• [1]
    Bell, C.F. (1977) Principles and Applications of Metal Chelation. Clarendon Press, Oxford.
  • [2]
    Wilkinson, G. (1987) Comprehensive Coordination Chemistry. Pergamon Press, Oxford.
  • [3]
    Egli, T (1988) (An)aerobic breakdown of chelating agents used in household detergents. Microbiol. Sci. 5, 3641.
  • [4]
    Anderson, R.L., Bishop, E.B., Campbell, R.L (1985) A review of the environmental and mammalian toxicology of nitrilotriacetic acid. Crit. Rev. Toxicol. 15, 1102.
  • [5]
    Egli, T, Bally, M, Uetz, T (1990) Microbial degradation of chelating agents used in detergents with special reference to nitrilotriacetic acid (NTA). Biodegradation 1, 121132.
  • [6]
    Egli, T. (1994) Biochemistry and physiology of the degradation of nitrilotriacetic acid and other metal complexing agents. In: Biochemistry of Microbial Degradation (Ratledge, C., Ed.), pp. 179–195. Kluwer Academic Publishers, Dordrecht.
  • [7]
    Kari, F.G., Giger, W (1995) Modeling the photochemical degradation of ethylenediaminetetraacetate in the river Glatt. Environ. Sci. Technol. 29, 28142827.
  • [8]
    Heintz, W (1862) Über dem Ammoniaktypus angehörige Säuren. Ann. Chem. Pharm. 122, 257294.
  • [9]
    Potthoff-Karl, B (1994) Neue biologisch abbaubare Komplexbildner. Seifen Öle Fette Wachse 120, 104109.
  • [10]
    Parker, B.A. and Crudden, J.J. (1996) The commercial synthesis and characterization of novel multifunctional sufactant chelates. Abstract presented at the 4th World Surfactant Conference, pp. 446–460. Barcelona.
  • [11]
    Nishikiori, T, Okuyama, A, Naganawa, T, Takita, T, Hamada, M, Takeuchi, T, Aoyagi, T, Umezawa, H (1984) Production by actinomycetes of (S,S)-N,N′-ethylenediamine-disuccinic acid, an inhibitor of phospholipase C. J. Antibiot. 37, 426427.
  • [12]
    Cebulla, I. (1995) Gewinnung komplexbildender Substanzen mittels Amycolatopsis orientalis. Ph.D. Thesis, Eberhard-Karls-Universität Tübingen, Tübingen.
  • [13]
    Cebulla, I., Harder, M., Theobald, U. and Zähner, H. (1996) Studies on the production of ethylene-diamine-disuccinic acid by Amycolatopsis orientalis. Poster presented at the 55th Annual Meeting of the Swiss Society of Microbiology, Bern.
  • [14]
    Majer, J, Springer, V, Kopecka, B (1966) New complexones. VIII. Ethylenediamino-N,N′-disuccinic acid and investigation of its heavy metal complexes by spectrophotometry. Chem. Zvesti 20, 414422.
  • [15]
    Gorelov, I.P., Samsonov, A.P., Nikol'skii, V.M., Babich, V.A., Svetogorov, Y.E., Smirnova, T.I., Malakhaev, E.D., Kozlov, Y.M., Kapustnikov, A.I (1979) Synthesis and complex-forming properties of complexons derived from dicarboxylic acids. V. Synthesis of complexons derived from succinic acid. Zhurnal Obshchei Khimii 49, 659663.
  • [16]
    Hartmann, F.A. and Perkins, C.M. (1987) Detergent composition containing ethylenediamine-N,N′-disuccinic acid. US patent 4,704,233.
  • [17]
    Neal, J.A., Rose, N.J (1968) Stereospecific ligands and their complexes. I. A cobalt(III)complex of ethylenediaminedisuccinic acid. Inorg. Chem. 7, 24052412.
  • [18]
    Zwicker, N, Theobald, U, Zähner, H, Fiedler, H.-P (1997) Optimization of fermentation conditions for the production of ethylene-diamine-disuccinic acid by Amycolatopsis orientalis. J. Ind. Microbiol. Biotechnol. 19, 280285.
  • [19]
    Smith, M.J., Neilands, J.B (1984) Rhizobactin, a siderophore from Rhizobium meliloti. J. Plant Nutr. 7, 449458.
  • [20]
    Smith, A.W., Shoolery, J.N., Schwyn, B, Holden, I, Neilands, J.B (1985) Rhizobactin, a structurally novel siderophore from Rhizobium meliloti. J. Am. Chem. Soc. 107, 17391743.
  • [21]
    Drechsel, H, Metzger, J, Freund, S, Jung, G, Boelaert, J.R., Winkelmann, G (1991) Rhizoferrin – a novel siderophore from the fungus Rhizopus microsporus var. rhizopodiformis. BioMetals 4, 238243.
  • [22]
    Thieken, A, Winkelmann, G (1992) Rhizoferrin: A complexone type siderophore of the Mucorales and Entomophtorales (Zygomycetes). FEMS Microbiol. Lett. 94, 3742.
  • [23]
    Winkelmann, G. (1993) Kinetics, energetics and mechanisms of siderophore iron transports in fungi. In: Iron Chelation in Plants and Soil Microorganisms (Barton, L.L., Ed.), pp. 220–239. Academic Press, Inc., London.
  • [24]
    Carrano, C.J., Drechsel, H, Kaiser, D, Jung, G, Matzanke, B, Winkelmann, G, Rochel, N, Albrecht-Gary, A.M (1996) Coordination chemistry of the carboxylate type siderophore rhizoferrin: The iron(III) complex and its metal analogs. Inorg. Chem. 35, 64296436.
  • [25]
    Carrano, C.J., Thieken, A, Winkelmann, G (1996) Specificity and mechanism of rhizoferrin-mediated metal iron uptake. BioMetals 9, 185189.
  • [26]
    Drechsel, H, Freund, S, Nicholson, G, Haag, H, Jung, O, Zähner, H, Jung, G (1993) Purification and chemical characterization of staphyloferrin B, a hydrophilic siderophore from staphylococci. BioMetals 6, 185192.
  • [27]
    Kühn, S, Braun, V, Köster, W (1996) Ferric rhizoferrin uptake into Morganella morganii: Characterization of genes involved in the uptake of a polyhydroxycarboxylate siderophore. J. Bacteriol. 178, 496504.
  • [28]
    Drechsel, H, Tschierske, M, Thieken, A, Jung, C, Zähner, H, Winkelmann, G (1995) The carboxylate type siderophore rhizoferrin and its analogs produced by direct fermentation. J. Ind. Microbiol. 14, 105112.
  • [29]
    Meiwes, J, Fiedler, H.-P, Haag, H, Zähner, H, Konetschny-Rapp, S, Jung, G (1990) Isolation and characterization of staphyloferrin A, a compound with siderophore activity from Staphylococcus hyicus DSM 20459. FEMS Microbiol. Lett. 67, 201206.
  • [30]
    Konetschny-Rapp, S, Jung, G, Meiwes, J, Zähner, H (1990) Staphyloferrin A: a structurally new siderophore from staphylococci. FEBS Eur. J. Biochem. 191, 6574.
  • [31]
    Haag, H, Fiedler, H.-P, Meiwes, J, Drechsler, H, Jung, G, Zähner, H (1994) Isolation and biological characterization of staphyloferrin B, a compound with siderophore activity from staphylococci. FEMS Microbiol. Lett. 115, 125130.
  • [32]
    Budesinsky, M, Budzikiewics, H, Prochazka, Z, Ripperger, H, Römer, A, Scholz, G, Schreiber, K (1980) Nicotianamine, a possible phytosiderophore of general occurrence. Phytochemistry 19, 22952297.
  • [33]
    Takagi, S.-I. (1993) Production of phytosiderophores. In: Iron Chelation in Plants and Soil Microorganisms (Barton, L.L. and Hemming, B.C., Eds.), pp. 111–131. Academic Press, Inc., London.
  • [34]
    Cakmak, I, Ozturk, L, Karanlik, S, Marschner, H, Ekiz, H (1996) Zink-efficient wild grasses enhance release of phytosiderophores under zinc deficiency. J. Plant Nutr. 19, 551563.
  • [35]
    Kawai, S, Takagi, S, Ojima, K (1992) Application of phytosiderophore to plant cell cultures and production of phytosiderophore by iron deficiency stressed plant cell cultures. J. Plant Nutr. 15, 16131624.
  • [36]
    Römpp, H. (1950) Chemie Lexikon. Franckh'sche Verlagshandlung, Stuttgart.
  • [37]
    Wolf, K. and Gilbert, P.A. (1992) EDTA-ethylenediaminetetraacetic acid. In: The Handbook of Environmental Chemistry, Vol. 3 (Hutzinger, O., Ed.), pp. 241–259. Springer, Berlin.
  • [38]
    Klopp, R, Pätsch, B (1994) Organische Komplexbildner in Abwasser, Oberflächenwasser und Trinkwasser, dargestellt am Beispiel der Ruhr. Wasser Boden 8, 3237.
  • [39]
    Sacher, F, Lochow, E, Brauch, H.-J (1998) Synthetic organic complexing agents – analysis and occurrence in surface waters. Vom Wasser 90, 3141.
  • [40]
    Svenson, A, Kaj, L, Björndal, H (1989) Aqueous photolysis of the iron(III) complexes of NTA, EDTA and DTPA. Chemosphere 18, 18051808.
  • [41]
    Zhao, F, Yang, J, Schöneich, C (1996) Effects of polyaminocarboxylate metal chelators on iron-thiolate induced oxidation of methionine- and histidine-containing peptides. Pharmacol. Res. 13, 931938.
  • [42]
    Means, J.L., Alexander, C.A (1981) The environmental biochemistry of chelating agents and recommondations for the disposal of chelated radioactive wastes. Nucl. Chem. Waste Manag. 2, 183196.
  • [43]
    Toste, A.P., Lechner-Fish, T.J (1993) Chemo-degradation of chelating and complexing agents in a simulated, mixed nuclear waste. Waste Manag. 13, 237244.
  • [44]
    Macaskie, L (1991) The application of biotechnology to the treatment of wastes produced from the nuclear fuel cycle: Biodegradation and bioaccumulation as means of radionuclide-containig streams. Crit. Rev. Biotechnol. 11, 41112.
  • [45]
    Means, J.L., Crerar, D.A., Duguid, J.O (1978) Migration of radioactive wastes: Radionuclide mobilization by complexing agents. Science 200, 14771480.
  • [46]
    Elliott, H.A., Brown, G.A (1989) Comparative evaluation of NTA and EDTA for extractive decontamination of Pb-polluted soils. Water Air Soil Pollut. 45, 361369.
  • [47]
    Brown, G.A., Elliott, H.A (1992) Influence of electrolytes on EDTA extraction of Pb from polluted soil. Water Air Soil Pollut. 62, 157165.
  • [48]
    Hong, J, Pintauro, P.N (1994) Desorption–complexation–dissolution characteristics of adsorbed cadmium from kaolin by chelators. Water Air Soil Pollut. 86, 3550.
  • [49]
    Yu, K.-C, Ho, S.-T, Tsai, L.-J, Chang, J.-S, Lee, S.-Z (1996) Remobilization of zinc from Ell-Ren river sediment fractions affected by EDTA, DTPA and EGTA. Water Sci. Technol. 34, 125132.
  • [50]
    Huang, J.W.W., Chen, J.J., Berti, W.R., Cunningham, S.D (1997) Phytoremediation of lead-contaminated soils: Role of synthetic chelates in lead phytoextraction. Environ. Sci. Technol. 31, 800805.
  • [51]
    Rubin, M, Martell, A.E (1980) The implication of trace metal–nitrilotriacetic acid speciation on its environmental impact and toxicology. Biol. Trace Elem. Res. 2, 119.
  • [52]
    Wallace, A, Wallace, G.A., Cha, J.W (1992) Some modifications in trace metal toxicities and deficiencies in plants resulting from interactions with other elements and chelating agents – the special case of iron. J. Plant Nutr. 15, 15891598.
  • [53]
    Deacon, M.S.M.R., Tuinstra, L.G.M.T (1994) Chromatographic separation of metal chelates present in commercial fertilizers. II. Development of an ion-pair chromatographic separation and simultaneous determination of the Fe(III) chelates of EDTA, DTPA, HEEDTA, EDDHA and EDDHMA and the Cu(II), Zn(II) and Mn(II) chelates of EDTA. J. Chromatogr. 659, 349357.
  • [54]
    Wei, N., Crescoulo, P.P. and LeClair, B.P. (1979) Impact of nitrilotriacetic acid (NTA) on an activated sludge plant – a field study Project No. 71-3-3. Environmental Protection Service Environment Canada.
  • [55]
    Alder, A.C., Siegrist, H, Gujer, W, Giger, W (1990) Behaviour of NTA and EDTA in biological wastewater treatment. Water Res. 24, 733742.
  • [56]
    Kari, F.G., Giger, W (1996) Speciation and fate of ethylenediaminetetraacetate (EDTA) in municipal wastewater treatment. Water Res. 30, 122134.
  • [57]
    Alder, A.C., Siegrist, H, Fent, K, Egli, T, Molnar, E, Poiger, T, Schaffner, C, Giger, W (1997) The fate of organic pollutants in wastewater and sludge treatment: Significant processes and impact of compound properties. Chimia 51, 922928.
  • [58]
    de Oude, I.N.T. (1984) NTA-Monitoring – Organisation und Erfahrungen von Kanada, USA und den Niederlanden. In: NTA: Studie über die aquatische Umweltverträglichkeit von Nitrilotriacetat (NTA) (Bernhardt, H., Ed.), pp. 413–422. Verlag Hans Richarz, Sankt Augustin.
  • [59]
    Woodiwiss, C.R., Walker, R.D., Brownridge, F.A (1979) Concentration of nitrilotriacetate and certain metals in Canadian wastewaters and streams: 1971–1975. Water Res. 13, 599612.
  • [60]
    Ernst, W. and Kleiser, H.H. (1984) Vorkommen, Verhalten und Auswirkungen von NTA im marinen Bereich. In: NTA: Studie über die aquatische Umweltverträglichkeit von Nitrilotriacetat (NTA) (Bernhardt, H., Ed.), pp. 237–250. Verlag Hans Richarz, Sankt Augustin.
  • [61]
    Houriet, J.-P. (1996) NTA dans les eaux. Cahier de l'environnement 264. Office fédéral de l'environnement, des forêts et du paysage (OFEFP), Bern.
  • [62]
    Kari, F.G. (1994) Umweltverhalten von Ethylendiamintetraacetat (EDTA) unter spezieller Berücksichtigung des photochemischen Abbaus. Ph.D. Thesis No 10698, Swiss Federal Institute of Technology, Zürich.
  • [63]
    Könen, I. (1997) Bestimmung von EDTA-Ersatzstoffen auf Aminopolycarbonsäurebasis, Vol. 159. Gesellschaft zur Förderung der Siedlungswasserwirtschaft and der RWTH Aachen e.V., Aachen.
  • [64]
    Nowack, B, Kari, F.G., Hilger, S.U., Sigg, L (1996) Determination of dissolved and adsorbed EDTA species in water and sediments by HPLC. Anal. Chem. 68, 561566.
  • [65]
    Sillanpäa, M, Vickackaite, V, Niinistö, L, Sihvonen, M.L (1997) Distribution and transportation of ethylenediaminetetraacetic acid and diethylenetriaminepentaacetic acid in lake water and sediment. Chemosphere 35, 27972805.
  • [66]
    Sillanpäa, M, Oikari, A (1996) Transportation of complexing agents released by pulp and paper industry: a Finnish lake case. Toxicol. Environ. Chem. 57, 7991.
  • [67]
    Dietz, F (1987) Neue Messergebnisse über die Belastung von Trinkwasser mit EDTA. gwf Wasser Abwasser 128, 286288.
  • [68]
    Grischek, T, Neitzel, P, Andrusch, T, Lagois, U, Nestler, W (1997) Fate of EDTA during infiltration of Elbe river water and identification of infiltrating river water in the aquifer. Vom Wasser 89, 261282.
  • [69]
    Lindner, K., Knepper, T.P., Karrenbrock, F., Rörden, O., Brauch, H.-J., Lange, F.T. and Sacher, F. (1996) Erfassung und Identifizierung von trinkwassergängigen Einzelsubstanzen in Abwässern und im Rhein, Vol. 1. IAWR, Köln.
  • [70]
    Toste, A.P., Osborn, B.C., Polach, K.J., Lechner-Fish, T.J (1995) Organic analyses of an actual and simulated mixed waste: Hanford's organic complexant waste revisited. J. Radioanal. Nucl. Chem. 194, 2534.
  • [71]
    Buchberger, W, Haddad, P.R., Alexander, P.W (1991) Separation of metal complexes of ethylenediaminetetraacetic acid in environmental water samples by ion chromatography with UV and potentiometric detection. J. Chromatogr. 558, 181186.
  • [72]
    Buchberger, W, Mülleder, S (1995) Determination of chelating agents and metal chelates by capillary zone electrophoresis. Microchim. Acta 119, 103111.
  • [73]
    Bürgisser, C.S., Stone, A.T (1997) Determination of EDTA, NTA, and other amino carboxylic acids and their Co(II) and Co(III) complexes by capillary electrophoresis. Environ. Sci. Technol. 31, 26562664.
  • [74]
    Campos, M.L.A.M., Van den Berg, C.M.G (1994) Determination of copper complexation in sea water by cathodic stripping voltammetry and ligand competition with salicylaldoxim. Anal. Chim. Acta 284, 481496.
  • [75]
    Donat, J.R., Lao, K.A., Bruland, K.W (1994) Speciation of dissolved copper and nickel in South San Francisco Bay: a multi-method approach. Anal. Chim. Acta 184, 547571.
  • [76]
    Luther, G.W., Nuzzio, D.B., Wu, J (1994) Speciation of manganese in Chesapeake Bay waters by voltametric methods. Anal. Chim. Acta 284, 473480.
  • [77]
    Mackey, D.J., Zirino, A (1994) Comments on trace metal speciation in seawater or do onions grow in the sea. Anal. Chim. Acta 284, 635647.
  • [78]
    Xue, H.B., Sigg, L (1993) Free cupric ion concentration and Cu(II) speciation in a eutrophic lake. Limnol. Oceanogr. 38, 12001213.
  • [79]
    Xue, H.B., Sigg, L (1994) Zinc speciation in lake waters and its determination by ligand exchange with EDTA and differential pulse anodic stripping voltammetry. Anal. Chim. Acta 284, 505515.
  • [80]
    Qian, J, Xue, H.B., Sigg, L, Albrecht, A (1998) Complexation of cobalt by natural ligands in freshwater. Environ. Sci. Technol. 32, 20432050.
  • [81]
    Xue, H.B., Sigg, L (1998) Cadmium speciation and complexation by natural organic ligands in fresh water. Anal. Chim. Acta 363, 249259.
  • [82]
    Hering, J.G., Morel, F.M.M (1988) Kinetics of trace metal complexation: role of alkaline-earth metals. Environ. Sci. Technol. 22, 14691478.
  • [83]
    Hering, J.G. and Morel, F.M.M. (1990) Kinetics of trace metal complexation: implication for metal reactivity in natural waters. In: Aquatic Chemical Kinetics (Stumm, W., Ed.), pp. 145–171. John Wiley and Sons, New York.
  • [84]
    Xue, H.B., Sigg, L, Kari, F.G (1995) Speciation of EDTA in natural waters: Exchange kinetics of Fe-EDTA in river water. Environ. Sci. Technol. 29, 5968.
  • [85]
    Nowack, B, Xue, H, Sigg, L (1997) Influence of natural and anthropogenic ligands on metal transport during infiltration of river water to groundwater. Environ. Sci. Technol. 31, 866872.
  • [86]
    Nowack, B., 1996. Behaviour of EDTA in groundwater – a study of the surface reactions of metal–EDTA complexes. Ph.D. Thesis No. 11392, Swiss Federal Institute of Technology, Zürich.
  • [87]
    Schöberl, P, Huber, M, Huber, L (1988) Ökologisch relevante Daten von nichttensidischen Inhaltsstoffen in Wasch- und Reinigungsmitteln. Tens. Surfactant Deterg. 25, 99107.
  • [88]
    van Dam, R.A., Barry, M.J., Ahokas, J.T., Holdway, D.A (1996) Comparative acute and chronic toxicity of diethylenetriamine pentaacetic acid (DTPA) and ferric-complexed DTPA to Daphnia carinata. Arch. Environ. Contam. Toxicol. 31, 433443.
  • [89]
    Allen, H.E. (1983) Potential for metal mobilization by synthetic organic chelating agents – a case study. Presented at the International Conference ‘Heavy metals in the environment’, Heidelberg.
  • [90]
    Twachtmann, U, Petrick, S, Merz, W, Metzger, J.W (1998) Zum Einfluß umweltrelevanter Konzentrationen des Komplexbildners EDTA auf die Remobilisierung von Schwermetallen im Belebungsverfahren. Vom Wasser 91, 101120.
  • [91]
    Nowack, B, Sigg, L (1997) Dissolution of Fe(III)(hydr)oxides by metal–EDTA complexes. Geochim. Cosmochim. Acta 61, 951963.
  • [92]
    Davis, J.A., Kent, D.B., Rea, B.A., Maest, A.S. and Garabedian, S.P. (1993) Influence of redox environment and aqueous speciation on metal transport in groundwater: preliminary results of trace injection studies. In: Metals in Groundwater (Allen, H.E., Perdue, E.M. and Brown, D.S., Eds.). Lewis Publishers, Chelsea.
  • [93]
    Langford, C.H., Wingham, M, Sastri, V.S (1973) Ligand photooxidation in copper(II) complexes of nitrilotriacetic acid. Environ. Sci. Technol. 7, 820822.
  • [94]
    Stolzberg, R.J., Hume, D.N (1975) Rapid formation of iminodiacetate from photochemical degradation of Fe(III) nitrilotriacetate solutions. Environ. Sci. Technol. 9, 654656.
  • [95]
    Mailhot, G, Bordes, A.-L, Bolte, M (1995) Iminodiacetic acid degradation photoinduced by complexation with monometallic (iron(III)) and bimetallic systems (iron(III) and copper(II)). Chemosphere 30, 17291737.
  • [96]
    Lockhart Jr., H.B., Blakeley, R.V (1975) Aerobic photodegradation of Fe(III)-(ethylenedinitrilo)tetraacetate (ferric EDTA). Environ. Sci. Technol. 9, 10351038.
  • [97]
    Natarajan, P, Endicott, J.F (1973) Photoredox behavior of transition metal–ethylenediaminetetraacetate complexes. A comparison of some group VIII metals. J. Phys. Chem. 77, 20492054.
  • [98]
    Karametaxas, G, Hug, S.J., Sulzberger, B (1995) Photodegradation of EDTA in the presence of lepidocrocite. Environ. Sci. Technol. 29, 29923000.
  • [99]
    Frank, R, Rau, H (1989) Photochemical transformation in aqueous solution and possible environmental fate of ethylenediaminetetraacetatic acid (EDTA). Ecotox. Environ. Saf. 19, 5563.
  • [100]
    Kari, F.G., Hilger, S, Canonica, S (1995) Determination of the reaction quantum yield for the photochemical degradation of Fe(III)-EDTA: Implications for the environmental fate of EDTA in surface waters. Environ. Sci. Technol. 29, 10081017.
  • [101]
    Nowack, B, Baumann, U (1998) Biodegradation of the photolysis products of Fe(III)EDTA. Acta Hydrochim. Hydrobiol. 26, 104108.
  • [102]
    Gardiner, J (1976) Complexation of trace metals by ethylenediaminetetraacetic acid (EDTA) in natural waters. Water Res. 10, 507514.
  • [103]
    Nowack, B, Sigg, L (1996) Adsorption of EDTA and metal–EDTA complexes onto goethite. J. Colloid Interface Sci. 177, 106121.
  • [104]
    Bowers, A.R., Huang, C.P (1986) Adsorption characteristics of metal–EDTA complexes onto hydrous oxides. J. Colloid Interface Sci. 110, 575590.
  • [105]
    Ulrich, M. (1991) Modeling of chemicals in lakes – development and application of user-friendly simulation software (MASAS and CHEMSEE). Ph.D. Thesis No 9632, Swiss Federal Institute of Technology, Zürich.
  • [106]
    Klewicki, J.K., Morgan, J.J (1998) Kinetic behavior of Mn(III) complexes of pyrophosphate, EDTA, and citrate. Environ. Sci. Technol. 32, 29162922.
  • [107]
    McArdell, C.S., Stone, A.T., Tian, J (1998) Reaction of EDTA and related aminopolycarboxylate chelating agents with Co(III)OOH (Heterogenite) and Mn(III)OOH (Manganite). Environ. Sci. Technol. 32, 29232930.
  • [108]
    Norvell, W.A. (1991) Reactions of metal chelates in soils and nutrient solutions. In: Micronutrients in agriculture (Mortvedt, J.J., Cox, F.R., Shuman, L.M. and Welch, R.M., Eds.). Soil Sci. Soc. Am., Inc., Madison, WI.
  • [109]
    Shumate, K.S., Thompson, J.E., Brookhart, J.B., Dean, C.L (1970) NTA removal by activated sludge – field study. J. Water Pollut. Control Fed. 42, 631640.
  • [110]
    Bouveng, H.O., Salyom, P, Werner, J (1970) Degradation of NTA in a trickling filter and an oxidation pond. Vatten 4, 389402.
  • [111]
    Gundernatsch, H (1974) Biologischer Abbau von Nitrilotriessigsäure. gwf Wasser Abwasser 115, 418421.
  • [112]
    Renn, E (1974) Biodegradation of NTA detergents in wastewater treatment systems. J. Water Pollut. Control Fed. 46, 23632371.
  • [113]
    Cleasby, J.L., Hubly, D.W., Ladd, T.A., Schon, E.A (1974) Trickling filtration of a waste containing NTA. J. Water Pollut. Control Fed. 46, 18731887.
  • [114]
    Shannon, E (1975) Effects of detergent formulation on wastewater characteristics and treatment. J. Water Pollut. Control Fed. 47, 23712383.
  • [115]
    Giger, W, Brunner, P.H., Ahel, M, McEvoy, J, Marcomini, A, Schaffner, C (1987) Organische Waschmittelinhaltstoffe und deren Abbauprodukte in Abwasser und Klärschlamm. Gas-Wasser-Abwasser 67, 111122.
  • [116]
    Siegrist, H, Alder, A, Gujer, W, Giger, W (1989) Behaviour and modelling of NTA degradation in activated sludge systems. Water Sci. Technol. 21, 315324.
  • [117]
    Klein, S.A (1974) NTA removal in septic tank and oxidation pond systems. J. Water Pollut. Control Fed. 46, 7888.
  • [118]
    Kirk, P.W.W., Lester, J.N, Perry, R, The behavior of nitrilotriacetic acid during the anaerobic digestion of sewage sludge. Water Res. 16 (1982) 973.
  • [119]
    Moore, L, Barth, E.F (1976) Degradation of NTA during anaerobic digestion. J. Water Pollut. Control Fed. 48, 24062414.
  • [120]
    Bernhardt, H., Berth, W., Förster, U., Hamm, A., Janicke, W., Kandler, J., Kanowski, S., Kleiser, H.H., Koppe, P., Opgenorth, H.J., Reichert, J.K. and Stehfest, H. (1984) NTA: Studie über die aquatische Umweltverträglichkeit von Nitrilotriacetat (NTA). Verlag Hans Richarz, Sankt Augustin.
  • [121]
    Kirk, P.W.W., Lester, J.N., Perry, R (1983) Amendability of nitrilotriacetic acid to biodegradation in a marine simulation. Mar. Pollut. Bull. 14, 8893.
  • [122]
    Bartholomew, G.W., Pfaender, F.K (1983) Influence of spatial and temporal variations on organic pollutant biodegradation rates in an estuarine environment. Appl. Environ. Microbiol. 45, 103109.
  • [123]
    Pfaender, F.K., Shimp, R.J., Larson, R.J (1985) Adaptation of estuarine ecosystems to the biodegradation of nitrilotriacetic acid: Effects of preexposure. Environ. Toxicol. Chem. 4, 587593.
  • [124]
    Palumbo, A.V., Pfaender, F.K., Paerl, H.W (1988) Biodegradation of NTA and m-cresol in coastal environments. Environ. Toxicol. Chem. 7, 573585.
  • [125]
    Janicke, W., Fischer, W.K., Gudernatsch, H., Günther, K.O., Opgenorth, H.-J., de Oude, N.T. and Wunderlich, M. (1984) Grundlagen des Abbaus und der Elimination von Nitrilotriessigsäure (NTA), NTA-Metall-Komplexen und Folgeprodukten (Mechanismen, Kinetik). In: NTA: Studie über die aquatische Umweltverträglichkeit von Nitrilotriacetat (NTA) (Bernhardt, H., Ed.), pp. 139–165. Verlag Hans Richarz, Sankt Augustin.
  • [126]
    Larson, R.J., Davidson, D.H (1982) Acclimation to and biodegradation of nitrilotriacetate (NTA) at trace concentrations in natural waters. Water Res. 16, 15971604.
  • [127]
    Bott, T.L., Patrick, R., Larson, R. and Rhyne, C. (1978) The effect of nitrilotriacetate (NTA) on the structure and functioning of aquatic communities in streams. Rep. to U.S. EPA – ERL, Duluth Minn. Contract No. R-801951, Environmental Protection Agency.
  • [128]
    Giger, W (1996) Micropollutants in the environment. EAWAG News 40E, 37.
  • [129]
    Larson, R.J., Clickmaillie, G.G., Van Belle, L (1981) Effect of temperature and dissolved oxygen on biodegradation of nitrilotriacetate. Water Res. 15, 615620.
  • [130]
    Kuhn, E, van Loosdrecht, M, Giger, W, Schwarzenbach, R.P (1987) Microbial degradation of nitrilotriacetate (NTA) during river water/groundwater infiltration: laboratory column studies. Water Res. 10, 12371248.
  • [131]
    Ahel, M, Schaffner, C, Giger, W (1996) Behaviour of alkylphenol polyethoxylate surfactants in the aquatic environment. 3. Occurrence and elimination of their persistent metabolites during infiltration of river water to groundwater. Water Res. 30, 3746.
  • [132]
    Tiedje, J.M., Mason, B.B (1974) Biodegradation of nitrilotriacetate (NTA) in soils. Soil Sci. Am. Proc. 38, 278283.
  • [133]
    Ward, T.E (1985) Aerobic and anaerobic biodegradation of nitrilotriacetate in subsurface soils. Ecotoxicol. Environ. Saf. 11, 112125.
  • [134]
    Shimp, R.-J, Lapsins, E.-V, Ventullo, R.-M (1994) Chemical fate and transport in a domestic septic system: Biodegradation of linear alkylbenzene sulfonate (LAS) and nitrilotriacetic acid (NTA). Environ. Toxicol. Chem. 13, 205212.
  • [135]
    Tabatabai, M.A., Bremner, J.M (1975) Decomposition of nitrilotriacetate (NTA) in soils. Soil Biol. Biochem. 7, 103106.
  • [136]
    Lahl, U, Burbaum, H (1988) Einzelstoffanalysen im Zu- und Ablauf einer kommunalen Kläranlage. Korresp. Abwasser 35, 360364.
  • [137]
    Nowack, B (1998) The behaviour of phosphonates in wastewater treatment plants of Switzerland. Water Res. 32, 12711279.
  • [138]
    Boatman, R.J., Cunninghamm, S.L., Ziegler, D.A (1986) A method for measuring the biodegradation of organic chemicals. Environ. Toxicol. Chem. 5, 233243.
  • [139]
    Madsen, E.L., Alexander, M (1985) Effects of chemical speciation on the mineralization of organic compounds by microorganism. Appl. Environ. Microbiol. 50, 342349.
  • [140]
    Hinck, M.L., Ferguson, J, Puhaakka, J (1997) Resistance of EDTA and DTPA to aerobic biodegradation. Water Sci. Technol. 35, 2531.
  • [141]
    Takahashi, R, Fujimoto, N, Suzuki, M, Endo, T (1997) Biodegradabilities of ethylenediamine-N,N′-disuccinic acid (EDDS) and other chelating agents. Biosci. Biotechnol. Biochem. 61, 19571959.
  • [142]
    Kaluza, U, Klingelhöfer, P, Taeger, K (1998) Microbial degradation of EDTA in an industrial wastewater treatment plant. Water Res. 32, 28432845.
  • [143]
    Belly, R.T., Lauff, J.J., Goodhue, C.T (1975) Degradation of ethylenediaminetetraacetic acid by microbial populations from an aerated lagoon. Appl. Microbiol. 29, 787794.
  • [144]
    Gschwind, N (1992) Biologischer Abbau von EDTA in einem Modellabwasser. gwf Wasser Abwasser 133, 546549.
  • [145]
    van Ginkel, C.G., Vandenbroucke, K.L., Stroo, C.A (1997) Biological removal of EDTA in conventional activated-sludge plants operated under alkaline conditions. Bioresour. Technol. 59, 151155.
  • [146]
    Virtaphoja, J. and Alén, R. (1997) Accelerated biodegradation of EDTA in a conventional activated sludge plant under alkaline conditions. Contribution presented at the Proceedings TAPPI 1997 Environmental Conference, pp. 991–997. Minneapolis, MN.
  • [147]
    Langi, A., Priha, M. and Tapanila, T. (1997) Environmental fate of complexing agents in pulp and paper mill effluents. Contribution presented at the International conference on environmental fate and effects of pulp and paper mill effluents, Rotorua.
  • [148]
    van Ginkel, C.G. and Boelema, E. (1999) Microbial degradation of alkylene amine acetates. US patent 5,965,024.
  • [149]
    Thomas, R.A.P., Lawlor, K, Bailey, M, Macaskie, L.E (1998) Biodegradation of metal–EDTA complexes by an enriched microbial population. Appl. Environ. Microbiol. 64, 13191322.
  • [150]
    Virtapohja, J, Alén, R (1999) Behaviour of EDTA in marine microcosms. Chemosphere 38, 143154.
  • [151]
    Stumpf, M, Ternes, T.A., Schuppert, B, Haberer, K, Hoffmann, P, Ortner, H.M (1996) Sorption und Abbau von NTA, EDTA und DTPA während der Bodenpassage. Vom Wasser 86, 157171.
  • [152]
    Allard, A.-S, Renberg, L, Neilson, A.H (1996) Absence of 14CO2 evolution from 14C-labelled EDTA and DTPA and the sediment/water partition ratio. Chemosphere 33, 577583.
  • [153]
    Tiedje, J.M (1975) Microbial degradation of ethylenediaminetetraacetate in soils and sediments. Appl. Microbiol. 30, 327329.
  • [154]
    Tiedje, J.M (1977) Influence of environmental parameters on EDTA biodegradation in soils and sediments. J. Environ. Qual. 6, 2126.
  • [155]
    Means, J.L., Kucak, T, Crerar, D.A (1980) Relative degradation rates of NTA, EDTA and DTPA and environmental implications. Environ. Pollut. (Series B) 1, 4560.
  • [156]
    Bolton Jr., H (1993) Biodegradation of synthetic chelates in subsurface sediments from the Southeast coastal plain. J. Environ. Qual. 22, 125132.
  • [157]
    Sillanpäa, M (1996) Complexing agents in waste water effluents of six Finnish pulp and paper mills. Chemosphere 33, 293302.
  • [158]
    Nispel, F, Baumann, W, Hardes, G (1990) Abbauversuche an DTPA in Modellkläranlagen. Abwasserreinigung 37, 707709.
  • [159]
    Ternes, T.A., Stumpf, M, Steinbrecher, T, Brenner-Weiß, G, Haberer, K (1996) Identification and detection of new metabolites of DTPA in river water and drinking water. Vom Wasser 87, 275290.
  • [160]
    Graßhoff, A, Potthoff-Karl, B (1996) Komplexbildner in alkalischen Reinigern. Tens. Surfactant Deterg. 33, 278288.
  • [161]
    Schowanek, D, Feijtel, T.C.J., Perkins, C.M., Hartman, F.A., Federle, T.W., Larson, R.J (1997) Biodegradation of [S,S], [R,R] and mixed stereoisomers of ethylene diamine disuccinic acid (EDDS), a transition metal chelator. Chemosphere 34, 23752391.
  • [162]
    Römheld, V (1991) The role of phytosiderophores in acquisition of iron and other micronutrients in graminaceous species: An ecological approach. Plant Soil 130, 127134.
  • [163]
    Bar-Ness, E, Hadar, Y, Chen, Y, Römheld, V, Marschner, H (1992) Short-term effects of rhizosphere microorganisms on Fe uptake from microbial siderophores by maize and oat. Plant Physiol. 100, 451456.
  • [164]
    Wirén, N, von Römheld, V, Morel, J.L., Guckert, A, Marschner, H (1993) Influence of microorganisms on iron acquisition in maize. Soil Biol. Biochem. 25, 371376.
  • [165]
    Wirén, N, von Römheld, V, Shioiri, T, Marschner, H (1995) Competition between micro-organisms and roots of barley and sorghum for iron accumulated in the root apoplasm. New Phytol. 130, 511521.
  • [166]
    Firestone, M.K., Tiedje, J.M (1978) Pathway of degradation of nitrilotriacetate by a Pseudomonas species. Appl. Environ. Microbiol. 35, 955961.
  • [167]
    Forsberg, C, Linqvist, G (1967) Experimental studies on bacterial degradation of NTA. Vatten 23, 265277.
  • [168]
    Focht, D, Joseph, H (1971) Bacterial degradation of NTA. Can. J. Microbiol. 17, 15531556.
  • [169]
    Wong, P.T.S., Liu, D, McGirr, D.J (1973) Mechanisms of NTA degradation by a bacterial mutant. Water Res. 7, 13671374.
  • [170]
    Cripps, R.E., Noble, A.S (1973) The metabolism of nitrilotriacetate by a Pseudomonad. Biochem. J. 136, 10591068.
  • [171]
    Enfors, S, Molin, N (1973) Biodegradation of NTA by bacteria. I: Isolation of bacteria able to grow anaerobically with NTA as sole carbon source. Water Res. 7, 881888.
  • [172]
    Liu, D, Wong, P, Dutka, B (1973) Studies of a rapid NTA utilizing bacterial mutant. J. Water Pollut. Control Fed. 45, 17281735.
  • [173]
    Parks, S, Stukus, P (1973) The microbial metabolism of NTA. J. Sci. Lab. Denison Univ. 54, 7986.
  • [174]
    Tiedje, J.M., Mason, B.B., Warren, C.B., Malec, E.J (1973) Metabolism of nitrilotriacetat by cells of Pseudomonas species. Appl. Microbiol. 25, 811818.
  • [175]
    Pickaver, A.H (1976) The production of N-nitrosoiminodiacetate from NTA and NO3 by microorganisms growing in mixed culture. Soil Biol. Biochem. 8, 1317.
  • [176]
    Kakii, K, Yamaguchi, H, Iguchi, Y, Teshima, M, Shirakashi, T, Kuriyama, M (1986) Isolation and growth characteristics of NTA-degrading bacteria. J. Ferment. Technol. 64, 103108.
  • [177]
    Egli, T, Weilenmann, H.U., El-Banna, T, Auling, G (1988) Gram-negative, aerobic, nitrilotriacetate-utilizing bacteria from wastewater and soil. Syst. Appl. Microbiol. 10, 297305.
  • [178]
    Wanner, U, Kemmler, J, Weilenmann, H.-U, Egli, T, El-Banna, T, Auling, G (1990) Isolation and growth of a bacterium able to degrade nitrilotriacetic acid under denitrifying conditions. Biodegradation 1, 3141.
  • [179]
    Wehrli, E, Egli, T (1988) Morphology of nitrilotriacetate-utilizing bacteria. Appl. Syst. Microbiol. 10, 306312.
  • [180]
    Egli, T, Weilenmann, H.U (1986) Biodegradation of NTA in the absence of oxygen. Experientia 42, 10611062.
  • [181]
    Auling, G, Busse, H.-J, Egli, T, El-Banna, T, Stackebrandt, E (1993) Description of the Gram-negative, obligately aerobic, nitrilotriacetate (NTA)-utilizing bacteria as Chelatobacter heintzii, gen. nov., sp. nov., and Chelatococcus asaccharovorans, gen. nov., sp. nov.. Syst. Appl. Microbiol. 16, 104112.
  • [182]
    de Vos, P, de Ley, J (1983) Intra- and intergeneric similarities of Pseudomonas and Xanthomonas ribosomal ribonucleic acid cistrons. Int. J. Syst. Bacteriol. 12, 133142.
  • [183]
    Kämpfer, P, Müller, C, Mau, M, Neef, A, Auling, G, Busse, H.-J, Osborn, A.M., Stolz, A (1999) Description of Pseudaminobacter gen. nov. with two new species, Pseudaminobacter salicylatoxidans sp. nov. and Pseudaminobacter defluvii sp. nov.. Int. J. Syst. Bacteriol. 49, 887897.
  • [184]
    Egli, T. and Auling, G. (2001) Genus Chelatobacter, Bergey's Manual of Determinative Bacteriology, accepted.
  • [185]
    Auling, G. and Egli, T., unpublished information.
  • [186]
    Egli, T. and Weilenmann, H.-U., unpublished information.
  • [187]
    Wilberg, E, El-Banna, T, Auling, G, Egli, T (1993) Serological studies on nitrilotriacetic acid (NTA)-utilizing bacteria: distribution of Chelatobacter heintzii and Chelatococcus asaccharovorans in sewage treatment plants and aquatic ecosystems. Syst. Appl. Microbiol. 16, 147152.
  • [188]
    Bally, M. (1994) Physiology and ecology of nitrilotriacetate degrading bacteria in pure culture, activated sludge and surface waters. Ph.D. Thesis No. 10821, Swiss Federal Institute of Technology, Zürich.
  • [189]
    Meyer, J.-M, Hohnadel, D (1992) Use of nitrilotriacetic acid (NTA) by Pseudomonas species through iron metabolism. Appl. Microbiol. Biotechnol. 37, 114118.
  • [190]
    Lauff, J.J., Steele, D.B., Coogan, L.A., Breitfeller, J.M (1990) Degradation of the ferric chelate of EDTA by a pure culture of an Agrobacterium sp.. Appl. Environ. Microbiol. 56, 33463353.
  • [191]
    Nörtemann, B (1992) Total degradation of EDTA by mixed cultures and a bacterial isolate. Appl. Environ. Microbiol. 58, 671676.
  • [192]
    Witschel, M., Weilenmann, H.-U. and Egli, T. (1995) Degradation of EDTA by a bacterial isolate. Poster presented at the 54 Annual Meeting of the Swiss Society for Microbiology, Lugano.
  • [193]
    Klüner, T. (1996) Chemie und Biochemie des mikrobielle EDTA-Abbaus. Ph.D. Thesis, Universität-Gesamthochschule Paderborn, Paderborn.
  • [194]
    Henneken, L, Nörtemann, B, Hempel, D.C (1995) Influence of physiological conditions on EDTA degradation. Appl. Microbiol. Biotechnol. 44, 190197.
  • [195]
    Wilkinson, S.G (1970) Cell walls of Pseudomonas species sensitive to ethylenediaminetetraacetic acid. J. Bacteriol. 104, 10351044.
  • [196]
    Ferris, F.G. (1989) Metallic ion interactions with the outer membrane of Gram-negative bacteria. In: Metal Ions and Bacteria (Beveridge, T.J. and Doyle, R.J., Eds.), pp. 295–323. John Wiley and Sons, New York.
  • [197]
    Jarvis, B.D.W., van Berkum, P, Chen, W.X., Nour, S.M., Fernandez, M.P., Cleyet-Marel, J.C., Gillis, M (1997) Transfer of Rhizobium loti, Rhizobium huakuii, Rhizobium ciceri, Rhizobium mediterraneum, and Rhizobium tianshanense to Mesorhizobium gen. nov.. Int. J. Syst. Bacteriol. 47, 895898.
  • [198]
    Witschel, M, Nagel, S, Egli, T (1997) Identification and characterization of the two-enzyme system catalyzing the oxidation of EDTA in the EDTA-degrading bacterial strain DSM 9103. J. Bacteriol. 179, 69376943.
  • [199]
    Warren, R.A.J., Neilands, J.B (1964) Microbial degradation of the ferrichrome compounds. J. Gen. Microbiol. 35, 459470.
  • [200]
    Warren, R.A.J., Neilands, J.B (1965) Mechanism of microbial catabolism of ferrichrome A. J. Biol. Chem. 240, 20552058.
  • [201]
    Villavicencio, M, Neilands, J.B (1965) An inducible ferrichrome A-degrading peptidase from Pseudomonas FC-1. Biochemistry 4, 10921097.
  • [202]
    Castignetti, D, Siddiqui, A.S (1990) The catabolism and heterotrophic nitrification of the siderophore deferrioxyamine B. Biol. Metals 3, 197203.
  • [203]
    DeAngelis, R, Forsyth, M, Castignetti, D (1993) The nutritional selectivity of a siderophore-catabolizing bacterium. BioMetals 6, 234238.
  • [204]
    Harwani, S.C., Roginsky, A, Vallejo, Y, Castignetti, D (1997) Further characterization and proposed pathway of deferrioxamine B catabolism. BioMetals 10, 205213.
  • [205]
    Zaya, N, Roginsky, A, Williams, J, Castignetti, D (1998) Evidence that a deferrioxamine B degrading enzyme is a serine protease. Can. J. Microbiol. 44, 521527.
  • [206]
    Winkelmann, G, Schmidtkunz, K, Rainey, F.A (1996) characterization of a novel Spirillum-like bacterium that degrades ferrioxamine-type siderophores. BioMetals 9, 7883.
  • [207]
    Winkelmann, G, Busch, B, Hartmann, A, Kirchhof, G, Süssmuth, R, Jung, G (1999) Degradation of desferrioxamines by Azospirillum irakense: Assignment of metabolites by HPLC/electrospray mass spectrometry. BioMetals 12, 255264.
  • [208]
    Lauff, J., Breitfeller, J., Steele, D.B. and Coogan, L. (1993) Degradation of ferric chelates by a pure culture of Agrobacterium sp. US patent 5,252,483.
  • [209]
    Lauff, J., Breitfeller, J., Steele, D.B. and Coogan, L. (1994) Pure culture of Agrobacterium sp. which degrades ferric chelates. US patent 5,364,786.
  • [210]
    Henneken, L, Nörtemann, B, Hempel, D.C (1998) Biological degradation of EDTA: Reaction kinetics and technical approach. J. Chem. Technol. Biotechnol. 73, 144152.
  • [211]
    Henneken, L, Klüner, T, Nörtemann, B, Hempel, D.C (1994) Abbau von EDTA mit freien und immobilisierten Bakterien. gwf Wasser Abwasser 135, 354358.
  • [212]
    Brüggenthies, A. (1996) Biologische Reinigung EDTA-haltiger Abwässer. FIT-Verlag, Paderborn.
  • [213]
    Henneken, L, Brüggenthies, A, Nörtemann, B, Hempel, D.C (1996) Teilstrombehandlung EDTA-haltiger Abwässer mittels Biofilm-Wirbelbettreaktoren. Chem. Ing. Tech. 68, 310314.
  • [214]
    Wilberg, E. (1989) Zur Physiologie und Ökologie Nitrilotriacetat (NTA) abbauender Bakterien. Ph.D. Thesis No. 9015, Swiss Federal Institute of Technology, Zürich.
  • [215]
    Cripps, R.E., Noble, A.S (1972) The microbial metabolism of nitrilotriacetate. Biochem. J. 130, 31P32P.
  • [216]
    Uetz, T, Schneider, R, Snozzi, M, Egli, T (1992) Purification and characterization of a two-component monooxygenase that hydroxylates nitrilotriacetate from ‘Chelatobacter’ strain ATCC 29600. J. Bacteriol. 174, 11791188.
  • [217]
    Uetz, T, Egli, T (1993) Characterization of an inducible membrane-bound iminodiacetate dehydrogenase from Chelatobacter heintzii ATCC 29600. Biodegradation 3, 423434.
  • [218]
    Uetz, T.A. (1992) Biochemistry of nitrilotriacetate degradation in obligately aerobic, Gram-negative bacteria. Ph.D. Thesis No. 9722, Swiss Federal Institute of Technology, Zürich.
  • [219]
    Knobel, H.-R, Egli, T, van der Meer, J.R (1996) Cloning and characterization of the genes encoding nitrilotriacetate monooxygenase of Chelatobacter heintzii ATCC 29600. J. Bacteriol. 178, 61236132.
  • [220]
    Xu, Y, Mortimer, M.W., Fisher, T.S., Kahn, M.L., Brockman, F.J., Xun, L (1997) Cloning, sequencing, and analysis of a gene cluster from Chelatobacter heintzii ATCC 29600 encoding nitrilotriacetate monooxygenase and NADH:Flavin mononucleotide oxidoreductase. J. Bacteriol. 179, 11121116.
  • [221]
    Xi, L, Squires, C.H., Monticello, D.J., Childs, J.D (1997) A flavin reductase stimulates DszA and DszC proteins of Rhodococcus erythropolis IGTS8 in vitro. Biochem. Biophys. Res. Commun. 230, 7375.
  • [222]
    Thibaut, D, Ratet, N, Bisch, D, Faucher, D, Debussche, L, Blanche, F (1995) Purification of the two-enzyme system catalyzing the oxidation of the d-proline residue of pristinamycin IIB during the last step of pristinamycin IIA biosynthesis. J. Bacteriol. 177, 51995205.
  • [223]
    Kendrew, S.G., Harding, S.E., Hopwood, D.A., Marsh, E.N.G (1995) Identification of a flavin:NADH oxidoreductase involved in the biosynthesis of actinorhodin. J. Biol. Chem. 270, 1733917343.
  • [224]
    Parry, R.J., Li, W (1997) An NADPH:FAD oxidoreductase from the valanimycin producer, Streptomyces viridifaciens. J. Biol. Chem. 272, 2330323311.
  • [225]
    Knobel, H.-R. (1997) Genetic study of bacterial nitrilotriacetate degrading enzymes. Ph.D. Thesis No. 12146, Swiss Federal Institute of Technology, Zürich.
  • [226]
    Kertesz, M.A., Schmidt-Larbig, K, Wuest, T (1999) A novel reduced flavin mononucleotide-dependent methanesulfonate sulfonatase encoded by the sulfur-regulated msu operon of Pseudomonas aeruginosa. J. Bacteriol. 181, 14641473.
  • [227]
    Fontecave, M, Coves, J, Pierre, J.-L (1994) Ferric reductases or flavin reductases. BioMetals 7, 38.
  • [228]
    Jenal-Wanner, U, Egli, T (1993) Anaerobic degradation of nitrilotriacetate (NTA) in a denitrifying bacterium: purification and characterization of the NTA dehydrogenase. Appl. Environ. Microbiol. 59, 33503359.
  • [229]
    Kemmler, J. (1992) Biochemistry of nitrilotriacetate degradation in the facultativly denitrifying bacterium TE11. Ph.D. Thesis No. 9983, Swiss Federal Institute of Technology, Zürich.
  • [230]
    Steenkamp, D.J., Gallup, M (1978) The natural flavoprotein electron acceptor of trimethylamine dehydrogenase. J. Biol. Chem. 253, 40864089.
  • [231]
    Witschel, M, Egli, T, Zehnder, A.J.B., Wehrli, E, Spycher, M (1999) Transport of EDTA into cells of the EDTA-degrading strain DSM 9103. Microbiology 154, 973983.
  • [232]
    Klüner, T, Hempel, D.C., Nörtemann, B (1998) Metabolism of EDTA and its metal chelates by whole cells and cell-free extracts of strain BNC1. Appl. Environ. Microbiol. 49, 194201.
  • [233]
    Witschel, M. (1999) Biochemical and physiological characterisation of a bacterial isolate able to grow with EDTA and other aminopolycarboxylic acids. Ph.D. Thesis No. 12967, Swiss Federal Institute of Technology, Zürich.
  • [234]
    Payne, J.W., Bolton, H.J., Campbell, J.A., Xun, L (1998) Purification and characterization of EDTA monooxygenase from the EDTA-degrading bacterium BNC1. J. Bacteriol. 180, 38233827.
  • [235]
    Witschel, M, Egli, T (1998) Purification and characterization of a lyase from the EDTA-degrading bacterial strain DSM 9103 that catalyzes the splitting of [S,S]-ethylenediaminedisuccinate, a structural isomer of EDTA. Biodegradation 8, 419428.
  • [236]
    Bally, M, Wilberg, E, Kühni, M, Egli, T (1994) Growth and regulation of enzyme synthesis in the nitrilotriacetic acid (NTA)-degrading Chelatobacter heintzii ATCC 29600. Microbiology 140, 19271936.
  • [237]
    Bally, M, Egli, T (1996) Dynamics of substrate consumption and enzyme synthesis in Chelatobacter heintzii during growth in carbon-limited chemostat culture with different mixtures of glucose and nitrilotriacetate (NTA). Appl. Environ. Microbiol. 62, 133140.
  • [238]
    Egli, T, Käppeli, O, Fiechter, A (1982) Mixed substrate growth of methylotrophic yeasts in chemostat culture: influence of the dilution rate on the utilisation of a mixture of glucose and methanol. Arch. Microbiol. 131, 813.
  • [239]
    Tempest, D.W., Neijssel, O.M., Zevenboom, W (1983) Properties and performance of microorgansisms in laboratory culture; their relevance to growth in natural ecosystems. S. Soc. Gen. Microbiol. 34, 119152.
  • [240]
    Egli, T (1995) The ecological and physiological significance of the growth of heterotrophic microorganisms with mixtures of substrates. Adv. Microb. Ecol. 14, 305386.
  • [241]
    Barford, J.P., Pamment, N.B. and Hall, R.J. (1982) Lag phases and transients. In: Microbial Population Dynamics (Bazin, J., Ed.), pp. 55–89. CRC Press, Boca Raton, FL.
  • [242]
    Neef, A. (1997) Anwendung der in situ-Einzelzell-Identifizierung von Bakterien zur Populationsanalyse in komplexen mikrobiellen Biozönosen. Ph.D. Thesis, Technische Universität München, München.
  • [243]
    Björndal, H, Bouveng, H.O., Solyom, P, Werner, J (1972) Biochemical stability of some metal chelates. Vatten 28, 516.
  • [244]
    Swisher, R.D., Taulli, T.A. and Malec, E.J. (1973) Biodegradation of NTA metal chelates in river water. In: Trace Metals and Metal–Organic Interactions in Natural Waters (Singer, P.C., Ed.). Ann Arbor Sc. Publ., Inc., Ann Arbor, MI.
  • [245]
    Walker, A.P (1975) Ultimate biodegradation of nitrilotriacetate in the presence of heavy metals. Prog. Water Technol. 7, 555560.
  • [246]
    Gundernatsch, H (1975) Biologischer Abbau von Schwermetallkomplexen der Nitrilotriessigsäure in Laborbelebtschlammanlagen. gwf Wasser Abwasser 116, 512517.
  • [247]
    Firestone, M.K., Tiedje, J.M (1975) Biodegradation of metal–nitrilotriacetate complexes by a Pseudomonas species: mechanism of reaction. Appl. Microbiol. 29, 758764.
  • [248]
    Bolton, H.J., Girvin, D.C., Plymale, A.E., Harvey, S.D., Workman, D.J (1996) Degradation of metal–nitrilotriacetate complexes by Chelatobacter heintzii. Environ. Sci. Technol. 30, 931938.
  • [249]
    Palumbo, A.V., Lee, S.Y., Borman, P (1994) The effect of media composition on EDTA degradation by Agrobacterium sp.. Appl. Biochem. Biotechnol. 45/46, 811822.
  • [250]
    Satroutdinov, A.D., Dedyukhina, E.G., Chistyakova, T.I., Witschel, M, Minkevich, I.G., Eroshin, V.K., Egli, T (2000) Degradation of metal–EDTA complexes by resting cells of the bacterial strain DSM 9103. Environ. Sci. Technol. 34, 17151720.
  • [251]
    Xun, L, Reeder, R.B., Plymale, A.E., Girvin, D.C., Bolton, H (1996) Degradation of metal nitrilotriacetate complexes by nitrilotriacetate monooxygenase. Environ. Sci. Technol. 30, 17521755.
  • [252]
    Jenal-Wanner, U. (1991) Anaerobic degradation of nitrilotriacetate in a denitrifying bacterium: purification and characterization of the nitrilotriacetate dehydrogenase/nitrate reductase complex. Ph.D. Thesis No. 9531, Swiss Federal Institute of Technology, Zürich.
  • [253]
    Silver, S. and Lusk, J.E. (1987) Bacterial magnesium manganese and zinc transport. In: Ion Transport in Prokaryotes (Rosen, B.P. and Silver, S., Ed.). Academic Press, Inc., San Diego, CA.
  • [254]
    Martell, A.E. and Smith, R.M. (1974) Critical Stability Constants, Vol. 1: Amino Acids. Plenum Press, New York.
  • [255]
    Smith, G.S., Hoard, J.L, The structure of dihydrogen ethylenediaminetetraacetatoaquonickel(II). J. Am. Chem. Soc. 81 (1959) 556.
  • [256]
    Lind, M.D., Hamor, M.J., Hamor, T.A., Hoard, J.L (1964) Stereochemistry of EDTA complexes. II. The structure of crystalline Rb[Fe(OH2)Y]H2O. Inorg. Chem. 3, 3443.