• [1]
    Lillie, S.H., Pringle, J.R. (1980) Reserve carbohydrate metabolism in Saccharomyces cerevisiae: responses to nutrient limitation. J. Bacteriol. 143, 13841394.
  • [2]
    Thevelein, J.M. (1984) Regulation of trehalose mobilization in fungi. Microbiol. Rev. 48, 4259.
  • [3]
    François, J., Neves, M.J., Hers, H.G. (1991) The control of trehalose biosynthesis in Saccharomyces cerevisiae: evidence for a catabolite inactivation and repression of trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase. Yeast 7, 575587.
  • [4]
    Colonna, W.J., Magee, P.T. (1978) Glycogenolytic enzymes in sporulating yeast. J. Bacteriol. 134, 844853.
  • [5]
    Kane, S.M., Roth, R. (1974) Carbohydrate metabolism during ascospore development in yeast. J. Bacteriol. 118, 814.
  • [6]
    Roach, P.J., Skurat, A.V. (1997) Self-glucosylating initiator proteins and their role in glycogen biosynthesis. Prog. Nucleic Acid Res. Mol. Biol. 57, 289316.
  • [7]
    Roach, P.J., Cheng, C., Huang, D., Lin, A., Mu, J., Skurat, A.V., Wilson, W., Zhai, L. (1998) Novel aspects of the regulation of glycogen storage. J. Basic Clin. Physiol. Pharmacol. 9, 139151.
  • [8]
    Nwaka, S., Holzer, H. (1998) Molecular biology of trehalose and the trehalases in the yeast Saccharomyces cerevisiae. Prog. Nucleic Acid Res. Mol. Biol. 58, 197237.
  • [9]
    Whelan, W.J. (1986) The initiation of glycogen synthesis. Bioessays 5, 136140.
  • [10]
    Pitcher, J., Smythe, C., Campbell, D.G., Cohen, P. (1987) Identification of the 38-kDa subunit of rabbit skeletal muscle glycogen synthase as glycogenin. Eur. J. Biochem. 169, 497502.
  • [11]
    Cheng, C., Mu, J., Farkas, I., Huang, D., Goebl, M.G., Roach, P.J. (1995) Requirement of the self-glucosylating initiator proteins Glg1p and Glg2p for glycogen accumulation in Saccharomyces cerevisiae. Mol. Cell. Biol. 15, 66326640.
  • [12]
    Mu, J., Cheng, C., Roach, P.J. (1996) Initiation of glycogen synthesis in yeast. Requirement of multiple tyrosine residues for function of the self-glucosylating Glg proteins in vivo. J. Biol. Chem. 271, 2655426560.
  • [13]
    Farkas, I., Hardy, T.A., Goebl, M.G., Roach, P.J. (1991) Two glycogen synthase isoforms in Saccharomyces cerevisiae are coded by distinct genes that are differentially controlled. J. Biol. Chem. 266, 1560215607.
  • [14]
    Rothman-Denes, L.B., Cabib, E. (1970) Two forms of yeast glycogen synthetase and their role in glycogen accumulation. Proc. Natl. Acad. Sci. USA 66, 967974.
  • [15]
    Huang, K.P., Cabib, E. (1974) Yeast glycogen synthetase in the glucose 6-phosphate-dependent form. I. Purification and properties. J. Biol. Chem. 249, 38513857.
  • [16]
    Huang, K.P., Cabib, E. (1974) Yeast glycogen synthetase in the glucose 6-phosphate-dependent form. II. The effect of proteolysis. J. Biol. Chem. 249, 38583861.
  • [17]
    François, J., Hers, H.G. (1988) The control of glycogen metabolism in yeast. 2. A kinetic study of the two forms of glycogen synthase and of glycogen phosphorylase and an investigation of their interconversion in a cell-free extract. Eur. J. Biochem. 174, 561567.
  • [18]
    Peng, Z.Y., Trumbly, R.J., Reimann, E.M. (1990) Purification and characterization of glycogen synthase from a glycogen-deficient strain of Saccharomyces cerevisiae. J. Biol. Chem. 265, 1387113877.
  • [19]
    Hardy, T.A., Roach, P.J. (1993) Control of yeast glycogen synthase-2 by COOH-terminal phosphorylation. J. Biol. Chem. 268, 2379923805.
  • [20]
    Huang, D., Wilson, W.A., Roach, P.J. (1997) Glucose-6-P control of glycogen synthase phosphorylation in yeast. J. Biol. Chem. 272, 2249522501.
  • [21]
    Farkas, I., Hardy, T.A., DePaoli, R.A., Roach, P.J. (1990) Isolation of the GSY1 gene encoding yeast glycogen synthase and evidence for the existence of a second gene. J. Biol. Chem. 265, 2087920886.
  • [22]
    François, J., Villanueva, M.E., Hers, H.G. (1988) The control of glycogen metabolism in yeast. 1. Interconversion in vivo of glycogen synthase and glycogen phosphorylase induced by glucose, a nitrogen source or uncouplers. Eur. J. Biochem. 174, 551559.
  • [23]
    Hardy, T.A., Huang, D., Roach, P.J. (1994) Interactions between cAMP-dependent and SNF1 protein kinases in the control of glycogen accumulation in Saccharomyces cerevisiae. J. Biol. Chem. 269, 2790727913.
  • [24]
    Huang, D., Farkas, I., Roach, P.J. (1996) Pho85p, a cyclin-dependent protein kinase, and the Snf1p protein kinase act antagonistically to control glycogen accumulation in Saccharomyces cerevisiae. Mol. Cell. Biol. 16, 43574365.
  • [25]
    Andrews, B., Measday, V. (1998) The cyclin family of budding yeast: abundant use of a good idea. Trends Genet. 14, 6672.
  • [26]
    Timblin, B.K., Tatchell, K., Bergman, L.W. (1996) Deletion of the gene encoding the cyclin-dependent protein kinase Pho85p alters glycogen metabolism in Saccharomyces cerevisiae. Genetics 143, 5766.
  • [27]
    Huang, D., Moffat, J., Wilson, W.A., Moore, L., Cheng, C., Roach, P.J., Andrews, B. (1998) Cyclin partners determine Pho85 protein kinase substrate specificity in vitro and in vivo: control of glycogen biosynthesis by Pcl8 and Pcl10. Mol. Cell. Biol. 18, 32893299.
  • [28]
    François, J., Higgins, D.L., Chang, F., Tatchell, K. (1991) Inhibition of glycogen synthesis in Saccharomyces cerevisiae by the mating pheromone α-factor. J. Biol. Chem. 266, 61746180.
  • [29]
    Cohen, P. (1989) The structure and regulation of protein phosphatases. Annu. Rev. Biochem. 58, 453508.
  • [30]
    Cohen, P., Schelling, D.L., Stark, M.J. (1989) Remarkable similarities between yeast and mammalian protein phosphatases. FEBS Lett. 250, 601606.
  • [31]
    Guinovart, J.J., Gomez, F.A., Seoane, J., Fernandez, N.J., Bellido, D., Vilaro, S. (1997) Bridging the gap between glucose phosphorylation and glycogen synthesis in the liver. Biochem. Soc. Trans. 25, 157160.
  • [32]
    Stalmans, W., Cadefau, J., Wera, S., Bollen, M. (1997) New insight into the regulation of liver glycogen metabolism by glucose. Biochem. Soc. Trans. 25, 1925.
  • [33]
    Hubbard, M.J., Cohen, P. (1993) On target with a new mechanism for the regulation of protein phosphorylation. Trends Biochem. Sci. 18, 172177.
  • [34]
    François, J.M., Thompson, J.S., Skroch, J., Zellenka, U., Spevak, W., Tatchell, K. (1992) GAC1 may encode a regulatory subunit for protein phosphatase type 1 in Saccharomyces cerevisiae. EMBO J. 11, 8796.
  • [35]
    Skroch-Stuart, J., Frederick, D.L., Varner, C.M., Tatchell, K. (1994) The mutant type 1 protein phosphatase encoded by glc7-1 from Saccharomyces cerevisiae fails to interact productively with the GAC1- encoded regulatory subunit. Mol. Cell. Biol. 14, 896905.
  • [36]
    Hubbard, M.J., Cohen, P. (1989) Regulation of protein phosphatase-1G from rabbit skeletal muscle. 1. Phosphorylation by cAMP-dependent protein kinase at site 2 releases catalytic subunit from the glycogen-bound holoenzyme. Eur. J. Biochem. 186, 701709.
  • [37]
    Baker, S.H., Frederick, D.L., Bloecher, A., Tatchell, K. (1997) Alanine-scanning mutagenesis of protein phosphatase type 1 in the yeast Saccharomyces cerevisiae. Genetics 145, 615626.
  • [38]
    Ramaswamy, N.T., Li, L., Khalil, M., Cannon, J.F. (1998) Regulation of yeast glycogen metabolism and sporulation by Glc7p protein phosphatase. Genetics 149, 5772.
  • [39]
    Cheng, C., Huang, D., Roach, P.J. (1997) Yeast PIG genes: PIG1 encodes a putative type 1 phosphatase subunit that interacts with the yeast glycogen synthase Gsy2p. Yeast 13, 18.
  • [40]
    Tu, J., Song, W., Carlson, M. (1996) Protein phosphatase type 1 interacts with proteins required for meiosis and other cellular processes in Saccharomyces cerevisiae. Mol. Cell. Biol. 16, 41994206.
  • [41]
    Huang, D., Chun, K.T., Goebl, M.G., Roach, P.J. (1996) Genetic interactions between REG1/HEX2 and GLC7, the gene encoding the protein phosphatase type 1 catalytic subunit in Saccharomyces cerevisiae. Genetics 143, 119127.
  • [42]
    Tu, J., Carlson, M. (1995) REG1 binds to protein phosphatase type 1 and regulates glucose repression in Saccharomyces cerevisiae. EMBO J. 14, 59395946.
  • [43]
    Peng, Z.Y., Wang, W., Wilson, S.E., Schlender, K.K., Trumbly, R.J., Reimann, E.M. (1991) Identification of a glycogen synthase phosphatase from yeast Saccharomyces cerevisiae as protein phosphatase 2A. J. Biol. Chem. 266, 1092510932.
  • [44]
    Clotet, J., Posas, F., Hu, G.Z., Ronne, H., Arino, J. (1995) Role of protein phosphatase 2A in the control of glycogen metabolism in yeast. Eur. J. Biochem. 229, 207214.
  • [45]
    Arndt, K.T., Styles, C.A., Fink, G.R. (1989) A suppressor of a HIS4 transcriptional defect encodes a protein with homology to the catalytic subunit of protein phosphatases. Cell 56, 527537.
  • [46]
    Posas, F., Clotet, J., Arino, J. (1991) Saccharomyces cerevisiae gene SIT4 is involved in the control of glycogen metabolism. FEBS Lett. 279, 341345.
  • [47]
    Posas, F., Clotet, J., Muns, M.T., Corominas, J., Casamayor, A., Arino, J. (1993) The gene PPG encodes a novel yeast protein phosphatase involved in glycogen accumulation. J. Biol. Chem. 268, 13491354.
  • [48]
    Stark, M.J.R. (1996) Yeast protein serine/threonine phosphatases: multiple roles and diverse regulation. Yeast 12, 16471675.
  • [49]
    Corominas, J., Clotet, J., Fernandez, B.I., Boles, E., Zimmermann, F.K., Guinovart, J.J., Arino, J. (1992) Glycogen metabolism in a Saccharomyces cerevisiae phosphoglucose isomerase (pgil) disruption mutant. FEBS Lett. 310, 182186.
  • [50]
    Brown, D.H., Brown, B.I. (1966) Enzymes of glycogen debranching: Amylo-1,6-glucosidase (I) and oligo-1,4-1,4-glucantransferase (II). Methods Enzymol. 8, 515524.
  • [51]
    Gunja, Z.H., Manners, D.J., Maung, K. (1960) Studies on carbohydrate-metabolizing enzymes. 3. Yeast branching enzyme. Biochem. J. 75, 441450.
  • [52]
    Manners, D.J. (1971) The structure and biosynthesis of storage carbohydrates in yeast. In: The Yeasts (Rose, A.H. and Harrison, J.S., Eds.), pp. 419–439. Academic press, London.
  • [53]
    Rowen, D.W., Meinke, M., LaPorte, D.C. (1992) GLC3 and GHA1 of Saccharomyces cerevisiae are allelic and encode the glycogen branching enzyme. Mol. Cell. Biol. 12, 2229.
  • [54]
    Thon, V.J., Vigneron, L.C., Marianne, P.T., Montreuil, J., Decq, A., Rachez, C., Ball, S.G., Cannon, J.F. (1992) Coordinate regulation of glycogen metabolism in the yeast Saccharomyces cerevisiae. Induction of glycogen branching enzyme. J. Biol. Chem. 267, 1522415228.
  • [55]
    Howell, R.R. and Williams, J.C. (1983) The glycogen storage diseases. In: The Metabolic Basis of Inherited Disease, 5th edn. (Stanbury, J.B., Wyngaarden, J.B., Fredrickson, D.S., Goldstein, J.L. and Brown, M.S., Eds.), pp. 141–166. McGraw-Hill, NY.
  • [56]
    Hwang, P.K., Fletterick, R.J. (1986) Convergent and divergent evolution of regulatory sites in eukaryotic phosphorylases. Nature 324, 8084.
  • [57]
    Hwang, P.K., Tugendreich, S., Fletterick, R.J. (1989) Molecular analysis of GPH1, the gene encoding glycogen phosphorylase in Saccharomyces cerevisiae. Mol. Cell. Biol. 9, 16591666.
  • [58]
    Fosset, M., Muir, L.W., Nielsen, L.D., Fischer, E.H. (1971) Purification and properties of yeast glycogen phosphorylase a and b. Biochemistry 10, 41054113.
  • [59]
    Lin, K., Hwang, P.K., Fletterick, R.J. (1995) Mechanism of regulation in yeast glycogen phosphorylase. J. Biol. Chem. 270, 2683326839.
  • [60]
    Becker, J.U., Wingender-Drissen, R., Schiltz, E. (1983) Purification and properties of phosphorylase from baker's yeast. Arch. Biochem. Biophys. 225, 667678.
  • [61]
    Tanabe, S., Kobayashi, M., Matsuda, K. (1987) Yeast glycogen phosphorylase: Characterization of the dimeric form and its activation. Agric. Biol. Chem. 51, 24652471.
  • [62]
    Lerch, K., Muir, L.W., Fischer, E.H. (1975) Purification and properties of a yeast protein kinase. Biochemistry 14, 20152023.
  • [63]
    Wingender-Drissen, R., Becker, J.U. (1983) Characterization of phosphoprotein phosphatases and phosphorylase phosphatase from yeast. Biochim. Biophys. Acta 743, 343350.
  • [64]
    Wingender-Drissen, R., Becker, J.U. (1983) Regulation of yeast phosphorylase by phosphorylase kinase and cAMP-dependent protein kinase. FEBS Lett. 163, 3336.
  • [65]
    Rath, V.L., Hwang, P.K., Fletterick, R.J. (1992) Purification and crystallization of glycogen phosphorylase from Saccharomyces cerevisiae. J. Mol. Biol. 225, 10271034.
  • [66]
    Lin, K., Rath, V.L., Dai, S.C., Fletterick, R.J., Hwang, P.K. (1996) A protein phosphorylation switch at the conserved allosteric site in GP. Science 273, 15391542.
  • [67]
    Svensson, B. (1994) Protein engineering in the α-amylase family: catalytic mechanism, substrate specificity, and stability. Plant Mol. Biol. 25, 141157.
  • [68]
    Gillard, B.K., Nelson, T.E. (1977) Amylo-1,6-glucosidase/4-α-glucanotransferase: use of reversible substrate model inhibitors to study the binding and active sites of rabbit muscle debranching enzyme. Biochemistry 16, 39783987.
  • [69]
    Liu, W., Madsen, N.B., Braun, C., Withers, S.G. (1991) Reassessment of the catalytic mechanism of glycogen debranching enzyme. Biochemistry 30, 14191424.
  • [70]
    Liu, W., de Castro, M.L., Takamara, J., Bilous, P.T., Vinayagamoorthy, T., Madsen, N.B., Bleackley, R.C. (1993) Molecular cloning, sequencing, and analysis of the cDNA for rabbit muscle glycogen debranching enzyme. Arch. Biochem. Biophys. 306, 232239.
  • [71]
    Lee, E.Y., Carter, J.H., Nielsen, L.D., Fischer, E.H. (1970) Purification and properties of yeast amylo-1,6-glucosidase–oligo-1,4 leads to 1,4-glucantransferase. Biochemistry 9, 23472355.
  • [72]
    Tabata, S., Hizukuri, S. (1992) Properties of yeast debranching enzyme and its specificity toward branched cyclodextrins. Eur. J. Biochem. 206, 345348.
  • [73]
    Roth, R., Halvorson, H.O. (1969) Sporulation of yeast harvested during logarithmic growth. J. Bacteriol. 98, 831832.
  • [74]
    Roth, R. (1970) Carbohydrate accumulation during the sporulation of yeast. J. Bacteriol. 101, 5357.
  • [75]
    Clancy, M.J., Smith, L.M., Magee, P.T. (1982) Developmental regulation of a sporulation-specific enzyme activity in Saccharomyces cerevisiae. Mol. Cell. Biol. 2, 171178.
  • [76]
    Yamashita, I., Fukui, S. (1985) Transcriptional control of the sporulation-specific glucoamylase gene in the yeast Saccharomyces cerevisiae. Mol. Cell. Biol. 5, 30693073.
  • [77]
    Chu, S., DeRisi, J., Eisen, M., Mulholland, J., Botstein, D., Brown, P.O., Herskowitz, I. (1998) The transcriptional program of sporulation in budding yeast. Science 282, 699705.
  • [78]
    Cabib, E., Leloir, L.F. (1958) The biosynthesis of trehalose phosphate. J. Biol. Chem. 231, 259275.
  • [79]
    Vandercammen, A., François, J., Hers, H.G. (1989) Characterization of trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase of Saccharomyces cerevisiae. Eur. J. Biochem. 182, 613620.
  • [80]
    Londesborough, J., Vuorio, O. Trehalose-6-phosphate synthase/phosphatase complex from bakers’ yeast: purification of a proteolytically activated form J. Gen. Microbiol. (1991) 323–330.
  • [81]
    Reinders, A., Burckert, N., Hohmann, S., Thevelein, J.M., Boller, T., Wiemken, A., De Virgilio, C. (1997) Structural analysis of the subunits of the trehalose-6-phosphate synthase/phosphatase complex in Saccharomyces cerevisiae and their function during heat shock. Mol. Microbiol. 24, 687695.
  • [82]
    Bell, W., Sun, W., Hohmann, S., Wera, S., Reinders, A., De Virgilio, C., Wiemken, A., Thevelein, J.M. (1998) Composition and functional analysis of the Saccharomyces cerevisiae trehalose synthase complex. J. Biol. Chem. 273, 3331133319.
  • [83]
    Bell, W., Klaassen, P., Ohnacker, M., Boller, T., Herweijer, M., Schoppink, P., Van der Zee, P., Wiemken, A. (1992) Characterization of the 56-kDa subunit of yeast trehalose-6-phosphate synthase and cloning of its gene reveal its identity with the product of CIF1, a regulator of carbon catabolite inactivation. Eur. J. Biochem. 209, 951959.
  • [84]
    Vuorio, O.E., Kalkkinen, N., Londesborough, J. (1993) Cloning of two related genes encoding the 56-kDa and 123-kDa subunits of trehalose synthase from the yeast Saccharomyces cerevisiae. Eur. J. Biochem. 216, 849861.
  • [85]
    Gonzalez, M.I., Stucka, R., Blazquez, M.A., Feldmann, H., Gancedo, C. (1992) Molecular cloning of CIF1, a yeast gene necessary for growth on glucose. Yeast 8, 183192.
  • [86]
    Van Aelst, L., Hohmann, S., Bulaya, B., de, K.W., Sierkstra, L., Neves, M.J., Luyten, K., Alijo, R., Ramos, J., Coccetti, P., et al. (1993) Molecular cloning of a gene involved in glucose sensing in the yeast Saccharomyces cerevisiae. Mol. Microbiol. 8, 927943.
  • [87]
    Navon, G., Shulman, R.G., Yamane, T., Eccleshall, T.R., Lam, K.B., Baronofsky, J.J., Marmur, J. (1979) Phosphorus-31 nuclear magnetic resonance studies of wild-type and glycolytic pathway mutants of Saccharomyces cerevisiae. Biochemistry 18, 44874499.
  • [88]
    van de Poll, K.W., Schamhart, D.H. (1977) Characterization of a regulatory mutant of fructose 1,6-bisphosphatase in Saccharomyces carlsbergensis. Mol. Gen. Genet. 154, 6166.
  • [89]
    Cannon, J.F., Pringle, J.R., Fiechter, A., Khalil, M. (1994) Characterization of glycogen-deficient glc mutants of Saccharomyces cerevisiae. Genetics 136, 485503.
  • [90]
    De Virgilio, C., Burckert, N., Bell, W., Jeno, P., Boller, T., Wiemken, A. (1993) Disruption of TPS2, the gene encoding the 100-kDa subunit of the trehalose-6-phosphate synthase/phosphatase complex in Saccharomyces cerevisiae, causes accumulation of trehalose-6-phosphate and loss of trehalose-6-phosphate phosphatase activity. Eur. J. Biochem. 212, 315323.
  • [91]
    Piper, P.W., Lockheart, A. (1988) A temperature-sensitive mutant of Saccharomyces cerevisiae defective in the specific phosphatase of trehalose biosynthesis. FEMS Microbiol. Lett. 49, 245250.
  • [92]
    Elliott, B., Haltiwanger, R.S., Futcher, B. (1996) Synergy between trehalose and Hsp104 for thermotolerance in Saccharomyces cerevisiae. Genetics 144, 923933.
  • [93]
    Gounalaki, N., Thireos, G. (1994) Yap1p, a yeast transcriptional activator that mediates multidrug resistance, regulates the metabolic stress response. EMBO J. 13, 40364041.
  • [94]
    Sur, I.P., Lobo, Z., Maitra, P.K. (1994) Analysis of PFK3– a gene involved in particulate phosphofructokinase synthesis reveals additional functions of TPS2 in Saccharomyces cerevisiae. Yeast 10, 199209.
  • [95]
    Hohmann, S., Bell, W., Neves, M.J., Valckx, D., Thevelein, J.M. (1996) Evidence for trehalose-6-phosphate-dependent and -independent mechanisms in the control of sugar influx into yeast glycolysis. Mol. Microbiol. 20, 981991.
  • [96]
    Londesborough, J., Vuorio, O.E. (1993) Purification of trehalose synthase from baker's yeast. Its temperature-dependent activation by fructose 6-phosphate and inhibition by phosphate. Eur. J. Biochem. 216, 841848.
  • [97]
    Arguelles, J.C., Carrillo, D., Vicente, S.J., Garcia, C.F., Gacto, M. (1993) Lack of correlation between trehalase activation and trehalose-6 phosphate synthase deactivation in cAMP-altered mutants of Saccharomyces cerevisiae. Curr. Genet. 23, 382387.
  • [98]
    Neves, M.J., François, J. (1992) On the mechanism by which a heat shock induces trehalose accumulation in Saccharomyces cerevisiae. Biochem. J. 288, 859864.
  • [99]
    Parrou, J.L., Teste, M.A., François, J. (1997) Effects of various types of stress on the metabolism of reserve carbohydrates in Saccharomyces cerevisiae: genetic evidence for a stress-induced recycling of glycogen and trehalose. Microbiology 143, 18911900.
  • [100]
    Londesborough, J., Varimo, K. (1984) Characterization of two trehalases in baker's yeast. Biochem. J. 219, 511518.
  • [101]
    Mittenbuhler, K., Holzer, H. (1988) Purification and characterization of acid trehalase from the yeast suc2 mutant. J. Biol. Chem. 263, 85378543.
  • [102]
    App, H., Holzer, H. (1989) Purification and characterization of neutral trehalase from the yeast ABYS1 mutant. J. Biol. Chem. 264, 1758317588.
  • [103]
    Keller, F., Schellenberg, M., Wiemken, A. (1982) Localization of trehalase in vacuoles and of trehalose in the cytosol of yeast (Saccharomyces cerevisiae). Arch. Microbiol. 131, 298301.
  • [104]
    Harris, S.D., Cotter, D.A. (1988) Transport of yeast vacuolar trehalase to the vacuole. Can. J. Microbiol. 34, 835838.
  • [105]
    Kopp, M., Muller, H., Holzer, H. (1993) Molecular analysis of the neutral trehalase gene from Saccharomyces cerevisiae. J. Biol. Chem. 268, 47664774.
  • [106]
    Wolfe, K.H., Lohan, A.J. (1994) Sequence around the centromere of Saccharomyces cerevisiae chromosome II: similarity of CEN2 to CEN4. Yeast 10 (Suppl. A), S41S46.
  • [107]
    Nwaka, S., Kopp, M., Holzer, H. (1995) Expression and function of the trehalase genes NTH1 and YBR0106 in Saccharomyces cerevisiae. J. Biol. Chem. 270, 1019310198.
  • [108]
    Dellamora-Ortiz, G.M., Ortiz, C.H., Maia, J.C., Panek, A.D. (1986) Partial purification and characterization of the interconvertible forms of trehalase from Saccharomyces cerevisiae. Arch. Biochem. Biophys. 251, 205214.
  • [109]
    Uno, I., Matsumoto, K., Adachi, K., Ishikawa, T. (1983) Genetic and biochemical evidence that trehalase is a substrate of cAMP-dependent protein kinase in yeast. J. Biol. Chem. 258, 1086710872.
  • [110]
    Wera, S., De Schrijver, E., Geyskens, I., Nwaka, S., Thevelein, J.M. (1999) Opposite roles of trehalase activity in heat-shock recovery and heat-shock survival in Saccharomyces cerevisiae. Biochem. J. 343 (Pt 3), 621626.
  • [111]
    Rothman, J.E. (1994) Mechanisms of intracellular protein transport. Nature 372, 5563.
  • [112]
    Destruelle, M., Holzer, H., Klionsky, D.J. (1995) Isolation and characterization of a novel yeast gene, ATH1, that is required for vacuolar acid trehalase activity. Yeast 11, 10151025.
  • [113]
    Nwaka, S., Mechler, B., Holzer, H. (1996) Deletion of the ATH1 gene in Saccharomyces cerevisiae prevents growth on trehalose. FEBS Lett. 386, 235238.
  • [114]
    Tschopp, J., Esmon, P.C., Schekman, R. (1984) Defective plasma membrane assembly in yeast secretory mutants. J. Bacteriol. 160, 966970.
  • [115]
    Holcomb, C.L., Hansen, W.J., Etcheverry, T., Schekman, R. (1988) Secretory vesicles externalize the major plasma membrane ATPase in yeast. J. Cell Biol. 106, 641648.
  • [116]
    Kotyk, A., Michaljanicova, D. (1979) Uptake of trehalose by Saccharomyces cerevisiae. J. Gen. Microbiol. 110, 323332.
  • [117]
    Stambuk, B.U., de Araujo, P.S., Panek, A.D., Serrano, R. (1996) Kinetics and energetics of trehalose transport in Saccharomyces cerevisiae. Eur. J. Biochem. 237, 876881.
  • [118]
    Stambuk, B.U., Panek, A.D., Crowe, J.H., Crowe, L.M., de Araujo, P.S. (1998) Expression of high-affinity trehalose-H+ symport in Saccharomyces cerevisiae. Biochim. Biophys. Acta 1379, 118128.
  • [119]
    Han, E.K., Cotty, F., Sottas, C., Jiang, H., Michels, C.A. (1995) Characterization of AGT1 encoding a general α-glucoside transporter from Saccharomyces. Mol. Microbiol. 17, 10931107.
  • [120]
    Boles, E., Hollenberg, C.P. (1997) The molecular genetics of hexose transport in yeasts. FEMS Microbiol. Rev. 21, 85111.
  • [121]
    Hong, S.H., Marmur, J. (1987) Upstream regulatory regions controlling the expression of the yeast maltase gene. Mol. Cell. Biol. 7, 24772483.
  • [122]
    Plourde-Owobi, L., Durner, S., Parrou, J.L., Wieczorke, R., Goma, G., François, J. (1999) AGT1, encoding an α-glucoside transporter involved in uptake and intracellular accumulation of trehalose in Saccharomyces cerevisiae. J. Bacteriol. 181, 38303832.
  • [123]
    Paschoalin, V.M., Costa-Carvalho, V.L., Panek, A.D. (1986) Further evidence for the alternative pathway of trehalose synthesis linked to maltose utilization in Saccharomyces. Curr. Genet. 10, 725731.
  • [124]
    Ferreira, J.C., Thevelein, J.M., Hohmann, S., Paschoalin, V.M., Trugo, L.C., Panek, A.D. (1997) Trehalose accumulation in mutants of Saccharomyces cerevisiae deleted in the UDPG-dependent trehalose synthase-phosphatase complex. Biochim. Biophys. Acta 1335, 4050.
  • [125]
    Thevelein, J.M. (1994) Signal transduction in yeast. Yeast 10, 17531790.
  • [126]
    Gustin, M.C., Albertyn, J., Alexander, M., Davenport, K. (1998) MAP kinase pathways in the yeast Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 62, 12641300.
  • [127]
    Thomas, G., Hall, M.N. (1997) TOR signalling and control of cell growth. Curr. Opin. Cell Biol. 9, 782787.
  • [128]
    Ruis, H., Schuller, C. (1995) Stress signaling in yeast. Bioessays 17, 959965.
  • [129]
    Siderius, M. and Mager, W.H. (1997) General stress response: in search of a common denominator. In: Yeast Stress Responses (Mager, W., Hohmann, S. and Willem, H., Eds.), pp. 213–230. R.G. Landes Company.
  • [130]
    Grba, S., Oura, E., Suomalainen, H. (1975) On the formation of glycogen and trehalose in Baker's yeast. Eur. J. Appl. Microbiol. 2, 2935.
  • [131]
    Hottiger, T., Schmutz, P., Wiemken, A. (1987) Heat-induced accumulation and futile cycling of trehalose in Saccharomyces cerevisiae. J. Bacteriol. 169, 55185522.
  • [132]
    Hottiger, T., Boller, T., Wiemken, A. (1989) Correlation of trehalose content and heat resistance in yeast mutants altered in the RAS/adenylate cyclase pathway: is trehalose a thermoprotectant. FEBS Lett. 255, 431434.
  • [133]
    Attfield, P.V. (1987) Trehalose accumulates in Saccharomyces cerevisiae during exposure to agents that induce heat shock response. FEBS Lett. 225, 259263.
  • [134]
    Panek, A.C., Vania, J.J., Paschoalin, M.F., Panek, D. (1990) Regulation of trehalose metabolism in Saccharomyces cerevisiae mutants during temperature shifts. Biochimie 72, 7779.
  • [135]
    Winkler, K., Kienle, I., Burgert, M., Wagner, J.C., Holzer, H. (1991) Metabolic regulation of the trehalose content of vegetative yeast. FEBS Lett. 291, 269272.
  • [136]
    Ribeiro, M.J., Silva, J.T., Panek, A.D. (1994) Trehalose metabolism in Saccharomyces cerevisiae during heat-shock. Biochim. Biophys. Acta 1200, 139147.
  • [137]
    Alexandre, H., Plourde, L., Charpentier, C., François, J. (1998) Lack of correlation between trehalose accumulation, cell viability and intracellular acidification as induced by various stresses in Saccharomyces cerevisiae. Microbiology 144, 11031111.
  • [138]
    Estruch, F. (2000) Stress induced genes and stress tolerance in budding yeast. FEMS Microbiol. Rev. (in press).
  • [139]
    Martinez Pastor, M., Marchler, G., Schuller, C., Marchler, B.A., Ruis, H., Estruch, F. (1996) The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress response element (STRE). EMBO J. 15, 22272235.
  • [140]
    Schmitt, A.P., McEntee, K. (1996) Msn2p, a zinc finger DNA-binding protein, is the transcriptional activator of the multistress response in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 93, 57775782.
  • [141]
    Boles, E., Liebetrau, W., Hofmann, M., Zimmermann, F.K. (1994) A family of hexosephosphate mutases in Saccharomyces cerevisiae. Eur. J. Biochem. 220, 8396.
  • [142]
    Daran, J.M., Dallies, N., Thines, S.D., Paquet, V., François, J. (1995) Genetic and biochemical characterization of the UGP1 gene encoding the UDP-glucose pyrophosphorylase from Saccharomyces cerevisiae. Eur. J. Biochem. 233, 520530.
  • [143]
    Zahringer, H., Burgert, M., Holzer, H., Nwaka, S. (1997) Neutral trehalase Nth1p of Saccharomyces cerevisiae encoded by the NTH1 gene is a multiple stress responsive protein. FEBS Lett. 412, 615620.
  • [144]
    Godon, C., Lagniel, G., Lee, J., Buhler, J.M., Kieffer, S., Perrot, M., Boucherie, H., Toledano, M.B., Labarre, J. (1998) The H2O2 stimulon in Saccharomyces cerevisiae. J. Biol. Chem. 273, 2248022489.
  • [145]
    De Virgilio, C., Burckert, N., Boller, T., Wiemken, A. (1991) A method to study the rapid phosphorylation-related modulation of neutral trehalase activity by temperature shifts in yeast. FEBS Lett. 291, 355358.
  • [146]
    De Virgilio, C., Piper, P., Boller, T., Wiemken, A. (1991) Acquisition of thermotolerance in Saccharomyces cerevisiae without heat shock protein hsp104 and in the absence of protein synthesis. FEBS Lett. 288, 8690.
  • [147]
    Lewis, J.G., Learmonth, R.P., Watson, K. (1995) Induction of heat, freezing and salt tolerance by heat and salt shock in Saccharomyces cerevisiae. Microbiology 141, 687694.
  • [148]
    Nwaka, S., Mechler, B., Destruelle, M., Holzer, H. (1995) Phenotypic features of trehalase mutants in Saccharomyces cerevisiae. FEBS Lett. 360, 286290.
  • [149]
    Daran, J.M., Bell, W., François, J. (1997) Physiological and morphological effects of genetic alterations leading to a reduced synthesis of UDP-glucose in Saccharomyces cerevisiae. FEMS Microbiol. Lett. 153, 8996.
  • [150]
    Iwahashi, H., Nwaka, S., Obuchi, K., Komatsu, Y. (1998) Evidence for the interplay between trehalose metabolism and Hsp104 in yeast. Appl. Environ. Microbiol. 64, 46144617.
  • [151]
    Zahringer, H., Thevelein, J.M., Nwaka, S. (2000) Induction of neutral trehalase nth1 by heat and osmotic stress is controlled by STRE elements and Msn2/Msn4 transcription factors: variations of PKA effect during stress and growth. Mol. Microbiol. 35, 397406.
  • [152]
    Ni, H.T., LaPorte, D.C. (1995) Response of a yeast glycogen synthase gene to stress. Mol. Microbiol. 16, 11971205.
  • [153]
    Winderickx, J., de, W.J., Crauwels, M., Hino, A., Hohmann, S., Van, D.P., Thevelein, J.M. (1996) Regulation of genes encoding subunits of the trehalose synthase complex in Saccharomyces cerevisiae: novel variations of STRE-mediated transcription control. Mol. Gen. Genet. 252, 470482.
  • [154]
    Parrou, J.L., Enjalbert, B., François, J. (1999) STRE- and cAMP-independent transcriptional induction of Saccharomyces cerevisiae GSY2 encoding glycogen synthase during diauxic growth on glucose. Yeast 15, 14711484.
  • [155]
    Smith, A., Ward, M.P., Garrett, S. (1998) Yeast PKA represses Msn2p/Msn4p-dependent gene expression to regulate growth, stress response and glycogen accumulation. EMBO J. 17, 35563564.
  • [156]
    Martinez Pastor, M., Estruch, F. (1996) Sudden depletion of carbon source blocks translation, but not transcription, in the yeast Saccharomyces cerevisiae. FEBS Lett. 390, 319322.
  • [157]
    Ashe, M.P., De Long, S.K., Sachs, A.B. (2000) Glucose depletion rapidly inhibits translation initiation in yeast. Mol. Biol. Cell 11, 833848.
  • [158]
    Becker, J.U., Shehata, M.I., Mizani, S.M. (1982) Influence of nitrogen sources on glycogen metabolism in Saccharomyces carlsbergensis. J. Gen. Microbiol. 128, 455461.
  • [159]
    Durnez, P., Pernambuco, M.B., Oris, E., Arguelles, J.C., Mergelsberg, H., Thevelein, J.M. (1994) Activation of trehalase during growth induction by nitrogen sources in the yeast Saccharomyces cerevisiae depends on the free catalytic subunits of cAMP-dependent protein kinase, but not on functional Ras proteins. Yeast 10, 10491064.
  • [160]
    Thevelein, J.M., de Winde, J.H. (1999) Novel sensing mechanisms and targets for the cAMP-protein kinase A pathway in the yeast Saccharomyces cerevisiae. Mol. Microbiol. 33, 904918.
  • [161]
    François, J., Eraso, P., Gancedo, C. (1987) Changes in the concentration of cAMP, fructose 2,6-bisphosphate and related metabolites and enzymes in Saccharomyces cerevisiae during growth on glucose. Eur. J. Biochem. 164, 369373.
  • [162]
    Parrou, J.L., Enjalbert, B., Plourde, L., Bauche, A., Gonzalez, B., François, J. (1999) Dynamic responses of reserve carbohydrate metabolism under carbon and nitrogen limitations in Saccharomyces cerevisiae. Yeast 15, 191203.
  • [163]
    Becker, J.U. (1982) Mechanisms of regulation of glycogen phosphorylase activity in Saccharomyces carlsbergensis. J. Gen. Microbiol. 128, 447454.
  • [164]
    Feng, Z.H., Wilson, S.E., Peng, Z.Y., Schlender, K.K., Reimann, E.M., Trumbly, R.J. (1991) The yeast GLC7 gene required for glycogen accumulation encodes a type 1 protein phosphatase. J. Biol. Chem. 266, 2379623801.
  • [165]
    San Miguel, P.F., Arguelles, J.C. (1994) Differential changes in the activity of cytosolic and vacuolar trehalases along the growth cycle of Saccharomyces cerevisiae. Biochim. Biophys. Acta 1200, 155160.
  • [166]
    Varela, J.C., Praekelt, U.M., Meacock, P.A., Planta, R.J., Mager, W.H. (1995) The Saccharomyces cerevisiae HSP12 gene is activated by the high- osmolarity glycerol pathway and negatively regulated by protein kinase A. Mol. Cell. Biol. 15, 62326245.
  • [167]
    Moskvina, E., Schuller, C., Maurer, C.T., Mager, W.H., Ruis, H. (1998) A search in the genome of Saccharomyces cerevisiae for genes regulated via stress response elements. Yeast 14, 10411050.
  • [168]
    Werner Washburne, M., Braun, E.L., Crawford, M.E., Peck, V.M. (1996) Stationary phase in Saccharomyces cerevisiae. Mol. Microbiol. 19, 11591166.
  • [169]
    Boy-Marcotte, E., Tadi, D., Perrot, M., Boucherie, H., Jacquet, M. (1996) High cAMP levels antagonize the reprogramming of gene expression that occurs at the diauxic shift in Saccharomyces cerevisiae. Microbiology 142, 459467.
  • [170]
    Tadi, D., Hasan, R.N., Bussereau, F., Boy-Marcotte, E., Jacquet, M. (1999) Selection of genes repressed by cAMP that are induced by nutritional limitation in Saccharomyces cerevisiae. Yeast 15, 17331745.
  • [171]
    Cameron, S., Levin, L., Zoller, M., Wigler, M. (1988) cAMP-independent control of sporulation, glycogen metabolism, and heat shock resistance in S. cerevisiae. Cell 53, 555566.
  • [172]
    Cannon, J.F., Gitan, R., Tatchell, K. (1990) Yeast cAMP-dependent protein kinase regulatory subunit mutations display a variety of phenotypes. J. Biol. Chem. 265, 1189711904.
  • [173]
    Russell, M., Bradshaw, R.J., Markwardt, D., Heideman, W. (1993) Changes in gene expression in the Ras/adenylate cyclase system of Saccharomyces cerevisiae: correlation with cAMP levels and growth arrest. Mol. Biol. Cell 4, 757765.
  • [174]
    Geymonat, M., Wang, L., Garreau, H., Jacquet, M. (1998) Ssa1p chaperone interacts with the guanine nucleotide exchange factor of ras Cdc25p and controls the cAMP pathway in Saccharomyces cerevisiae. Mol. Microbiol. 30, 855864.
  • [175]
    Gancedo, J.M. (1998) Yeast carbon catabolite repression. Microbiol. Mol. Biol. Rev. 62, 334361.
  • [176]
    Thompson Jaeger, S., François, J., Gaughran, J.P., Tatchell, K. (1991) Deletion of SNF1 affects the nutrient response of yeast and resembles mutations which activate the adenylate cyclase pathway. Genetics 129, 697706.
  • [177]
    Wilson, W.A., Mahrenholz, A.M., Roach, P.J. (1999) Substrate targeting of the yeast cyclin-dependent kinase Pho85p by the cyclin Pcl10p. Mol. Cell. Biol. 19, 70207030.
  • [178]
    Timblin, B.K., Bergman, L.W. (1997) Elevated expression of stress response genes resulting from deletion of the PHO85 gene. Mol. Microbiol. 26, 981990.
  • [179]
    Lenburg, M.E., O'Shea, E.K. (1996) Signaling phosphate starvation. Trends Biochem. Sci. 21, 383387.
  • [180]
    De Risi, J.L., Iyer, V.R., Brown, P.O. (1997) Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278, 680686.
  • [181]
    Hardwick, J.S., Kuruvilla, F.G., Tong, J.K., Shamji, A.F., Schreiber, S.L. (1999) Rapamycin-modulated transcription defines the subset of nutrient-sensitive signaling pathways directly controlled by the Tor proteins. Proc. Natl. Acad. Sci. USA 96, 1486614870.
  • [182]
    Wilson, W.A., Hawley, S.A., Hardie, D.G. (1996) Glucose repression/derepression in budding yeast: SNF1 protein kinase is activated by phosphorylation under derepressing conditions, and this correlates with a high AMP:ATP ratio. Curr. Biol. 6, 14261434.
  • [183]
    Hall, M.N. (1996) The TOR signalling pathway and growth control in yeast. Biochem. Soc. Trans. 24, 234239.
  • [184]
    Barbet, N.C., Schneider, U., Helliwell, S.B., Stansfield, I., Tuite, M.F., Hall, M.N. (1996) TOR controls translation initiation and early G1 progression in yeast. Mol. Biol. Cell 7, 2542.
  • [185]
    Powers, T., Walter, P. (1999) Regulation of ribosome biogenesis by the rapamycin-sensitive TOR-signaling pathway in Saccharomyces cerevisiae. Mol. Biol. Cell 10, 9871000.
  • [186]
    Zaragoza, O., Blazquez, M.A., Gancedo, C. (1998) Disruption of the Candida albicans TPS1 gene encoding trehalose-6-phosphate synthase impairs formation of hyphae and decreases infectivity. J. Bacteriol. 180, 38093815.
  • [187]
    Cardenas, M.E., Cutler, N.S., Lorenz, M.C., Di Como, C.J., Heitman, J. (1999) The TOR signaling cascade regulates gene expression in response to nutrients. Genes Dev. 13, 32713279.
  • [188]
    Beck, T., Hall, M.N. (1999) The TOR signalling pathway controls nuclear localization of nutrient-regulated transcription factors. Nature 402, 689692.
  • [189]
    Görner, W., Durchschlag, E., Martinez, P.M., Estruch, F., Ammerer, G., Hamilton, B., Ruis, H., Schuller, C. (1998) Nuclear localization of the C2H2 zinc finger protein Msn2p is regulated by stress and protein kinase A activity. Genes Dev. 12, 586597.
  • [190]
    Sillje, H.H.W., ter Schure, E.G., Rommens, A.J., Huls, P.G., Woldringh, C.L., Verkleij, A.J., Boonstra, J., Verrips, C.T. (1997) Effects of different carbon fluxes on G1 phase duration, cyclin expression, and reserve carbohydrate metabolism in Saccharomyces cerevisiae. J. Bacteriol. 179, 65606565.
  • [191]
    Munch, T., Sonnleitner, B., Fiechter, A. (1992) The decisive role of the Saccharomyces cerevisiae cell cycle behaviour for dynamic growth characterization. J. Biotechnol. 22, 329351.
  • [192]
    Kuenzi, M.T., Fiechter, A. (1972) Regulation of carbohydrate composition of Saccharomyces cerevisiae under growth limitation. Arch. Microbiol. 84, 254265.
  • [193]
    Rocha-Leao, M.H.M., Meireless, D.F., Costa-Carvalho, V.L.A. (1987) Stimulation of glycogen formation during growth of non-repressed Saccharomyces cerevisiae. FEMS Microbiol. Lett. 44, 423425.
  • [194]
    Panek, A.D. (1985) Trehalose metabolism and its role in Saccharomyces cerevisiae. J. Biotechnol. 3, 121130.
  • [195]
    Chester, V.E. (1964) Comparative studies on dissimilation of reserve carbohydrate in four strains of Saccharomyces cerevisiae. Biochem. J. 92, 318323.
  • [196]
    Chester, V.E. (1968) Heritable glycogen-storage deficiency in yeast and its induction by ultra-violet light. J. Gen. Microbiol. 51, 4956.
  • [197]
    Enjalbert, B., Parrou, J.L., Vincent, O. and François, J. (2000) Mitochondrial respiratory mutants of Saccharomyces cerevisiae accumulate glycogen, and readily mobilize it in a glucose-depleted medium. Microbiology (in press).
  • [198]
    Yang, R., Chun, K.T., Wek, R.C. (1998) Mitochondrial respiratory mutants in yeast inhibit glycogen accumulation by blocking activation of glycogen synthase. J. Biol. Chem. 273, 3133731344.
  • [199]
    Kuenzi, M.T., Fiechter, A. (1969) Changes in carbohydrate composition and trehalase-activity during the budding cycle of Saccharomyces cerevisiae. Arch. Microbiol. 64, 396407.
  • [200]
    Sillje, H.H.W., Paalman, J.W.G., ter Schure, E.G., Olsthoorn, S.Q.B., Verkleij, A.J., Boonstra, J., Verrips, C.T. (1999) Function of trehalose and glycogen in cell cycle progression and cell viability in Saccharomyces cerevisiae. J. Bacteriol. 181, 396400.
  • [201]
    Van Doorn, J., Scholte, M.E., Postma, P.W., Van Driel, R., van Dam, K. (1988) Regulation of trehalase activity during the cell cycle of Saccharomyces cerevisiae. J. Gen. Microbiol. 134, 785790.
  • [202]
    Van Doorn, J., Valkenburg, J.A., Scholte, M.E., Oehlen, L.J., Van Driel, R., Postma, P.W., Nanninga, N., van Dam, K. (1988) Changes in activities of several enzymes involved in carbohydrate metabolism during the cell cycle of Saccharomyces cerevisiae. J. Bacteriol. 170, 48084815.
  • [203]
    Panek, A.D., Bernardes, E.J. (1983) Trehalose: Its role in germination in Saccharomyces cerevisiae. Curr. Genet. 7, 393397.
  • [204]
    Inoue, H., Shimoda, C. (1981) Changes in trehalose content and trehalase activity during spore germination in fission yeast Schizosaccharomyces pombe. Arch. Microbiol. 129, 1922.
  • [205]
    Thevelein, J.M., Den Hollander, J.A., Schulman, R.G. Trehalase and the control of dormancy and induction of germination in fungal spores Trends Biochem. Sci. (1984) 495–497.
  • [206]
    Donnini, C., Puglisi, P.P., Vecli, A., Marmiroli, N. (1988) Germination of Saccharomyces cerevisiae ascospores without trehalose mobilization as revealed by in vivo 13C nuclear magnetic resonance spectroscopy. J. Bacteriol. 170, 37893791.
  • [207]
    Thevelein, J.M., Hohmann, S. (1995) Trehalose synthase: guard to the gate of glycolysis in yeast. Trends Biochem. Sci. 20, 310.
  • [208]
    Blazquez, M.A., Gancedo, C. (1994) Identification of extragenic suppressors of the cif1 mutation in Saccharomyces cerevisiae. Curr. Genet. 25, 8994.
  • [209]
    Neves, M.J., Hohmann, S., Bell, W., Dumortier, F., Luyten, K., Ramos, J., Cobbaert, P., de, K.W., Kaneva, Z., Thevelein, J.M. (1995) Control of glucose influx into glycolysis and pleiotropic effects studied in different isogenic sets of Saccharomyces cerevisiae mutants in trehalose biosynthesis. Curr. Genet. 27, 110122.
  • [210]
    Hohmann, S., Neves, M.J., de, K.W., Alijo, R., Ramos, J., Thevelein, J.M. (1993) The growth and signalling defects of the ggs1 (fdp1/byp1) deletion mutant on glucose are suppressed by a deletion of the gene encoding hexokinase PII. Curr. Genet. 23, 281289.
  • [211]
    Blazquez, M.A., Lagunas, R., Gancedo, C., Gancedo, J.M. (1993) Trehalose-6-phosphate, a new regulator of yeast glycolysis that inhibits hexokinases. FEBS Lett. 329, 5154.
  • [212]
    Ernandes, J.R., de Meirsman, C., Rolland, F., Winderickx, J., de Winde, J., Brandao, R.L., Thevelein, J.M. (1998) During the initiation of fermentation overexpression of hexokinase PII in yeast transiently causes a similar deregulation of glycolysis as deletion of Tps1. Yeast 14, 255269.
  • [213]
    Groussac, E., Ortiz, M., François, J. (2000) Improved protocols for quantitative determination of metabolites from biological samples using high performance ionic-exchange chromatography with conductimetric and pulsed amperometric detection. Enzyme Microb. Technol. 26, 715723.
  • [214]
    Teusink, B., Diderich, J.A., Westerhoff, H.V., van Dam, K., Walsh, M.C. (1998) Intracellular glucose concentration in derepressed yeast cells consuming glucose is high enough to reduce the glucose transport rate by 50%. J. Bacteriol. 180, 556562.
  • [215]
    Teusink, B., Walsh, M.C., van Dam, K., Westerhoff, H.V. (1998) The danger of metabolic pathways with turbo design. Trends Biochem. Sci. 23, 162169.
  • [216]
    Blomberg, A. (2000) Metabolic surprises in Saccharomyces cerevisiae during adaptation to saline conditions: questions, some answers and a model. FEMS Microbiol. Lett. 182, 18.
  • [217]
    Quain, D.E. (1988) Studies on yeast physiology–impact on fermentation performance and product quality. J. Inst. Brew. 95, 315323.
  • [218]
    Attfield, P.V. (1997) Stress tolerance: the key to effective strains of industrial baker's yeast. Nat. Biotechnol. 15, 13511357.
  • [219]
    Randez-Gil, F., Sanz, P., Prieto, J.A. (1999) Engineering baker's yeast: room for improvement. Trends Biotechnol. 17, 237244.
  • [220]
    Gadd, G.M., Chalmers, K., Reed, R.H. (1987) The role of trehalose in dehydration resistance. FEMS Microbiol. Lett. 48, 249254.
  • [221]
    Wiemken, A. (1990) Trehalose in yeast, stress protectant rather than reserve carbohydrate. Antonie van Leeuwenhoek 58, 209217.
  • [222]
    Van Dijck, P., Colavizza, D., Smet, P., Thevelein, J.M. (1995) Differential importance of trehalose in stress resistance in fermenting and nonfermenting Saccharomyces cerevisiae cells. Appl. Environ. Microbiol. 61, 109115.
  • [223]
    Gelinas, P., Fiset, G., LeDuy, A., Goulet, J. (1989) Effect of growth conditions and trehalose content on cryotolerance of baker's yeast in frozen dough. Appl. Environ. Microbiol. 55, 24532459.
  • [224]
    Hino, A., Mihara, K., Nakashima, K., Takano, H. (1990) Trehalose levels and survival ratio of freeze-tolerant versus freeze-sensitive yeasts. Appl. Environ. Microbiol. 56, 13861391.
  • [225]
    Kim, J., Alizadeh, P., Harding, T., Hefner-Gravink, A., Klionsky, D.J. (1996) Disruption of the yeast ATH1 gene confers better survival after dehydration, freezing, and ethanol shock: potential commercial applications. Appl. Environ. Microbiol. 62, 15631569.
  • [226]
    Shima, J., Hino, A., Yamada-Iyo, C., Suzuki, Y., Nakajima, R., Watanabe, H., Mori, K., Takano, H. (1999) Stress tolerance in doughs of Saccharomyces cerevisiae trehalase mutants derived from commercial Baker's yeast. Appl. Environ. Microbiol. 65, 28412846.
  • [227]
    Singer, M.A., Lindquist, S. (1998) Thermotolerance in Saccharomyces cerevisiae: the Yin and Yang of trehalose. Trends Biotechnol. 16, 460468.
  • [228]
    Crowe, J.H., Hoekstra, F.A., Crowe, L.M. (1992) Anhydrobiosis. Annu. Rev. Physiol. 54, 579599.
  • [229]
    Sano, F., Asakawa, N., Inoue, Y., Sakurai, M. (1999) A dual role for intracellular trehalose in the resistance of yeast cells to water stress. Cryobiology 39, 8087.
  • [230]
    Plourde-Owobi, L., Durner, S., Goma, G., Francois, J. (2000) Trehalose reserve in Saccharomyces cerevisiae: phenomenon of transport, accumulation and role in cell viability. Int. J. Food Microbiol. 55, 3340.
  • [231]
    Eroglu, A., Russo, M.J., Bieganski, R., Fowler, A., Cheley, S., Bayley, H., Toner, M. (2000) Intracellular trehalose improves the survival of cryopreserved mammalian cells. Nat. Biotechnol. 18, 163167.
  • [232]
    Guo, N., Puhlev, I., Brown, D.R., Mansbridge, J., Levine, F. (2000) Trehalose expression confers desiccation tolerance on human cells. Nat. Biotechnol. 18, 168171.
  • [233]
    Singer, M.A., Lindquist, S. (1998) Multiple effects of trehalose on protein folding in vitro and in vivo. Mol. Cell 1, 639648.
  • [234]
    Simola, M., Hänninen, A.-L., Stranius, S.-M., Makarow, M. (2000) Trehalose is required for conformational repair of heat-denaturated proteins in the yeast endoplasmic reticulum but not for maintenance of membrane traffic functions after severe heat stress. Mol. Microbiol. 37, 4253.
  • [235]
    De Virgilio, C., Hottiger, T., Dominguez, J., Boller, T., Wiemken, A. (1994) The role of trehalose synthesis for the acquisition of thermotolerance in yeast. I. Genetic evidence that trehalose is a thermoprotectant. Eur. J. Biochem. 219, 179186.
  • [236]
    Nwaka, S., Kopp, M., Burgert, M., Deuchler, I., Kienle, I., Holzer, H. (1994) Is thermotolerance of yeast dependent on trehalose accumulation. FEBS Lett. 344, 225228.
  • [237]
    Hazell, B.W., Nevalainen, H., Attfield, P.V. (1995) Evidence that the Saccharomyces cerevisiae CIF1 (GGS1/TPS1) gene modulates heat shock response positively. FEBS Lett. 377, 457460.
  • [238]
    Hazell, B.W., Kletsas, S., Nevalainen, H., Attfield, P.V. (1997) Involvement of CIF1 (GGS1/TPS1) in osmotic stress response in Saccharomyces cerevisiae. FEBS Lett. 414, 353358.
  • [239]
    Posas, F., Chambers, J.R., Heyman, J.A., Hoeffler, J.P., de Nadal, E., Arino, J. (2000) The transcriptional response of yeast to saline stress. J. Biol. Chem. 275, 1724917255.
  • [240]
    Rep, M., Reiser, V., Gartner, U., Thevelein, J.M., Hohmann, S., Ammerer, G., Ruis, H. (1999) Osmotic stress-induced gene expression in Saccharomyces cerevisiae requires Msn1p and the novel nuclear factor Hot1p. Mol. Cell. Biol. 19, 54745485.