• [1]
    Harden, A., Young, W.J. (1906) The alcoholic ferment of yeast-juice. Part II. The coferment of yeast-juice. Proc. Roy. Soc. London B 78, 369375.
  • [2]
    Warburg, O., Christian, W., Griese, A. (1935) Wasserstofübertragendes Coferment, seine Zusammensetzung und Wirkung. Biochem. Z. 282, 157164.
  • [3]
    Bruinenberg, P.M., Van Dijken, J.P., Kuenen, J.G., Scheffers, W.A. (1985) Oxidation of NADH and NADPH by mitochondria from the yeast Candida utilis. J. Gen. Microbiol. 131, 10431051.
  • [4]
    Van Urk, H., Bruinenberg, P.M., Veenhuis, M., Scheffers, W.A., Van Dijken, J.P. (1989) Respiratory capacities of mitochondria of Saccharomyces cerevisiae CBS 8066 and Candida utilis CBS 621 grown under glucose limitation. Antonie van Leeuwenhoek 56, 211220.
  • [5]
    Camougrand, B.M., Cheyrou, A., Henry, M.F., Guérin, M.G. (1988) The alternative respiratory pathway of the yeast Candida parapsilosis: oxidation of exogenous NAD(P)H. J. Gen. Microbiol. 134, 31953204.
  • [6]
    González Siso, M.I., Freire Picos, M.A., Cerdán, M.E. (1996) Reoxidation of the NADPH produced by the pentose phosphate pathway is necessary for the utilization of glucose by Kluyveromyces lactis rag2 mutants. FEBS Lett. 387, 710.
  • [7]
    Bruinenberg, P.M., Jonker, R., Van Dijken, J.P., Scheffers, W.A. (1985) Utilization of formate as an additional energy source by glucose-limited chemostat cultures of Candida utilis CBS 621 and Saccharomyces cerevisiae CBS 8066. Evidence for the absence of transhydrogenase activity in yeasts. Arch. Microbiol. 142, 302306.
  • [8]
    Ciriacy, M. (1997) Alcohol dehydrogenases. In: Yeast Sugar Metabolism (Zimmermann, F.K. and Entian, K.-D., Eds.), pp. 213–223. Technomic, Lancaster, PA.
  • [9]
    Wang, X., Mann, C.J., Bai, Y., Ni, L., Weiner, H. (1998) Molecular cloning, characterization, and potential roles of cytosolic and mitochondrial aldehyde dehydrogenases in ethanol metabolism in Saccharomyces cerevisiae. J. Bacteriol. 180, 822830.
  • [10]
    Van Dijken, J.P., Scheffers, W.A. (1986) Redox balances in the metabolism of sugars by yeast. FEMS Microbiol. Rev. 32, 199224.
  • [11]
    Mewes, H.W., Albermann, K., Bahr, M., Frishman, D., Gleissner, A., Hani, J., Kleine, K., Maierl, A., Oliver, S.G., Pfeiffer, F., Zollner, A. (1997) Overview of the yeast genome. Nature 387, 765.
  • [12]
    De Vries, S., Marres, C.A.M. (1987) The mitochondrial respiratory chain of yeast. Structure and biosynthesis and the role in cellular metabolism. Biochim. Biophys. Acta 895, 205239.
  • [13]
    De Winde, J.H., Grivell, L.A. (1993) Global regulation of mitochondrial biogenesis in Saccharomyces cerevisiae. Prog. Nucleics Acid Res. Mol. Biol. 46, 5191.
  • [14]
    De Koning, W., Van Dam, K. (1992) A method for the determination of changes of glycolytic metabolites in yeast on a subsecond time scale using extraction at neutral pH. Anal. Biochem. 204, 118123.
  • [15]
    Richard, P., Teusink, B., Westerhoff, H.V., Van Dam, K. (1993) Around the growth phase transition S. cerevisiae 's make-up favours sustained oscillations of intracellular metabolites. FEBS Lett. 318, 8082.
  • [16]
    Guiard, B. (1985) Structure, expression and regulation of a nuclear gene encoding a mitochondrial protein: the yeast L(+)-lactate cytochrome c oxidoreductase (cytochrome b2). EMBO J. 4, 32653272.
  • [17]
    Lodi, T., Ferrero, I. (1993) Isolation of the DLD gene of Saccharomyces cerevisiae encoding the mitochondrial enzyme d-lactate ferricytochrome c oxidoreductase. Mol. Gen. Genet. 238, 315324.
  • [18]
    Chelstowska, A., Liu, Z., Jia, Y., Amberg, D., Butow, R.A. (1999) Signalling between mitochondria and the nucleus regulates the expression of a new d-lactate dehydrogenase activity in yeast. Yeast 15, 13771391.
  • [19]
    Dequin, S., Barre, P. (1994) Mixed lactic acid-alcoholic fermentation by Saccharomyces cerevisiae expressing the Lactobacillus casei L(+)-LDH. Biotechnology 12, 173177.
  • [20]
    Porro, D., Brambilla, L., Ranzi, B.M., Martegani, E., Alberghina, L. (1995) Development of metabolically engineered Saccharomyces cerevisiae cells for the production of lactic acid. Biotechnol. Prog. 11, 294298.
  • [21]
    Brambilla, L., Bolzani, D., Compagno, C., Carrera, V., Van Dijken, J.P., Pronk, J.T., Ranzi, B.M., Alberghina, L., Porro, D. (1999) NADH reoxidation does not control glycolytic flux during exposure of respiring Saccharomyces cerevisiae cultures to glucose excess. FEMS Microbiol. Lett. 171, 133140.
  • [22]
    Petrik, M., Käppeli, O., Fiechter, A. (1983) An expanded concept for the glucose effect in the yeast Saccharomyces uvarum: involvement of short- and long-term regulation. J. Gen. Microbiol. 129, 4249.
  • [23]
    Käppeli, O. (1986) Regulation of carbon metabolism in Saccharomyces cerevisiae and related yeasts. Adv. Microb. Physiol. 28, 181209.
  • [24]
    Postma, E., Verduyn, C., Scheffers, W.A., Van Dijken, J.P. (1989) Enzymic analysis of the Crabtree effect in glucose-limited chemostat cultures of Saccharomyces cerevisiae. Appl. Environ. Microbiol. 53, 468477.
  • [25]
    De Deken, R.H. (1966) The Crabtree effect: a regulatory system in yeast. J. Gen. Microbiol. 44, 149156.
  • [26]
    Entian, K.-D. (1986) Glucose repression: a complex regulatory system. Microbiol. Sci. 3, 366371.
  • [27]
    Gancedo, C. and Serrano, R. (1989) Energy-yielding metabolism. In: The Yeasts, Vol. 3 (Rose, A.H. and Harrison, J.S., Eds.), pp. 205–259. Academic Press, New York.
  • [28]
    Gancedo, J.M. (1992) Carbon catabolite repression in yeast. Eur. J. Biochem. 206, 297313.
  • [29]
    Beudekker, R.F., Van Dam, H.W., Van der Plaat, J.B. and Vellenga, K. (1990) Developments in baker's yeast production. In: Yeast Biotechnology and Biocatalysis (Verachtert, H. and De Mot, R., Eds.), pp. 103–146. Dekker, New York.
  • [30]
    Hensing, M., Rouwenhorst, R., Heijnen, J.J., Van Dijken, J.P., Pronk, J.T. (1995) Physiological and technological aspects of large-scale heterologous-protein production with yeasts. Antonie van Leeuwenhoek 67, 261279.
  • [31]
    Van Dijken, J.P., Weusthuis, R.A., Pronk, J.T. (1993) Kinetics of growth and sugar consumption in yeasts. Antonie van Leeuwenhoek 63, 289298.
  • [32]
    Pronk, J.T., Wenzel, T.J., Luttik, M.A.H., Klaassen, C.M., Scheffers, W.A., Steensma, H.Y., Van Dijken, J.P. (1994) Energetic aspects of glucose metabolism in a pyruvate-dehydrogenase negative mutant of Saccharomyces cerevisiae. Microbiology 140, 601610.
  • [33]
    Verduyn, C., Stouthamer, A.H., Scheffers, W.A., Van Dijken, J.P. (1991) A theoretical evaluation of growth yields of yeasts. Antonie van Leeuwenhoek 59, 4963.
  • [34]
    Van Gulik, W.M., Heijnen, J.J. (1995) A metabolic network stoichiometry analysis of microbial growth and product formation. Biotechnol. Bioeng. 48, 681698.
  • [35]
    Vanrolleghem, P.A., De Jong-Gubbels, P., Van Gulik, W.M., Pronk, J.T., Van Dijken, J.P., Heijnen, J.J. (1996) Validation of a metabolic network for Saccharomyces cerevisiae using mixed substrate studies. Biotechnol. Prog. 12, 434448.
  • [36]
    Verduyn, C. (1991) Physiology of yeasts in relation to growth yields. Antonie van Leeuwenhoek 60, 325353.
  • [37]
    Verduyn, C., Postma, E., Scheffers, W.A., Van Dijken, J.P. (1990) Physiology of Saccharomyces cerevisiae in anaerobic glucose-limited chemostat cultures. J. Gen. Microbiol. 136, 395403.
  • [38]
    Gommers, P.J.F., Van Schie, B., Van Dijken, J.P., Kuenen, J.G. (1988) Biochemical limits to microbial growth yields: an analysis of mixed substrate utilization. Biotechnol. Bioeng. 32, 8694.
  • [39]
    Andreasen, A.A., Stier, T.J.B. (1954) Anaerobic nutrition of Saccharomyces cerevisiae. II. Unsaturated fatty acid requirement for growth in a defined medium. J. Cell. Comp. Physiol. 43, 271281.
  • [40]
    Oura, E. (1977) Reaction products of yeast fermentations. Process Biochem. 12, 1921.
  • [41]
    Nissen, T.L., Schulze, U., Nielsen, J., Villadsen, J. (1997) Flux distribution in anaerobic, glucose-limited continuous cultures of Saccharomyces cerevisiae. Microbiology 143, 203218.
  • [42]
    Veenhuis, M., Mateblowski, M., Kunau, W.H., Harder, W. (1987) Proliferation of microbodies in Saccharomyces cerevisiae. Yeast 3, 7784.
  • [43]
    Von Jagow, G., Klingenberg, M. (1970) Pathways of hydrogen in mitochondria of Saccharomyces carlsbergensis. Eur. J. Biochem. 12, 583592.
  • [44]
    Bruinenberg, P.M., Van Dijken, J.P., Scheffers, W.A. (1983) A theoretical analysis of NADPH production and consumption in yeasts. J. Gen. Microbiol. 129, 953964.
  • [45]
    Albers, E., Lidén, G., Larsson, C., Gustafsson, L. (1998) Anaerobic redox balance and nitrogen metabolism in Saccharomyces cerevisiae. Recent Res. Dev. Microbiol. 2, 253279.
  • [46]
    Bakker, B.M., Bro, C., Kötter, P., Luttik, M.A.H., Van Dijken, J.P. and Pronk, J.T. (2000) The mitochondrial alcohol dehydrogenase Adh3p is involved in a redox shuttle in Saccharomyces cerevisiae. J. Bacteriol., in press.
  • [47]
    Møller, I.M., Rasmusson, A.G., Fredlund, K.M. (1993) NAD(P)H-ubiquinone oxidoreductases in plant mitochondria. J. Bioenerg. Biomembr. 25, 377384.
  • [48]
    Douce, R., Neuburger, M. (1989) The uniqueness of plant mitochondria. Annu. Rev. Plant Physiol. Plant Mol. Biol. 40, 371414.
  • [49]
    Onishi, T., Kawaguchi, K., Hagihara, B. (1966) Preparation and some properties of yeast mitochondria. J. Biol. Chem. 241, 17971806.
  • [50]
    Onishi, T. (1973) Mechanisms of electron transport and energy conservation in the site I region of the respiratory chain. Biochim. Biophys. Acta 301, 105128.
  • [51]
    Dawson, A.G. (1979) Oxidation of cytosolic NADH formed during aerobic metabolism in mammalian cells. Trends Biochem. Sci. 4, 171176.
  • [52]
    Larsson, C., Påhlman, I.L., Ansell, R., Rigoulet, M., Adler, L., Gustafsson, L. (1998) The importance of the glycerol 3-phosphate shuttle during aerobic growth of Saccharomyces cerevisiae. Yeast 14, 347357.
  • [53]
    Nosek, J., Fukuhara, H. (1994) NADH dehydrogenase subunit genes in the mitochondrial DNA of yeasts. J. Bacteriol. 176, 56225630.
  • [54]
    Vanlerberghe, G.C., McIntosh, L. (1997) Alternative oxidase: from gene to function. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48, 703734.
  • [55]
    Albertyn, J., Hohmann, S., Prior, B.A. (1994) Characterization of the osmotic-stress response in Saccharomyces cerevisiae: osmotic stress and glucose repression repression regulate glycerol-3-phosphate dehydrogenase independently. Curr. Genet. 25, 1218.
  • [56]
    Nevoigt, E., Stahl, U. (1997) Osmoregulation and glycerol metabolism in the yeast Saccharomyces cerevisiae. FEMS Microbiol. Rev. 21, 231241.
  • [57]
    Albertyn, J., Hohmann, S., Thevelein, J.M., Prior, B.A. (1994) GPD1, which encodes glycerol-3-phosphate dehydrogenase, is essential for growth under osmotic stress in Saccharomyces cerevisiae, and its expression is regulated by the high-osmolarity glycerol response pathway. Mol. Cell. Biol. 14, 41354144.
  • [58]
    Wang, H.-T., Rahaim, P., Robbins, P., Yocum, R.R. (1994) Cloning, sequence, and disruption of the Saccharomyces diastaticus DAR1 gene encoding a glycerol-3-phosphate dehydrogenase. J. Bacteriol. 176, 70917095.
  • [59]
    Eriksson, P., André, L., Ansell, R., Blomberg, A., Adler, L. (1995) Cloning and characterization of GPD2, a second gene encoding sn-glycerol 3-phosphate dehydrogenase (NAD+) in Saccharomyces cerevisiae, and its comparison with GPD1. Mol. Microbiol. 17, 95107.
  • [60]
    Ansell, R., Granath, K., Hohmann, S., Thevelein, J.M., Adler, L. (1997) The two isoenzymes for yeast NAD+-dependent glycerol 3-phosphate dehydrogenase encoded by GPD1 and GPD2 have distinct roles in osmoadaptation and redox regulation. EMBO J. 16, 21792187.
  • [61]
    Norbeck, J., Påhlman, A.-K., Akhtar, N., Blomberg, A., Adler, L. (1996) Purification and characterization of two isoenzymes of dl-glycerol-3-phosphatase from Saccharomyces cerevisiae. J. Biol. Chem. 271, 1387513881.
  • [62]
    Rep, M., Albertyn, J., Thevelein, J.M., Prior, B.A., Hohmann, S. (1999) Different signalling pathways contribute to the control of GPD1 gene expression by osmotic stress in Saccharomyces cerevisiae. Microbiology 145, 715727.
  • [63]
    Björkqvist, S., Ansell, R., Adler, L., Lidén, G. (1997) Physiological response to anaerobicity of glycerol-3-phosphate dehydrogenase mutants of Saccharomyces cerevisae. Appl. Environ. Microbiol. 63, 128132.
  • [64]
    Ter Linde, J.J.M., Liang, H., Davis, R.W., Steensma, H.Y., Van Dijken, J.P., Pronk, J.T. (1999) Genome-wide transcriptional analysis of aerobic and anaerobic chemostat cultures of Saccharomyces cerevisiae. J. Bacteriol. 181, 74097413.
  • [65]
    Athenstaedt, K., Daum, G. (2000) 1-Acyldihydroxyacetone-phosphate reductase (Ayr1p) of the yeast Saccharomyces cerevisiae encoded by the open reading frame YIL124w is a major component of lipid particles. J. Biol. Chem. 275, 235240.
  • [66]
    Athenstaedt, K., Weys, S., Paltauf, F., Daum, G. (1999) Redundant systems of phosphatidic acid biosynthesis via acylation of glycerol-3-phosphate or dihydroxyacetone phosphate in the yeast Saccharomyces cerevisiae. J. Bacteriol. 181, 14581463.
  • [67]
    Luyten, K., Albertyn, J., Skibbe, W.F., Prior, B.A., Ramos, J., Thevelein, J.M., Hohmann, S. (1995) Fps1, a yeast member of the MIP family of channel proteins, is a facilitator for glycerol uptake and efflux and is inactive under osmotic stress. EMBO J. 14, 13601371.
  • [68]
    Tamas, M.J., Luyten, K., Sutherland, F.C., Hernandez, A., Albertyn, J., Valadi, H., Li, H., Prior, B.A., Kilian, S.G., Ramos, J., Gustafsson, L., Thevelein, J.M., Hohmann, S. (1999) Fps1p controls the accumulation and release of the compatible solute glycerol in yeast osmoregulation. Mol. Microbiol. 31, 10871104.
  • [69]
    Awargal, G.P. Glycerol. Adv. Biochem. Eng. Biotechnol. 41 (1990) 96128.
  • [70]
    Rehm, H.J. (1988) Microbial production of glycerol and other polyols. In: Biotechnology, Vol. 6b (Rehm, H.J. and Reed, G., Eds.), pp. 52–69. VCH, Weinheim, Germany.
  • [71]
    Neuberg, C., Reinfurth, E. (1918) Natürliche und erzwungene Glycerinbildung bei der alkoholischen Gärung. Biochem. Z. 100, 234266.
  • [72]
    El-Mansi, E.M.T., Bryce, C.F.A. and Hartley, B.S. (1999) Fermentation biotechnology: an historical perspective. In: Fermentation Microbiology and Biotechnology (El-Mansi, M. and Bryce, C., Eds.), pp. 1–8. Taylor and Francis, London.
  • [73]
    Johannson, M., Sjoström, J.E. (1984) Enhanced production of glycerol in an alcohol dehydrogenase (ADHI) deficient mutant of Saccharomyces cerevisiae. Biotechnol. Lett. 6, 4954.
  • [74]
    Nevoigt, E., Stahl, U. (1996) Reduced pyruvate decarboxylase and increased glycerol-3-phosphate dehydrogenase [NAD+] levels enhance glycerol production in Saccharomyces cerevisiae. Yeast 12, 13311337.
  • [75]
    Schmidt, H.D., Zimmermann, F.K. (1982) Genetic analysis of the pyruvate decarboxylase reaction in yeast glycolysis. J. Bacteriol. 151, 11461152.
  • [76]
    Zimmermann, F.K. (1992) Glycolytic enzymes as regulatory factors. J. Biotechnol. 27, 1726.
  • [77]
    Gancedo, C., Gancedo, J.M., Sols, A. (1968) Glycerol metabolism in yeasts. Eur. J. Biochem. 5, 165172.
  • [78]
    Michnick, S., Roustan, J.-L., Remize, F., Barre, P., Dequin, S. (1997) Modulation of glycerol and ethanol yields during alcoholic fermentation in Saccharomyces cerevisiae strains overexpressed or disrupted for GPD1 encoding glycerol 3-phosphate dehydrogenase. Yeast 13, 783793.
  • [79]
    Compagno, C., Boschi, F., Ranzi, B.M. (1996) Glycerol production in a triose phosphate isomerase deficient mutant of Saccharomyces cerevisiae. Biotechnol. Prog. 12, 591595.
  • [80]
    Overkamp, K.M., Bakker, B.M., Kötter, P., Van Tuijl, A., De Vries, S., Van Dijken, J.P., Pronk, J.T. (2000) In-vivo analysis of the mechanisms for oxidation of cytosolic NADH by Saccharomyces cerevisiae mitochondria. J. Bacteriol. 182, 28232830.
  • [81]
    Nissen, T.L., Kielland-Brandt, M.C., Nielsen, J., Villadsen, J. (2000) Optimization of ethanol production in Saccharomyces cerevisiae by metabolic engineering of the ammonium assimilation. Metab. Eng. 2, 6977.
  • [82]
    Albers, E., Larsson, C., Lidén, G., Niklasson, C., Gustafsson, L. (1996) Influence of the nitrogen source on Saccharomyces cerevisiae. Anaerobic growth and product formation. Appl. Environ. Microbiol. 62, 31873195.
  • [83]
    Weusthuis, R.A., Visser, W., Pronk, J.T., Scheffers, W.A., Van Dijken, J.P. (1994) Effects of oxygen limitation on sugar metabolism in yeasts: a continuous-culture study of the Kluyver effect. Microbiology 140, 703715.
  • [84]
    Cogoni, C., Valenzuela, L., González-Halphen, D., Olivera, H., Macino, G., Ballario, P., González, A. (2000) Saccharomyces cerevisiae has a single glutamate synthase gene coding for a plant-like high-molecular-weight polypeptide. J. Bacteriol. 177, 792798.
  • [85]
    Mitchell, A.P., Maganasik, B. (1983) Purification and properties of glutamine synthetase from Saccharomyces cerevisiae. J. Biol. Chem. 258, 119124.
  • [86]
    Nissen, T.L., Hamann, C.W., Kielland-Brandt, M.C., Nielsen, J., Villadsen, J. (2000) Anaerobic and aerobic batch cultivations of Saccharomyces cerevisiae mutants impaired in glycerol synthesis. Yeast 16, 463474.
  • [87]
    Anderlund, M., Nissen, T.L., Nielsen, J., Villadsen, J., Rydström, J., Hahn-Hägerdal, B., Kielland-Brandt, M.C. (1999) Expression of the Escherichia coli pntA and pntB genes, encoding nicotinamide nucleotide transhydrogenase, in Saccharomyces cerevisiae and its effect on product formation during anaerobic glucose fermentation. Appl. Environ. Microbiol. 65, 23332340.
  • [88]
    De Vries, S., Grivell, L.A. (1988) Purification and characterization of a rotenone-insensitive NADH:Q6 oxidoreductase from mitochondria of Saccharomyces cerevisiae. Eur. J. Biochem. 176, 377384.
  • [89]
    Marres, C.A.M., De Vries, S., Grivell, L.A. (1991) Isolation and inactivation of the nuclear gene encoding the rotenone-insensitive internal NADH:ubiquinone oxidoreductase of mitochondria from Saccharomyces cerevisiae. Eur. J. Biochem. 195, 857862.
  • [90]
    De Vries, S., Van Witzenburg, R., Grivell, L.A., Marres, C.A.M. (1992) Primary structure and import pathway of the rotenone-insensitive NADH-ubiquinone oxidoreductase of mitochondria from Saccharomyces cerevisiae. Eur. J. Biochem. 203, 587592.
  • [91]
    De Risi, J.L., Iyer, V.R., Brown, P.O. (1997) Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278, 680686.
  • [92]
    Young, E.T., Pilgrim, D. (1985) Isolation and DNA sequence of ADH3, a nuclear gene encoding the mitochondrial isozyme of alcohol dehydrogenase in Saccharomyces cerevisiae. Mol. Cell. Biol. 5, 30243034.
  • [93]
    Pronk, J.T., Steensma, H.Y., Van Dijken, J.P. (1996) Pyruvate metabolism in Saccharomyces cerevisiae. Yeast 12, 16071633.
  • [94]
    Wallace, D.C. (1992) Diseases of the mitochondrial DNA. Annu. Rev. Biochem. 61, 11751212.
  • [95]
    Seo, B.B., Kitajima-Ihara, T., Chan, E.K.L., Scheffler, I.E., Matsuno-Yagi, A., Yagi, T. (1998) Molecular remedy of complex I defects: rotenone-insensitive internal NADH-quinone oxidoreductase of Saccharomyces cerevisiae mitochondria restores the NADH oxidase activity of complex I-deficient mammalian cells. Proc. Natl. Acad. Sci. USA 95, 91679171.
  • [96]
    Kitajima-Ihara, T., Yagi, T. (1998) Rotenone-insensitive internal NADH-quinone oxidoreductase of Saccharomyces cerevisiae mitochondria: the enzyme expressed in Escherichia coli acts as a member of the respiratory chain in the host cells. FEBS Lett. 421, 3740.
  • [97]
    Seo, B.B., Matsuno-Yagi, A., Yagi, T. (1999) Modulation of oxidative phosphorylation of human kidney 293 cells by transfection with the internal rotenone-insensitive NADH-quinone oxidoreductase (NDI1) gene of Saccharomyces cerevisiae. Biochim. Biophys. Acta 1412, 5665.
  • [98]
    Luttik, M.A.H., Overkamp, K.M., Kötter, P., De Vries, S., Van Dijken, J.P., Pronk, J.T. (1998) The Saccharomyces cerevisiae NDE1 and NDE2 genes encode separate mitochondrial NADH dehydrogenases catalyzing the oxidation of cytosolic NADH. J. Biol. Chem. 273, 2452924534.
  • [99]
    Small, W.C., McAlister-Henn, L. (1998) Identification of a cytosolically directed NADH dehydrogenase in mitochondria of Saccharomyces cerevisiae. J. Bacteriol. 180, 40514055.
  • [100]
    Patchett, R.A., Jones, C.W. (1986) The apparent oxidation of NADH by whole cells of the methylotrophic bacterium Methylophilus methylotrophus. A cautionary tale. Antonie van Leeuwenhoek 52, 387392.
  • [101]
    Roth, F.P., Hughes, J.D., Estep, P.W., Church, G.M. (1998) Finding DNA regulatory motifs within unaligned noncoding sequences clustered by whole-genome mRNA quantitation. Nat. Biotechnol. 16, 939945.
  • [102]
    Lagunas, R. (1993) Misconceptions about the energy metabolism of Saccharomyces cerevisiae. Yeast 2, 221228.
  • [103]
    Lehninger, A.L. (1955) Oxidative phosphorylation. In: The Harvey Lectures, 1953–1954, pp. 176–215. Academic Press, New York.
  • [104]
    Purvis, J.L., Lowenstein, J.M. (1961) The relation between intra- and extramitochondrial pyridine nucleotides. J. Biol. Chem. 236, 27942803.
  • [105]
    Borst, P. (1963) Hydrogen transport and transport metabolites. In: Funktionelle und morphologische Organisation der Zelle (Karlson, P., Ed.), pp. 137–162. Springer, Berlin.
  • [106]
    Rønnow, B., Kielland-Brandt, M.C. (1993) GUT2, a gene for mitochondrial glycerol 3-phosphate dehydrogenase of Saccharomyces cerevisiae. Yeast 9, 11211130.
  • [107]
    Sprague Jr., G.F., Cronan Jr., J.E. (1977) Isolation and characterization of Saccharomyces cerevisiae mutants defective in glycerol catabolism. J. Bacteriol. 129, 13351342.
  • [108]
    Sleep, D., Ogden, J.E., Roberts, N.A., Goodey, A.R. (1991) Cloning and characterisation of the Saccharomyces cerevisiae glycerol-3-phosphate dehydrogenase (GUT2) promoter. Gene 101, 8996.
  • [109]
    Gbelská, Y., Subík, J., Svoboda, A., Goffeau, A., Kovác, L. (1983) Intramitochondrial ATP and cell functions: yeast cells depleted of intramitochondrial ATP lose the ability to grow and multiply. Eur. J. Biochem. 130, 281286.
  • [110]
    Visser, W., Van der Baan, A.A., Batenburg-van der Vegte, W., Scheffers, W.A., Krämer, R., Van Dijken, J.P. (1990) Involvement of mitochondria in the assimilatory metabolism of anaerobic Saccharomyces cerevisiae cultures. Microbiology 140, 30393046.
  • [111]
    Raghavendra, A.S., Reumann, S., Heldt, H.W. (1998) Participation of mitochondrial metabolism in photorespiration. Reconstituted system of peroxisomes and mitochondria from spinach leaves. Plant Physiol. 116, 13331337.
  • [112]
    Hanning, I., Baumgarten, K., Schott, K., Heldt, H.W. (1999) Oxaloacetate transport into plant mitochondria. Plant Physiol. 119, 10251031.
  • [113]
    Passarella, S., Barile, M., Atlante, A., Quagliariello, E. (1984) Oxaloacetate uptake into rat brain mitochondria and reconstruction of the malate/oxaloacetate shuttle. Biochem. Biophys. Res. Commun. 119, 10391046.
  • [114]
    Gimpel, J.A., De Haan, J.A., Tager, J.M. (1973) Permeability of isolated mitochondria to oxaloacetate. Biochim. Biophys. Acta 292, 582591.
  • [115]
    Passarella, S., Palmieri, F., Quagliariello, E. (1977) The transport of oxaloacetate in isolated mitochondria. Arch. Biochem. Biophys. 180, 160168.
  • [116]
    Zoglowek, C., Krömer, S., Heldt, H.W. (1988) Oxaloacetate and malate transport by plant mitochondria. Plant Physiol. 87, 109115.
  • [117]
    Thompson, L.M., Sutherland, P., Steffan, J.S., McAlister-Henn, L. (1988) Gene sequence and primary structure of mitochondrial malate dehydrogenase from Saccharomyces cerevisiae. Biochemistry 27, 83938400.
  • [118]
    Minard, K.I., McAlister-Henn, L. (1991) Isolation, nucleotide sequence analysis, and disruption of the MDH2 gene from Saccharomyces cerevisiae: evidence for three isozymes of yeast malate dehydrogenase. Mol. Cell. Biol. 11, 370380.
  • [119]
    Steffan, J.S., McAlister-Henn, L. (1992) Isolation and characterization of the yeast gene encoding the MDH3 isozyme of malate dehydrogenase. J. Biol. Chem. 267, 2470824715.
  • [120]
    Palmieri, L., Vozza, A., Agrimi, G., De Marco, V., Runswick, M.J., Palmieri, F., Walker, J.E. (1999) Identification of the yeast mitochondrial transporter for oxaloacetate and sulfate. J. Biol. Chem. 274, 2218422190.
  • [121]
    Minard, K.I., McAlister-Henn, L. (1992) Glucose-induced degradation of the MDH2 isozyme of malate dehydrogenase in yeast. J. Biol. Chem. 267, 1745817464.
  • [122]
    Papa, S., Lofrumento, N.E., Kanduc, D., Paradies, G., Quagliariello, E. (1971) The transport of citric-acid-cycle intermediates in rat-liver mitochondria. Eur. J. Biochem. 22, 134143.
  • [123]
    LaNoue, K.F., Schoolwerth, A.C. (1979) Metabolite transport in mitochondria. Annu. Rev. Biochem. 48, 871922.
  • [124]
    LaNoue, K.F., Meijer, A.J., Brouwer, A. (1974) Evidence for electrogenic aspartate transport in rat liver mitochondria. Arch. Biochem. Biophys. 161, 544550.
  • [125]
    Meijer, A.J., Van Dam, K. (1974) The metabolic significance of anion transport in mitochondria. Biochim. Biophys. Acta 346, 213244.
  • [126]
    Bremer, J., Davis, E.J. (1975) Studies on the active transfer of reducing equivalents into mitochondria via the malate–aspartate shuttle. Biochim. Biophys. Acta 376, 387397.
  • [127]
    Cronin, V.B., Doyle, J.M., Doonan, S. Amino acid sequences of aspartate aminotransferases: the cytosolic isoenzymes from yeast and from human liver. Biochem. Soc. Trans. 18 (1990) 256.
  • [128]
    Cronin, V.B., Maras, B., Barra, D., Doonan, S. (1991) The amino acid sequence of the aspartate aminotransferase from baker's yeast (Saccharomyces cerevisiae). Biochem. J. 277, 335340.
  • [129]
    Verleur, N., Elgersma, Y., Van Roermund, C.W.T., Tabak, H.F., Wanders, R.J.A. (1997) Cytosolic aspartate aminotransferase encoded by the AAT2 gene is targeted to the peroxisomes in oleate grown Saccharomyces cerevisiae. Eur. J. Biochem. 247, 972980.
  • [130]
    Morin, P.J., Subramanian, G.S., Gilmore, T.D. (1992) AAT1, a gene encoding a mitochondrial aspartate aminotransferase in Saccharomyces cerevisiae. Biochim. Biophys. Acta 1171, 211214.
  • [131]
    Perkins, M., Haslam, J.M., Linnane, A.W. (1973) Biogenesis of mitochondria. The effects of physiological and genetic manipulation of Saccharomyces cerevisiae on the mitochondrial transport systems for tricarboxylate-cycle anions. Biochem. J. 134, 923934.
  • [132]
    Palmieri, L., Runswick, M.J., Fiermonte, G., Walker, J.E., Palmieri, F. (2000) Yeast mitochondrial carriers: bacterial expression, biochemical identification and metabolic significance. J. Bioenerg. Biomembr. 32, 6777.
  • [133]
    Palmieri, L., Palmieri, F., Runswick, M.J., Walker, J.E. (1996) Identification by bacterial expression and functional reconstitution of the yeast genomic sequence encoding the mitochondrial dicarboxylate carrier protein. FEBS Lett. 399, 299302.
  • [134]
    Palmieri, L., Lasorsa, F.M., De Palma, A., Palmieri, F., Runswick, M.J., Walker, J.E. (1997) Identification of the yeast ACR1 gene product as a succinate-fumarate transporter essential for growth on ethanol or acetate. FEBS Lett. 417, 114118.
  • [135]
    Wills, C., Benhaim, P., Martin, T. (1984) Effect of mutants and inhibitors on mitochondrial transport systems in vivo in yeast. Biochim. Biophys. Acta 778, 5766.
  • [136]
    Bottger, I., Wieland, O., Brdiczka, D., Pette, D. (1969) Intracellular localization of pyruvate carboxylase and phosphoenolpyruvate carboxykinase in rat liver. Eur. J. Biochem. 8, 113119.
  • [137]
    Walter, P., Anabitarte, M. (1973) Intracellular distribution of pyruvate carboxylase in livers of normal and cortisol treated rats. FEBS Lett. 37, 170173.
  • [138]
    Taylor, D.J., Crabtree, B., Smith, G.H. (1978) The intracellular location of pyruvate carboxylase, citrate synthase and 3-hydroxyacyl-CoA dehydrogenase in lactating rat mammary gland. Biochem. J. 171, 273275.
  • [139]
    Martin, B.R., Denton, R.M. (1970) The intracellular localization of enzymes in white-adipose-tissue fat-cells and permeability properties of fat-cell mitochondria. Transfer of acetyl units and reducing power between mitochondria and cytoplasm. Biochem. J. 117, 861877.
  • [140]
    Lim, F., Rohde, M., Morris, C.P., Wallace, J.C. (1987) Pyruvate carboxylase in the yeast pyc mutant. Arch. Biochem. Biophys. 258, 259264.
  • [141]
    Walker, M.E., Val, D.L., Rohde, M., Devenish, R.J., Wallace, J.C. (1991) Yeast pyruvate carboxylase: identification of two genes encoding isoenzymes. Biochem. Biophys. Res. Commun. 176, 12101217.
  • [142]
    Van Roermund, C.W.T., Elgersma, Y., Singh, N., Wanders, R.J.A., Tabak, H.F. (1995) The membrane of peroxisomes in Saccharomyces cerevisiae is impermeable to NAD(H) and acetyl-CoA under in vivo conditions. EMBO J. 14, 34803486.
  • [143]
    MacDonald, M.J. (1995) Feasibility of a mitochondrial pyruvate malate shuttle in pancreatic islets. J. Biol. Chem. 270, 2005120058.
  • [144]
    Boles, E., De Jong-Gubbels, P., Pronk, J.T. (1998) Identification of MAE1, the Saccharomyces cerevisiae structural gene encoding mitochondrial malic enzyme. J. Bacteriol. 180, 28752882.
  • [145]
    Fuck, E., Stärk, G., Radler, F. (1973) Äpfelsäurestoffwechsel bei Saccharomyces. II. Anreicherung und Eigenschaften eines Malatenzyms. Arch. Mikrobiol. 89, 223231.
  • [146]
    Morris, C.P., Lim, F., Wallace, J.C. (1987) Yeast pyruvate carboxylase: gene isolation. Biochem. Biophys. Res. Commun. 145, 390396.
  • [147]
    Lim, F., Morris, C.P., Occhiodoro, F., Wallace, J.C. (1988) Sequence and domain structure of yeast pyruvate carboxylase. J. Biol. Chem. 263, 1149311497.
  • [148]
    Stucka, R., Dequin, S., Salmon, J.M., Gancedo, C. (1991) DNA sequences in chromosomes II and VII code for pyruvate carboxylase isoenzymes in Saccharomyces cerevisiae: analysis of pyruvate carboxylase-deficient strains. Mol. Gen. Genet. 229, 307315.
  • [149]
    Palmieri, L., Vozza, A., Hönlinger, A., Dietmeier, K., Palmisano, A., Zara, V., Palmieri, F. (1999) The mitochondrial dicarboxylate carrier is essential for the growth of Saccharomyces cerevisiae on ethanol or acetate as the sole carbon source. Mol. Microbiol. 31, 569577.
  • [150]
    Kakhniashvili, D., Mayor, J.A., Gremse, D.A., Xu, Y., Kaplan, R.S. (1997) Identification of a novel gene encoding the yeast mitochondrial dicarboxylate transport protein via overexpression, purification, and characterization of its product. J. Biol. Chem. 272, 45164521.
  • [151]
    Brailsford, M.A., Thompson, A.G., Kaderbhai, N., Beechey, R.B. (1986) The extraction and reconstitution of the alpha-cyanocinnamate-sensitive pyruvate transporter from castor bean mitochondria. Biochem. Biophys. Res. Commun. 140, 10361042.
  • [152]
    Bolli, R., Naleçz, K.A., Azzi, A. (1989) Monocarboxylate and α-ketoglutarate carriers from bovine heart mitochondria. J. Biol. Chem. 264, 1802418030.
  • [153]
    Naleçz, M.J., Naleçz, K.A., Azzi, A. (1991) Purification and functional characterization of the pyruvate (monocarboxylate) carrier from baker's yeast mitochondria (Saccharomyces cerevisiae). Biochim. Biophys. Acta 1079, 8795.
  • [154]
    Calvin, J., Tubbs, P.K. (1978) Mitochondrial transport processes and oxidation of NADH by hypotonically-treated boar spermatozoa. Eur. J. Biochem. 89, 315320.
  • [155]
    Gallina, F.G., Gerez de Burgos, N.M., Burgos, C., Coronel, C.E., Blanco, A. (1994) The lactate/pyruvate shuttle in spermatozoa: operation in vitro. Arch. Biochem. Biophys. 308, 515519.
  • [156]
    Whereat, A.F., Orishimo, M.W., Nelson, J., Phillips, S.J. (1969) The location of different synthetic systems for fatty acids in inner and outer mitochondrial membranes from rabbit heart. J. Biol. Chem. 244, 64986506.
  • [157]
    Ratledge, C. and Evans, C.T. (1989) Lipids and their metabolism. In: The Yeasts, Vol. 3 (Rose, A.H. and Harrison, J.S., Eds.), pp. 367–455. Academic Press, New York.
  • [158]
    Kunau, W.H., Dommes, V., Schulz, H. (1995) Beta-oxidation of fatty acids in mitochondria, peroxisomes and bacteria: a century of continued progress. Prog. Lipid Res. 34, 267342.
  • [159]
    Theobald, U., Mailinger, W., Reuss, M., Rizzi, M. (1993) In vivo analysis of glucose-induced fast changes in yeast adenine nucleotide pool applying a rapid sampling technique. Anal. Biochem. 214, 3137.
  • [160]
    Gonzalez, B., Francois, J., Renaud, M. (1997) A rapid and reliable method for metabolite extraction in yeast using boiling buffered ethanol. Yeast 13, 13471355.
  • [161]
    Smits, H.P., Cohen, A., Buttler, T., Nielsen, J., Olsson, L. (1998) Cleanup and analysis of sugar phosphates in biological extracts by using solid-phase extraction and anion-exchange chromatography with pulsed amperometric detection. Anal. Biochem. 261, 3642.
  • [162]
    Kacser, H., Burns, J.A. (1973) The control of flux. Symp. Soc. Exp. Biol. 27, 65104.
  • [163]
    Kacser, H., Acerenza, L. (1993) A universal method for achieving increases in metabolite production. Eur. J. Biochem. 216, 361367.
  • [164]
    Fell, D.A. (1997) Understanding the Control of Metabolism, Portland Press, London.
  • [165]
    Gancedo, J.M. (1998) Yeast carbon catabolite repression. Microbiol. Mol. Biol. Rev. 62, 334361.
  • [166]
    Forsburg, S.L., Guarente, L. (1989) Identification and characterization of HAP4: a third component of the CCAAT-bound HAP2/HAP3 heteromer. Genes Dev. 3, 11661178.
  • [167]
    Klein, C.J.L., Rasmussen, J.J., Ronnow, B., Olsson, L., Nielsen, J. (1999) Investigation of the impact of MIG1 and MIG2 on the physiology of Saccharomyces cerevisiae. J. Biotechnol. 68, 197212.
  • [168]
    Blom, J., Teixeira de Mattos, M.J., Grivell, L.A. (2000) Redirection of the respiro-fermentative flux distribution in Saccharomyces cerevisiae by overexpression of the transcription factor Hap4p. Appl. Environ. Microbiol. 66, 19701973.