• [1]
    Woese, C.R., Fox, G.E (1977) Phylogenetic structure of the procaryotic domain: the primary kingdoms. Proc. Natl. Acad. Sci. USA 74, 50885090.
  • [2]
    Woese, C.R. and Wolfe, R.S. (1985) Archaebacteria. Academic Press, Orlando, FL.
  • [3]
    Woese, C.R., Kandler, O, Wheelis, M.L (1990) Towards a natural system of organisms: proposal for the domains Archaea, Bacteria and Eukarya. Proc. Natl. Acad. Sci. USA 87, 45764579.
  • [4]
    DeLong, E.F., Wu, K.E., Przelin, B.B., Jovine, V.M (1994) High abundance of archaea in Antarctic marine phytoplankton. Nature 371, 695697.
  • [5]
    Pace, N.R (1997) The molecular view of microbial diversity in the biosphere. Science 276, 734740.
  • [6]
    Jarrell, K.F., Bayley, D.P., Correia, J.D., Thomas, N.A (1999) Recent excitement about the Archaea. BioScience 49, 530541.
  • [7]
    Faguy, D.M., Jarrell, K.F (1999) A twisted tale: the origin and evolution of motility and chemotaxis in prokaryotes. Microbiology 145, 279281.
  • [8]
    Jarrell, K.F., Bayley, D.P., Kostyukova, A.S (1996) The archaeal flagellum: a unique motility structure. J. Bacteriol. 178, 50575064.
  • [9]
    Faguy, D.M., Bayley, D.P., Kostyukova, A.S., Thomas, N.A., Jarrell, K.F (1996) Isolation and characterization of flagella and flagellin proteins from the thermoacidophilic archaea Thermoplasma volcanium and Sulfolobus shibatae. J. Bacteriol. 178, 902905.
  • [10]
    Segerer, A, Langworthy, T.A., Stetter, K.O (1988) Thermoplasma acidophilum and Thermoplasma volcanium sp. nov. from solfatara fields. Syst. Appl. Microbiol. 10, 161171.
  • [11]
    Black, F.T., Freundt, E.A., Vinther, O, Christiansen, C (1979) Flagellation and swimming motility of Thermoplasma acidophilum. J. Bacteriol. 137, 456460.
  • [12]
    DePamphilis, M.L., Adler, J (1971) Purification of intact flagella from Escherichia coli and Bacillus subtilis. J. Bacteriol. 105, 376383.
  • [13]
    Jarrell, K.F., Kalmokoff, M.L., Koval, S.F., Faguy, D.M., Karnauchow, T.M. and Bayley, D.P. (1995) Purification of the flagellins from the methanogenic archaea. In: Archaea: A Laboratory Manual (Robb, F.T., Sowers, K.R., DasSarma, S., Place, A.R., Schreier, H.J. and Fleischmann, E.M., Eds.), pp. 307–314. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
  • [14]
    Kalmokoff, M.L., Jarrell, K.F., Koval, S.F (1988) Isolation of flagella from the archaebacterium Methanococcus voltae by phase separation with Triton X-114. J. Bacteriol. 170, 17521758.
  • [15]
    Pryde, J.G (1986) Triton X-114: a detergent that has come in from the cold. Trends Biol. Sci. 11, 160163.
  • [16]
    Alam, M, Oesterhelt, D (1984) Morphology, function and isolation of halobacterial flagella. J. Mol. Biol. 176, 459475.
  • [17]
    Kalmokoff, M.L., Koval, S.F., Jarrell, K.F (1992) Relatedness of the flagellins from methanogens. Arch. Microbiol. 157, 481487.
  • [18]
    Southam, G, Kalmokoff, M.L., Jarrell, K.F., Koval, S.F., Beveridge, T.J (1990) Isolation, characterization and cellular insertion of the flagella from two strains of the archaebacterium Methanospirillum hungatei. J. Bacteriol. 172, 32213228.
  • [19]
    Jarrell, K.F., Koval, S.F (1989) Ultrastructure and biochemistry of Methanococcus voltae. CRC Crit. Rev. Microbiol. 17, 5387.
  • [20]
    Cruden, D, Sparling, R, Markovetz, A.J (1989) Isolation and ultrastructure of the flagella of Methanococcus thermolithotrophicus and Methanospirillum hungatei. Appl. Environ. Microbiol. 55, 14141419.
  • [21]
    Jones, C.J., Aizawa, S (1991) The bacterial flagellum and flagellar motor: structure, assembly and function. Adv. Microb. Physiol. 32, 109172.
  • [22]
    Kamekura, M, Dyall-Smith, M, Upasani, V, Ventosa, A, Kates, M (1997) Diversity of alkaliphilic halobacteria: proposals for transfer of Natronobacterium vacuolatum, Natronobacterium magadii, and Natronobacterium pharaonis to Halorubrum, Natrialba, and Natronomonas gen. nov., respectively as Halorubrum vacuolatum comb. nov., Natrialba magadii comb. nov., and Natronomonas pharaonis comb. nov., respectively. Int. J. Syst. Bacteriol. 47, 853857.
  • [23]
    Fedorov, O.V., Pyatibratov, M.G., Kostyukova, A.S., Osina, N.K., Tarasov, V.Y (1994) Protofilament as a structural element of flagella of haloalkalophilic archaebacteria. Can. J. Microbiol. 40, 4553.
  • [24]
    Wilson, D.R., Beveridge, T.J (1993) Bacterial flagellar filaments and their component flagellins. Can. J. Microbiol. 39, 451472.
  • [25]
    Gotz, R, Schmitt, R (1987) Rhizobium meliloti swims by unidirectional, intermittent rotation of right-handed flagellar helices. J. Bacteriol. 169, 31463150.
  • [26]
    Koyasu, S, Shirakihara, Y (1984) Caulobacter crescentus flagellar filament has a right-handed helical form. J. Mol. Biol. 173, 125130.
  • [27]
    Marwan, W, Schafer, W, Oesterhelt, D (1990) Signal transduction in Halobacterium depends on fumarate. EMBO J. 9, 355362.
  • [28]
    Marwan, W, Alam, M, Oesterhelt, D (1991) Rotation and switching of the flagellar motor assembly in Halobacterium halobium. J. Bacteriol. 173, 19711977.
  • [29]
    Kupper, J, Marwan, W, Typke, D, Grünberg, H, Uwer, U, Gluch, M, Oesterhelt, D (1994) The flagellar bundle of Halobacterium salinarium is inserted into a distinct polar cap structure. J. Bacteriol. 176, 51845187.
  • [30]
    Faguy, D.M., Koval, S.F., Jarrell, K.F (1994) Physical characterization of the flagella and flagellins from Methanospirillum hungatei. J. Bacteriol. 176, 74917498.
  • [31]
    Konig, H (1988) Archaeobacterial cell envelopes. Can. J. Microbiol. 34, 395406.
  • [32]
    Murray, R.G.E., Birch-Andersen, A (1963) Specialized structure in the region of the flagella tuft in Spirillum serpens. Can. J. Microbiol. 9, 393401.
  • [33]
    Hirano, T, Yamaguchi, S, Oosawa, K, Aizawa, S.-I (1994) Roles of FliK and FlhB in determination of flagellar hook length in Salmonella typhimurium. J. Bacteriol. 176, 54395449.
  • [34]
    Kalmokoff, M.L., Jarrell, K.F (1991) Cloning and sequencing of a multigene family encoding the flagellins of Methanococcus voltae. J. Bacteriol. 173, 71137125.
  • [35]
    Jarrell, K.F., Bayley, D.P., Faguy, D.M (1993) Structure, molecular sequence analysis and genetics of the flagella of the domain Archaea: comparison with bacterial flagella. Curr. Top. Mol. Genet. 1, 1531.
  • [36]
    Klenk, H.P., Clayton, R.A., Tomb, J.F., White, O, Nelson, K.E., Ketchum, K.A., Dodson, R.J., Gwinn, M, Hickey, E.K., Peterson, J.D., Richardson, D.L., Kerlavage, A.R., Graham, D.E., Kyrpides, N.C., Fleischmann, R.D., Quackenbush, J, Lee, N.H., Sutton, G.G., Gill, S, Kirkness, E.F., Dougherty, B.A., McKenney, K, Adams, M.D., Loftus, B, Peterson, S, Reich, C.I., McNeil, L.K., Badger, J.H., Glodek, A, Zhou, L, Overbeek, R, Gocayne, J.D., Weidman, J.F., McDonald, L, Utterback, T, Cotton, M.D., Spriggs, T, Artiach, P, Kaine, B.P., Sykes, S.M., Sadow, P.W., D'Andrea, K.P., Bowman, C, Fujii, C, Garland, S.A., Mason, T.M., Olsen, G.J., Fraser, C.M., Smith, H.O., Woese, C.R., Venter, J.C (1997) The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon, Archaeoglobus fulgidus. Nature 390, 364370.
  • [37]
    Nagahisa, K, Ezaki, S, Fujiwara, S, Imanaka, T, Takagi, M (1999) Sequence and transcriptional studies of five clustered flagellin genes from hyperthermophilic archaeon Pyrococcus kodakaraensis KOD1. FEMS Microbiol. Lett. 178, 183190.
  • [38]
    Joys, T.M (1988) The flagellar filament protein. Can. J. Microbiol. 34, 452458.
  • [39]
    Martin, J.H., Savage, D.C (1988) Cloning, nucleotide sequence and taxonomic implications of the flagellin gene of Roseburia cecicola. J. Bacteriol. 170, 26122617.
  • [40]
    Bayley, D.P., Florian, V, Klein, A, Jarrell, K.F (1998) Flagellin genes of Methanococcus vannielii: amplification by the polymerase chain reaction, demonstration of signal peptides and identification of major components of the flagellar filament. Mol. Gen. Genet. 258, 639645.
  • [41]
    Winstanley, C, Morgan, J.A., Pickup, R.P., Saunders, J.R (1994) Molecular cloning of two Pseudomonas flagellin genes and basal body structural genes. Microbiology 140, 20192031.
  • [42]
    Jarrell, K.F., Bayley, D.P., Florian, V, Klein, A (1996) Isolation and characterization of insertional mutations in flagellin genes in the archaeon Methanococcus voltae. Mol. Microbiol. 20, 657666.
  • [43]
    Tarasov, V.Y., Pyatibratov, M.G., Tang, S, Dyall-Smith, M, Fedorov, O.V (2000) Role of flagellins from A and B loci in flagella formation of Halobacterium salinarum. Mol. Microbiol. 35, 6978.
  • [44]
    Kostrzynska, M, Betts, J.D., Austin, J.W., Trust, T.J (1991) Identification, characterization, and spatial localization of two flagellin species in Helicobacter pylori flagella. J. Bacteriol. 173, 937946.
  • [45]
    Driks, A, Bryan, R, Shapiro, L, DeRosier, D.J (1989) The organization of the Caulobacter crescentus flagellar filament. J. Mol. Biol. 206, 627636.
  • [46]
    Pleier, E, Schmitt, R (1991) Expression of two Rhizobium meliloti flaegllin genes and their contribution to the complex filament structure. J. Bacteriol. 173, 20772085.
  • [47]
    Guerry, P, Alm, R.A., Power, M.E., Logan, S.M., Trust, T.J (1991) Role of two flagellin genes in Campylobacter motility. J. Bacteriol. 173, 47574764.
  • [48]
    Gerl, L, Sumper, M.E (1988) Halobacterial flagellins are encoded by a multigene family. Characterization of five flagellin genes. J. Biol. Chem. 263, 1324613251.
  • [49]
    Gerl, L, Deutzmann, R, Sumper, M (1989) Halobacterial flagellins are encoded by a multigene family. Identification of all five gene products. FEBS Lett. 244, 137140.
  • [50]
    Doig, P, Kinsella, N, Guerry, P, Trust, T.J (1996) Characterization of a posttranslational modification of Campylobacter flagellin: identification of a sero-specific glycosyl moiety. Mol. Microbiol. 19, 379387.
  • [51]
    Moens, S, Michiels, K, van der Leyden, J (1995) Glycosylation of the flagellin of the polar flagellum of Azospirillum brasilense, a gram-negative nitrogen-fixing bacterium. Microbiology 141, 26512657.
  • [52]
    Wieland, F, Paul, G, Sumper, M (1985) Halobacterial flagellins are sulfated glycoproteins. J. Biol. Chem. 260, 1518015185.
  • [53]
    Sumper, M (1987) Halobacterial glycoprotein biosynthesis. Biochim. Biophys. Acta 906, 6979.
  • [54]
    Lechner, J, Wieland, F (1989) Structure and biosynthesis of prokaryotic glycoproteins. Annu. Rev. Biochem. 58, 173194.
  • [55]
    Lechner, J, Wieland, F, Sumper, M (1985) Transient methylation of dolichol oligosaccharides is an obligatory step in halobacterial sulfated glycoprotein biosynthesis. J. Biol. Chem. 260, 89848989.
  • [56]
    Bayley, D.P., Kalmokoff, M.L., Jarrell, K.F (1993) Effect of bacitracin on flagellar assembly and presumed glycosylation of the flagellins of Methanococcus deltae. Arch. Microbiol. 160, 179185.
  • [57]
    Polosina, Y.Yu, Jarrell, K.F., Fedorov, O.V., Kostyukova, A.S (1998) Nucleoside diphosphate kinase from haloalkaliphilic archaeon Natronobacterium magadii: purification and characterization. Extremophiles 2, 333338.
  • [58]
    Macnab, R.M (1999) The bacterial flagellum: reversible rotary propellor and type III export apparatus. J. Bacteriol. 181, 71497153.
  • [59]
    Macnab, R.M. (1996) Flagella and motility. In: Escherichia coli and Salmonella. Cellular and Molecular Biology, 2nd edn. (Neidhardt, F.C., Curtiss III, R., Ingraham, J.L., Lin, E.C.C., Low, K.B., Magasanik, B., Reznikoff, W.S., Riley, M., Schaechter, M. and Umbarger, H.E., Eds.), pp. 123–145. ASM Press, Washington, DC.
  • [60]
    Fraser, C.M., Bennett, J.C.Q., Hughes, C (1999) Substrate-specific binding of hook-associated proteins by FlgN and FliT, putative chaperones for flagellum assembly. Mol. Microbiol. 32, 569580.
  • [61]
    Yokoseki, T, Kutsukake, K, Ohnishi, K, Iino, T (1995) Functional analysis of the flagellar genes in the fliD operon of Salmonella typhimurium. Microbiology 141, 17151722.
  • [62]
    Minamino, T, Macnab, R.M (1999) Components of the Salmonella flagellar export apparatus and classification of export substrates. J. Bacteriol. 181, 13881394.
  • [63]
    Leung, S, Hightower, L.E (1997) A 16-kDa protein functions as a new regulatory protein for Hsc70 molecular chaperone and is identified as a member of the Nm23/nucleoside diphosphate kinase family. J. Biol. Chem. 272, 26072614.
  • [64]
    Woestyn, S, Sory, M, Boland, A, Lequenne, O, Cornelis, G.R (1996) The cytosolic SycE and SycH chaperones of Yersinia protect the region of YopE and YopH involved in translocation across eukaryotic cell membranes. Mol. Microbiol. 20, 12611271.
  • [65]
    Driessen, A.J.M., Fekkes, P, van der Wolk, J.P.W (1998) The Sec system. Curr. Opin. Microbiol. 1, 216222.
  • [66]
    Alam, M, Oesterhelt, D (1987) Purification, reconstitution and polymeric transition of halobacterial flagella. J. Mol. Biol. 194, 495499.
  • [67]
    Tarasov, V.Y., Kostyukova, A.S., Tiktopulo, E.I., Pyatibratov, M.G., Fedorov, O.V (1995) Unfolding of tertiary structure of Halobacterium halobium flagellins does not result in flagella destruction. J. Protein Chem. 14, 2731.
  • [68]
    Kostyukova, A.S., Gongadze, G.M., Obraztsova, A.Y., Luarinavichus, K.S., Fedorov, O.V (1992) Protein composition of Methanococcus thermolithotrophicus flagella. Can. J. Microbiol. 38, 11621166.
  • [69]
    Faguy, D.M., Koval, S.F., Jarrell, K.F (1992) Correlation between glycosylation of flagellin proteins and sensitivity of flagellar filaments to Triton X-100 in methanogens. FEMS Microbiol. Lett. 90, 129134.
  • [70]
    Kutsukake, K, Ohya, Y, Iino, T (1990) Transcriptional analysis of the flagellar regulon in Salmonella typhimurium. J. Bacteriol. 172, 741747.
  • [71]
    Ott, M, Messner, P, Hessemann, J, Marre, R, Hacker, J (1991) Temperature-dependent expression of flagella in Legionella. J. Gen. Microbiol. 137, 19551961.
  • [72]
    Faguy, D.M., Koval, S.F., Jarrell, K.F (1993) Effect of changes in mineral composition and growth temperature on filament length and flagellation in the archaeon Methanospirillum hungatei. Arch. Microbiol. 159, 512520.
  • [73]
    Patel, G.B., Sprott, G.D., Humphrey, R.W., Beveridge, T.J (1986) Comparative analyses of the sheath structures of Methanothrix concilii GP6 and Methanospirillum hungatei GP1 and JF1. Can. J. Microbiol. 32, 623631.
  • [74]
    Bayley, D.P., Jarrell, K.F (1998) Further evidence to suggest that archaeal flagella are related to bacterial type IV pili. J. Mol. Evol. 46, 370373.
  • [75]
    Bult, C.J., White, O, Olsen, G.J., Zhou, L, Fleischmann, R.D., Sutton, G.G., Blake, J.A., FitzGerald, L.M., Clayton, R.A., Gocayne, J.D., Kerlavage, A.R., Dougherty, B.A., Tomb, J.F., Adams, M.D., Reich, C.I., Overbeek, R, Kirkness, E.F., Weinstock, K.G., Merrick, J.M., Glodek, A, Scott, J.L., Geoghagen, N.S.M., Venter, J.C (1996) Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science 273, 10581073.
  • [76]
    Mattick, J.S., Alm, R.A (1995) Common architecture of type 4 fimbriae and complexes involved in macromolecular traffic. Trends Microbiol. 3, 411413.
  • [77]
    Alm, R.S., Mattick, J.S (1997) Genes involved in the biogenesis and function of type-4 fimbriae in Pseudomonas aeruginosa. Gene 192, 8998.
  • [78]
    Tumbula, D.L., Whitman, W.B (1999) Genetics of Methanococcus: possibilities for functional genomics in Archaea. Mol. Microbiol. 33, 17.
  • [79]
    Sowers, K.R., Schreier, H.J (1999) Gene transfer systems for the archaea. Trends Microbiol. 7, 212217.
  • [80]
    Correia, J.D., Jarrell, K.F (2000) Posttranslational processing of Methanococcus voltae preflagellin by preflagellin peptidases of M. voltae and other methanogens. J. Bacteriol. 182, 855858.
  • [81]
    Strom, M.S, Nunn, D.N, Lory, S. Posttranslational processing of type IV prepilin and homologs by PilD of Pseudomonas aeruginosa,. Methods Enzymol. 235, 1994. 540
  • [82]
    Nunn, D.N., Lory, S (1991) Product of the Pseudomonas aeruginosa gene pilD is a prepilin leader peptidase. Proc. Natl. Acad. Sci. USA 88, 32813285.
  • [83]
    Lory, S. (1994) Leader peptidases of type IV prepilins and related proteins. In: Signal Peptidases (von Heijne, G., Ed.), pp. 31–48. R.G. Landes, Austin, TX.
  • [84]
    Horiuchi, T, Komano, T (1998) Mutational analysis of plasmid R64 thin pilus prepilin: the entire prepilin sequence is required for processing by type IV prepilin peptidase. J. Bacteriol. 180, 46134620.
  • [85]
    Chiang, S.L., Taylor, R.K., Koomey, M, Mekalanos, J.J (1995) Single amino acid substitutions in the N-terminus of Vibrio cholerae TcpA affect colonization, autoagglutination, and serum resistance. Mol. Microbiol. 17, 11331142.
  • [86]
    Pasloske, B.L., Paranchych, W (1988) The expression of mutant pilins in Pseudomonas aeruginosa: fifth position glutamate affects pilin methylation. Mol. Microbiol. 2, 289295.
  • [87]
    Strom, M.S., Lory, S (1991) Amino acid substitutions in pilin of Pseudomonas aeruginosa. J. Biol. Chem. 266, 16561664.
  • [88]
    Auer, J, Spicker, G, Bock, A (1987) Presence of a gene in the archaebacterium Methanococcus vannielii homologous to secY of eubacteria. Biochimie 73, 683688.
  • [89]
    Dharmavaram, R, Gillevet, P, Konisky, J (1991) Nucleotide sequence of the gene encoding the vanadate-sensitive membrane-associated ATPase of Methanococcus voltae. J. Bacteriol. 173, 21312133.
  • [90]
    Albers, S.-V, Konings, W.N., Driessen, A.J.M (1999) A unique short signal sequence in membrane-anchored proteins of Archaea. Mol. Microbiol. 31, 15951596.
  • [91]
    Jarrell, K.F., Correia, J.D., Thomas, N.A (1999) Is the processing and translocation system used by flagellins also used by membrane-anchored secretory proteins in archaea. Mol. Microbiol. 34, 395398.
  • [92]
    Brockl, G, Behr, M, Farby, S, Hensel, R, Kaudewitz, H, Biendel, E, Konig, H (1991) Analysis and nucleotide sequence of the genes encoding the surface-layer glycoproteins of the hyperthermophilic methanogens Methanothermus fervidus and Methanothermus sociabilis. Eur. J. Biochem. 199, 147152.
  • [93]
    Kalmokoff, M.L., Karnauchow, T.M., Jarrell, K.F (1990) Conserved N-terminal sequences in the flagellins of archaebacteria. Biochem. Biophys. Res. Commun. 167, 154160.
  • [94]
    Kawarabayasi, Y, Sawada, M, Horikawa, H, Haikawa, Y, Hino, Y, Yamamoto, S, Sekine, M, Baba, S, Kosugi, H, Hosoyama, A, Nagai, Y, Sakai, M, Ogura, K, Otsuka, R, Nakazawa, H, Takamiya, M, Ohfuku, Y, Funahashi, T, Tanaka, T, Kudoh, Y, Yamazaki, J, Kushida, N, Oguchi, A, Aoki, K, Kikuchi, H (1998) Complete sequence and gene organization of the genome of a hyper-thermophilic archaebacterium, Pyrococcus horikoshii OT3. DNA Res. 5, 5576.
  • [95]
    Zhang, H.-Z, Lory, S, Donnenberg, M.S (1994) A plasmid-encoded prepilin peptidase gene from enteropathogenic Escherichia coli. J. Bacteriol. 176, 68856891.
  • [96]
    Dupuy, B, Pugsley, A.P (1994) Type IV prepilin peptidase gene of Neisseria gonorrhoeae MS11: presence of a related gene in other piliated and nonpiliated Neisseria strains. J. Bacteriol. 176, 13231331.
  • [97]
    Bayley, D.P., Jarrell, K.F (1999) Overexpression of Methanococcus voltae flagellin subunits in Escherichia coli and Pseudomonas aeruginosa: a source of archaeal preflagellin. J. Bacteriol. 181, 41464153.
  • [98]
    Strom, M.S., Nunn, D, Lory, S (1993) A single bifunctional enzyme, PilD, catalyzes cleavage and N-methylation of proteins belonging to the type IV pilin family. Proc. Natl. Acad. Sci. USA 90, 24042408.
  • [99]
    Strom, M.S., Lory, S (1987) Mapping of export signals of Pseudomonas aeruginosa pilin with alkaline phosphatase fusions. J. Bacteriol. 169, 31813188.
  • [100]
    Pleier, E, Schmitt, R (1989) Identification and sequence analysis of two related flagellin genes in Rhizobium meliloti. J. Bacteriol. 171, 14671475.
  • [101]
    Thomashow, L.S., Rittenberg, S.C (1985) Waveform analysis and structure of flagella and basal complexes from Bdellovibrio bacteriovorans. J. Bacteriol. 163, 10381046.
  • [102]
    Brahamsha, B, Greenberg, E.P (1989) Cloning and sequence analysis of flaA, a gene encoding a Spirochaeta aurantia flagella filament antigen. J. Bacteriol. 171, 16921697.
  • [103]
    Rudolph, J, Oesterhelt, D (1996) Deletion analysis of the che operon in the archaeon Halobacterium salinarium. J. Mol. Biol. 258, 548554.
  • [104]
    Welch, M, Oosawa, K, Aizawa, S.-I, Eisenbach, M (1993) Phosphorylation-dependent binding of a signal molecule to the flagellar switch of bacteria. Proc. Natl. Acad. Sci. USA 90, 87878791.
  • [105]
    Komoriya, K, Shibano, N, Higano, T, Azuma, N, Yamaguchi, S, Aizawa, S.-I (1999) Flagellar proteins and type III-exported virulence factors are the predominant proteins secreted into the culture media of Salmonella typhimurium. Mol. Microbiol. 34, 767779.
  • [106]
    Young, G.M., Schiel, D.H., Miller, V.L (1999) A new pathway for the secretion of virulence factors by bacteria: the flagella export apparatus functions as a protein-secretion system. Proc. Natl. Acad. Sci. USA 96, 64566461.
  • [107]
    Macnab, R.M., DeRosier, D.J (1988) Bacterial flagellar structure and function. Can. J. Microbiol. 34, 442451.
  • [108]
    Hueck, C.J (1998) Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol. Mol. Biol. Rev. 62, 379433.
  • [109]
    Thanassi, D.G., Saulino, E.T., Hultgren, S.J (1998) The chaperone/usher pathway: a major terminal branch of the general secretory pathway. Curr. Opin. Microbiol. 1, 223231.
  • [110]
    Mimori, Y, Yamashita, I, Murata, K, Fujiyoshi, Y, Yonekura, K, Toyoshima, C, Namba, K (1995) The structure of the R-type straight flagellar filament of Salmonella at 9 Å resolution by electron microscopy. J. Mol. Biol. 249, 6987.
  • [111]
    Moens, S, van der Leyden, J (1997) Glycoproteins in prokaryotes. Arch. Microbiol. 168, 169175.
  • [112]
    Faguy, D.M., Jarrell, K.F., Kuzio, J, Kalmokoff, M.L (1994) Molecular analysis of archaeal flagellins: similarity to type IV pilin-transport superfamily widespread in bacteria. Can. J. Microbiol. 40, 6771.
  • [113]
    Wall, D, Kaiser, D (1999) Type IV pili and cell motility. Mol. Microbiol. 32, 110.
  • [114]
    Darzins, A, Russell, M.A (1997) Molecular genetic analysis of type-4 pilus biogenesis and twitching motiltiy using Pseudomonas aeruginosa as a model system – a review. Gene 192, 109115.
  • [115]
    Bradley, D.E (1980) A function of Pseudomonas aeruginosa PAO polar pili: twitching motility. Can. J. Microbiol. 26, 146154.
  • [116]
    Lowe, M.A., Holt, S.C., Eisenstein, B.I (1987) Immunoelectron microscopic analysis of elongation of type 1 fimbriae in Escherichia coli. J. Bacteriol. 169, 157163.
  • [117]
    Maher, D, Sherburne, R, Taylor, D.E (1993) H-pilus assembly kinetics determined by electron microscopy. J. Bacteriol. 175, 21752183.
  • [118]
    Nunn, D (1999) Bacterial type II protein export and pilus biogenesis: more than just homologies. Trends Cell Biol. 9, 402408.
  • [119]
    Strom, M.S., Nunn, D, Lory, S (1991) Multiple roles of the pilus biogenesis protein PilD: involvement of PilD in excretion of enzymes from Pseudomonas aeruginosa. J. Bacteriol. 173, 11751180.
  • [120]
    Filloux, A, Michel, G, Bally, M (1998) GSP-dependent protein secretion in Gram-negative bacteria: the Xcp system of Pseudomonas aeruginosa. FEMS Microbiol. Rev. 22, 177198.
  • [121]
    Pugsley, A.P (1996) Multimers of the precursor of a type IV pilin-like component of the general secretory pathway are unrelated to pili. Mol. Microbiol. 20, 12351245.
  • [122]
    Pugsley, A.P., Possot, O (1993) The general secretory pathway of Klebsiella oxytoca: no evidence for relocalization or assembly of pilin-like PulG protein into a multiprotein complex. Mol. Microbiol. 10, 665674.
  • [123]
    Kaufman, M.R., Seyer, J.M., Taylor, R.S (1991) Processing of TCP pilin by TcpJ typifies a common step intrinsic to a newly recognized pathway of extracellular protein secretion by gram-negative bacteria. Genes Dev. 5, 18341846.
  • [124]
    Stone, K.D., Zhang, H.-Z, Carlson, L.K., Donnenberg, M.S (1996) A cluster of fourteen genes from enteropathogenic Escherichia coli is sufficient for the biogenesis of a type IV pilus. Mol. Microbiol. 20, 325337.
  • [125]
    Hobbs, M, Collie, E.S.R., Free, P.D., Livingston, S.P., Mattick, J.S (1993) PilS and PilR, a two component transcriptional regulatory system controlling expression of type 4 fimbriae in Pseudomonas aeruginosa. Mol. Microbiol. 7, 669682.
  • [126]
    Macnab, R.M. (1990) Genetics, structure, and assembly of the bacterial flagellum. In: Biology of the Chemotactic Response (Armitage, J.P. and Lackie, J.M., Eds.), pp. 77–106. Cambridge University Press, Cambridge.
  • [127]
    Fussenegger, M, Rudel, T, Barten, R, Ryll, R, Meyer, T.F (1997) Transformation competence and type-4 pilus biogenesis in Neisseria gonorrhoeae– a review. Gene 192, 125134.
  • [128]
    Sleytr, U.B (1978) Regular arrays of macromolecules on bacterial cell walls: structure, chemistry, assembly and function. Int. Rev. Cytol. 53, 163.
  • [129]
    Sleytr, U.B., Glauert, A.M (1975) Analysis of regular arrays of subunits on bacterial surfaces: evidence for a dynamic process of assembly. J. Ultrastruct. Res. 50, 103116.
  • [130]
    Sergenova, I.S., Polosina, Y.Y., Kostyukova, A.S., Metlina, A.L., Pyatibratov, M.G., Fedorov, O.V (1995) Flagella of halophilic archaea: biochemical and genetic analysis. Biochemistry (Eng. Transl. of Biokhimiya) 60, 953957.
  • [131]
    Mukhopadhyay, B, Johnson, E.F., Wolfe, R.S (2000) A novel pH2 control on the expression of flagella in the hyperthermophilic strictly hydrogenotrophic methanarchaeaon Methanococcus jannaschii. Proc. Natl. Acad. Sci. USA 97, 1152211527.