the sediment of freshwater lakes; Molecular and cultivation studies. FEMS Microbiol. Rev., this issue.
  • [166]
    Ludwig, W. and Amann, R. (2000) Ribosomal RNA-targeted nucleic acid probes for studies in microbial ecology. FEMS Microbiol. Rev., this issue.
  • [167]
    Chen, F, González, J.M., Dustman, W.A., Moran, M.A., Hodson, R.E (1997) In situ reverse transcription, an approach to characterize genetic diversity and activities of prokaryotes. Appl. Environ. Microbiol. 63, 49074913.
  • [168]
    Lee, N, Nielsen, P.H., Andreasen, K.H., Juretschko, S, Nielsen, J.L., Schleifer, K.H., Wagner, M (1999) Combination of fluorescent in situ hybridization and microautoradiography – a new tool for structure-function analyses in microbial ecology. Appl. Environ. Microbiol. 65, 12891297.
  • [169]
    Whiteley, A.S., Barer, M.R., O'Donnell, A.G (2000) Density gradient separation of active and non-active cells from natural environments. Antonie van Leeuwenhoek 77, 173177.
  • [170]
    Radajewski, S, Ineson, P, Parekh, N.R., Murrell, J.C (2000) Stable-isotope probing as a tool in microbial ecology. Nature 403, 646649.