• [1]
    Woese, C.R., Kandler, O., Wheelis, M.L. (1990) Towards a natural system of organisms: Proposal for the domains Archaea, Bacteria, and Eucarya. Proc. Natl. Acad. Sci. USA 87, 45764579.
  • [2]
    Olsen, G.J., Woese, C.R. (1997) Archaeal genomics: an overview. Cell 89, 991994.
  • [3]
    Pennisi, E. (1998) Genome data shake the tree of life. Science 280, 672674.
  • [4]
    Woese, C. (1998) The universal ancestor. Proc. Natl. Acad. Sci. USA 95, 68546859.
  • [5]
    Pace, N.R. (1997) A molecular view of microbial diversity and the biosphere. Science 276, 734740.
  • [6]
    Thauer, R.K., Jungermann, K., Decker, K. (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol. Rev. 41, 100180.
  • [7]
    Madigan, M.T., Martinko, J.M. and Parker, J. (2000) Brock Biology of Microorganisms, edn. 9, Prentice Hall, Upper Saddle River, NJ.
  • [8]
    Kelly, R.M., Adams, M.W.W. (1994) Metabolism in hyperthermophilic microorganisms. Antonie Van Leeuwenhoek 66, 247270.
  • [9]
    Blöchl, E., Rachel, R., Burggraf, S., Hafenbradl, D., Jannasch, H.W., Stetter, K.O. (1997) Pyrolobus fumarii, gen. and sp. nov., represents a novel group of archaea, extending the upper temperature limit for life to 113°C. Extremophiles 1, 1421.
  • [10]
    Daniel, R.M. (1992) Modern life at high temperatures. Orig. Life Evol. Biosph. 22, 3342.
  • [11]
    Segerer, A.H., Burggraf, S., Fiala, G., Huber, G., Huber, R., Pley, U., Stetter, K.O. (1993) Life in hot springs and hydrothermal vents. Orig. Life Evol. Biosph. 23, 7790.
  • [12]
    Baross, J.A., Deming, J.W. (1983) Growth of ‘black smoker’ bacteria at temperatures of at least 250°C. Nature 303, 423426.
  • [13]
    Straube, W.L., Deming, J.W., Somerville, C.C., Colwell, R.R., Baross, J.A. (1990) Particulate DNA in smoker fluids: evidence for existence of microbial populations in hot hydrothermal systems. Appl. Environ. Microbiol. 56, 14401447.
  • [14]
    Deming, J.W., Baross, J.A. (1993) Deep-sea smokers: Windows to a subsurface biosphere. Geochim. Cosmochim. Acta 57, 32193230.
  • [15]
    Cragg, B.A. and Parkes, R.J. (1994) Bacterial profiles in hydrothermally active deep sediment layers from Middle Valley (N.E. Pacific), sites 857 and 858. Proc. Ocean Drill. Prog. Sci. Res. 139.
  • [16]
    Bargar, K.E., Fournier, R.O., Theodore, T.G. (1985) Particles in fluid inclusions from Yellowstone National Park – Bacteria. Geology 13, 483486.
  • [17]
    White, R.H. (1984) Hydrolytic stability of biomolecules at high temperatures and its implication for life at 250°C. Nature 310, 430432.
  • [18]
    Yanagawa, H., Kojima, K. (1985) Thermophilic microspheres of peptide-like polymers and silicates formed at 250°C. J. Biochem. 97, 15211524.
  • [19]
    Hennet, R.J.-C., Holm, N.G., Engel, M.H. (1992) Abiotic synthesis of amino acids under hydrothermal conditions and the origin of life: a perpetual phenomenon. Naturwissenschaften 79, 361365.
  • [20]
    Helgeson, H.C., Amend, J.P. (1994) Relative stabilities of biomolecules at high temperatures and pressures. Thermochim. Acta 245, 89119.
  • [21]
    Pace, N.R. (1991) Origin of life: Facing up to the physical setting. Cell 65, 531533.
  • [22]
    Russell, M.J., Hall, A.J. (1997) The emergence of life from iron monosulphide bubbles at a submarine hydrothermal redox and pH front. J. Geol. Soc. Lond. 154, 377402.
  • [23]
    Galtier, N., Tourasse, N., Gouy, M. (1999) A nonhyperthermophilic common ancestor to extant life forms. Science 283, 220221.
  • [24]
    Brock, T.D. (1971) Bimodal distribution of pH values of thermal springs of the world. Geol. Soc. Am. Bull. 82, 13931394.
  • [25]
    Holden, J.F., Baross, J.A. (1995) Enhanced thermotolerance by hydrostatic pressure in the deep-sea hyperthermophile Pyrococcus strain ES4. FEMS Microbiol. Ecol. 18, 2734.
  • [26]
    Miller, J.F., Shah, N.N., Nelson, C.M., Ludlow, J.M., Clark, D.S. (1988) Pressure and temperature effects on growth and methane production of the extreme thermophile Methanococcus jannaschii. Appl. Environ. Microbiol. 54, 30393042.
  • [27]
    Whitman, W.B., Coleman, D.C., Wiebe, W.J. (1998) Prokaryotes: the unseen majority. Proc. Natl. Acad. Sci. USA 95, 65786583.
  • [28]
    Parkes, R.J., Cragg, B.A., Bale, S.J., Getliff, J.M., Goodman, K., Rochelle, P.A., Fry, J.C., Weightman, A.J., Harvey, S.M. (1994) Deep bacterial biosphere in Pacific Ocean sediments. Nature 371, 410413.
  • [29]
    Stevens, T.O., McKinley, J.P., Boone, D.R., Griffin, W.T., Russell, B.F., Colwell, F.S., Phelps, T.J. and Balkwill, D.L. (1993) Detection of anaerobic bacteria in 2800-m-deep samples from the terrestrial subsurface (Abstract). Am. Soc. Microbiol., 16–20.
  • [30]
    Stevens, T.O., McKinley, J.P. (1995) Lithoautotrophic microbial ecosystems in deep basalt aquifers. Science 270, 450454.
  • [31]
    Onstott, T.C., Tobin, K., Dong, H., DeFlaun, M.F., Frederickson, J.K., Bailey, T., Brockman, F., Kieft, T., Peacock, A., White, D.C., Balkwill, D., Phelps, T.J., Boone, D.R. (1997) The deep gold mines of South Africa: Windows into the subsurface biosphere. Proc. SPIE-Int. Soc. Opt. Eng. 3111, 344357.
  • [32]
    Kieft, T.L., Fredrickson, J.K., Onstott, T.C., Gorby, Y.A., Kostandarithes, H.M., Bailey, T.J., Kennedy, D.W., Li, S.W., Plymale, A.E., Spadoni, C.M., Gray, M.S. (1999) Dissimilatory reduction of Fe(III) and other electron acceptors by a Thermus isolate. Appl. Environ. Microbiol. 65, 12141221.
  • [33]
    Szewzyk, U., Szewzyk, R., Stenstrom, T. (1994) Thermophilic, anaerobic bacteria isolated from a granite in Sweden. Proc. Natl. Acad. Sci. USA 91, 18101813.
  • [34]
    Szewzyk, U., Szewzyk, R., Stenstrom, T. (1997) Thermophilic fermentative bacteria from a deep borehole in granitic rock in Sweden. Proc. SPIE-Int. Soc. Opt. Eng. 3111, 330334.
  • [35]
    Daumas, S., Cord-Ruwisch, R., Garcia, J.L. (1988) Desulfotomaculum geothermicum sp. nov., a thermophilic, fatty acid-degrading, sulfate reducing bacterium isolated with H2 from geothermal ground water. Antonie Van Leeuwenhoek 54, 165178.
  • [36]
    Rosnes, J.T., Torsvik, T., Lien, T. (1991) Spore-forming thermophilic sulfate-reducing bacteria isolated from North Sea oil field waters. Appl. Environ. Microbiol. 57, 23022307.
  • [37]
    Stetter, K.O., Huber, R., Blöchl, E., Kurr, M., Eden, R.D., Fielder, M., Cash, H., Vances, I. (1993) Hyperthermophilic archaea are thriving in deep North Sea and Alaskan oil reservoirs. Nature 365, 743745.
  • [38]
    L'Haridon, S., Reysenbach, A.-L., Glenat, P., Prieur, D., Jeanthon, C. (1995) Hot subterranean biosphere in a continental oil reservoir. Nature 377, 223224.
  • [39]
    Zobell, C.E., Morita, R.Y. (1957) Barophilic bacteria in some deep sea sediments. J. Bacteriol. 73, 563568.
  • [40]
    Pedersen, K., Ekendahl, S. (1990) Distribution and activity of bacteria in deep granitic groundwaters of southeastern Sweden. Microb. Ecol. 20, 3752.
  • [41]
    Pedersen, K. (1997) Microbial life in deep granitic rock. FEMS Microbiol. Rev. 20, 399414.
  • [42]
    Motamedi, M., Pedersen, K. (1998) Desulfovibrio aespoeensis sp. nov., a mesophilic sulfate-reducing bacterium from deep groundwater at Äspö hard rock laboratory, Sweden. Int. J. Syst. Bacteriol. 48, 311315.
  • [43]
    Kotelnikova, S., Macario, A.J.L., Pedersen, K. (1998) Methanobacterium subterraneum sp. nov., a new alkaliphilic, eurythermic and halotolerant methanogen isolated from deep granitc groundwater. Int. J. Syst. Bacteriol. 48, 357367.
  • [44]
    Stevens, T. (1997) Lithoautotrophy in the subsurface. FEMS Microbiol. Rev. 20, 327337.
  • [45]
    Anderson, R.T., Chapelle, F.H., Lovley, D.R. (1998) Evidence against hydrogen-based microbial ecosystems in basalt aquifers. Science 281, 976977.
  • [46]
    Amend, J.P., Amend, A.C., Valenza, M. (1998) Determination of volatile fatty acids in the hot springs of Vulcano, Aeolian Islands, Italy. Org. Geochem. 28, 699705.
  • [47]
    Stetter, K.O. (1982) Ultrathin mycelia-forming organisms from submarine volcanic areas having an optimum growth temperature of 105°C. Nature 300, 258260.
  • [48]
    Amend, J.P. (2001) Calculation of metabolic energy from sulfur reduction by hyperthermophiles in Vulcano hot springs. Extremophiles, in preparation.
  • [49]
    Shock, E.L., Helgeson, H.C. (1988) Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: Correlation algorithms for ionic species and equation of state predictions to 5 kb and 1000°C. Geochim. Cosmochim. Acta 52, 20092036.
  • [50]
    Shock, E.L., Helgeson, H.C., Sverjensky, D.A. (1989) Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: Standard partial molal properties of inorganic neutral species. Geochim. Cosmochim. Acta 53, 21572183.
  • [51]
    Shock, E.L., Oelkers, E.H., Johnson, J.W., Sverjensky, D.A., Helgeson, H.C. (1992) Calculation of the thermodynamic properties of aqueous species at high pressures and temperatures: Effective electrostatic radii, dissociation constants and standard partial molal properties to 1000°C and 5 kbar. J. Chem. Soc. Faraday Trans. 88, 803826.
  • [52]
    Shock, E.L., Sassani, D.C., Willis, M., Sverjensky, D.A. (1997) Inorganic species in geologic fluids: correlations among standard molal thermodynamic properties of aqueous ions and hydroxide complexes. Geochim. Cosmochim. Acta 61, 907950.
  • [53]
    Shock, E.L., Sassani, D.C., Betz, H. (1997) Uranium in geologic fluids: estimates of standard partial molal properties, oxidation potential, and hydrolysis constants at high temperatures and pressures. Geochim. Cosmochim. Acta 61, 42454266.
  • [54]
    Haas, J.R., Shock, E.L., Sassani, D.C. (1995) Rare earth elements in hydrothermal systems: Estimates of standard partial molal thermodynamic properties of aqueous complexes of the REE at high pressures and temperatures. Geochim. Cosmochim. Acta 59, 43294350.
  • [55]
    Sverjensky, D.A., Shock, E.L., Helgeson, H.C. (1997) Prediction of the thermodynamic and transport properties of aqueous metal complexes to 1000°C and 5 kb. Geochim. Cosmochim. Acta 61, 13591412.
  • [56]
    Sassani, D.C., Shock, E.L. (1998) Solubility and transport of platinum-group elements in supercritical fluids: Summary and estimates of thermodynamic properties for Ru, Rh, Pd, and Pt solids, aqueous ions and aqueous complexes. Geochim. Cosmochim. Acta 62, 26432671.
  • [57]
    Shock, E.L., Helgeson, H.C. (1990) Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: Standard partial molal properties of organic species. Geochim. Cosmochim. Acta 54, 915945.
  • [58]
    Helgeson, H.C. (1992) Calculation of the thermodynamic properties and relative stabilities of aqueous acetic and chloroacetic acids, acetate and chloroacetates, and acetyl and chloroacetyl chlorides at high and low temperatures and pressures. Appl. Geochem. 7, 291308.
  • [59]
    Shock, E.L. (1992) Chemical environments of submarine hydrothermal systems. Orig. Life Evol. Biosph. 22, 67107.
  • [60]
    Shock, E.L. (1993) Hydrothermal dehydration of aqueous organic compounds. Geochim. Cosmochim. Acta 57, 33413349.
  • [61]
    Shock, E.L. (1995) Organic acids in hydrothermal solution: Standard molal thermodynamic properties of carboxylic acids and estimates of dissociation constants at high temperatures and pressures. Am. J. Sci. 295, 496580.
  • [62]
    Schulte, M.D., Shock, E.L. (1993) Aldehydes in hydrothermal solution: Standard partial molal thermodynamic properties and relative stabilities at high temperatures and pressures. Geochim. Cosmochim. Acta 57, 38353846.
  • [63]
    Amend, J.P., Helgeson, H.C. (1997) Group additivity equations of state for calculating the standard molal thermodynamic properties of aqueous organic species at elevated temperatures and pressures. Geochim. Cosmochim. Acta 61, 1146.
  • [64]
    Amend, J.P., Helgeson, H.C. (1997) Calculation of the standard molal thermodynamic properties of aqueous biomolecules at elevated temperatures and pressures. Part 1. l-α-Amino acids. J. Chem. Soc. Faraday Trans. 93, 19271941.
  • [65]
    Dale, J.D., Shock, E.L., MacLeod, G., Aplin, A.C., Larter, S.R. (1997) Standard partial molal properties of aqueous alkylphenols at high pressures and temperatures. Geochim. Cosmochim. Acta 61, 40174024.
  • [66]
    Haas, J.R., Shock, E.L. (1999) Halocarbons in the environment: Estimates of thermodynamic properties for aqueous chloroethylene species and their stabilities in natural settings. Geochim. Cosmochim. Acta 63, 34293441.
  • [67]
    Plyasunov, A.V., Shock, E.L. (2000) Thermodynamic functions of hydration of hydrocarbons at 298.15 K and 0.1 MPa. Geochim. Cosmochim. Acta 64, 439468.
  • [68]
    Shock, E.L., Koretsky, C.M. (1993) Metal–organic complexes in geochemical processes: Calculation of standard partial molal thermodynamic properties of aqueous acetate complexes at high pressures and temperatures. Geochim. Cosmochim. Acta 57, 48994922.
  • [69]
    Shock, E.L., Koretsky, C.M. (1995) Metal–organic complexes in geochemical processes: Estimation of standard partial molal thermodynamic properties of aqueous complexes between metal cations and monovalent organic acid ligands at high pressures and temperatures. Geochim. Cosmochim. Acta 59, 14971532.
  • [70]
    Prapaipong, P., Shock, E.L., Koretsky, C.M. (1999) Metal–organic complexes in geochemical processes: Temperature dependence of the standard thermodynamic properties of aqueous complexes between metal cations and dicarboxylate ligands. Geochim. Cosmochim. Acta 63, 25472577.
  • [71]
    Helgeson, H.C., Kirkham, D.H., Flowers, G.C. (1981) Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and temperatures: IV. Calculation of activity coefficients, osmotic coefficients, and apparent molal and standard and relative partial molal properties to 600°C and 5 kb. Am. J. Sci. 281, 12491516.
  • [72]
    Tanger, J.C., Helgeson, H.C. (1988) Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: Revised equations of state for the standard partial molal properties of ions and electrolytes. Am. J. Sci. 288, 1998.
  • [73]
    Johnson, J.W., Oelkers, E.H., Helgeson, H.C. (1992) SUPCRT92: A software package for calculating the standard molal properties of minerals, gases, aqueous species, and reactions from 1 to 5000 bar and 0 to 1000°C. Comput. Geosci. 18, 899947.
  • [74]
    Helgeson, H.C., Owens, C.E., Knox, A.M., Richard, L. (1998) Calculation of the standard molal thermodynamic properties of crystalline, liquid, and gas organic molecules at high temperatures and pressures. Geochim. Cosmochim. Acta 62, 9851081.
  • [75]
    Richard, L., Helgeson, H.C. (1998) Calculation of the thermodynamic properties at elevated temperatures and pressures of saturated and aromatic high molecular weight solid and liquid hydrocarbons in kerogen, bitumen, petroleum, and other organic matter of biogeochemical interest. Geochim. Cosmochim. Acta 62, 35913636.
  • [76]
    Helgeson, H.C., Delany, J.M., Nesbitt, W.H., Bird, D.K. (1978) Summary and critique of the thermodynamic properties of rock-forming minerals. Am. J. Sci. 278A, 1229.
  • [77]
    Wagman, D.D., Evans, W.H., Parker, V.B., Schumm, R.H., Halow, I., Bailey, S.M., Cherney, K.L., Nuttall, R.L. The NBS tables of chemical thermodynamic properties. Selected values for inorganic and C1 and C2 organic substances in SI units,. J. Phys. Chem. Ref. Data. 11, 1982. 392
  • [78]
    Chan, G.W. and Shock, E.L. (2001) Geochemical bioenergetics in the hydrothermal habitat of the pink filament community of Octopus Spring, Yellowstone National Park. Appl. Environ. Microbiol., in preparation.
  • [79]
    Alberty, R.A., Goldberg, R.N. (1992) Standard thermodynamic formation properties for the adenosine 5′-triphosphate series. Biochemistry 31, 1061010615.
  • [80]
    Alberty, R.A. (1998) Calculation of standard transformed Gibbs energies and standard transformed enthalpies of biochemical reactants. Arch. Biochem. Biophys. 353, 116130.
  • [81]
    Gurrieri, S., Helgeson, H.C., Amend, J.P. and Danti, K. (2000) Biogeochemistry of the geothermal system in the Aeolian Islands: Authigenic phase relations in the hot springs of Vulcano. Chem. Geol., in preparation.
  • [82]
    Huber, R., Wilharm, T., Huber, D., Trincone, A., Burggraf, S., König, H., Rachel, R., Rockinger, I., Fricke, H., Stetter, K.O. (1992) Aquifex pyrophilus gen. nov. sp. nov., represents a novel group of marine hyperthermophilic hydrogen oxidizing bacteria. Syst. Appl. Microbiol. 15, 340351.
  • [83]
    Deckert, G., Warren, P.V., Gaasterland, T., Young, W.G., Lenox, A.L., Graham, D.E., Overbeek, R., Snead, M.A., Keller, M., Aujay, M., Huber, R., Feldman, R.A., Short, J.M., Olsen, G.J., Swanson, R.V. (1998) The complete genome of the hyperthermophilic bacterium Aquifex aeolicus. Nature 392, 353358.
  • [84]
    Hafenbradl, D., Keller, M., Dirmeier, R., Rachel, R., Rossnagel, P., Burggraf, S., Huber, H., Stetter, K.O. (1996) Ferroglobus placidus gen. nov., sp. nov., a novel hyperthermophilic archaeum that oxidizes Fe2+ at neutral pH under anoxic conditions. Arch. Microbiol. 166, 308314.
  • [85]
    Broda, E. (1977) Two kinds of lithotrophs missing in nature. Z. Allg. Mikrobiol. 17, 491493.
  • [86]
    Strous, M., Fuerst, J.A., Kramer, E.H.M., Logemann, S., Muyzer, G., Van De-Pas-Schoonen, K.T., Webb, R., Kuenen, J.G., Jetten, M.S.M. (1999) Missing lithotroph identified as new planctomycete. Nature 400, 446449.
  • [87]
    Kelly, D.P. (1999) Thermodynamic aspects of energy conservation by chemolithotrophic sulfur bacteria in relation to sulfur oxidation pathways. Arch. Microbiol. 171, 219229.
  • [88]
    Balch, W.E., Fox, G.E., Magrum, L.J., Woese, C.R., Wolfe, R.S. (1979) Methanogens: Reevaluation of a unique biological group. Microbiol. Rev. 43, 260296.
  • [89]
    Daniels, L., Sparling, R., Sprott, G.D. (1984) The bioenergetics of methanogens. Biochim. Biophys. Acta 768, 113163.
  • [90]
    Thauer, R.K., Möller-Zinkhan, D., Spormann, A.M. (1989) Biochemistry of acetate catabolism in anaerobic chemotrophic bacteria. Annu. Rev. Microbiol. 43, 4367.
  • [91]
    Sprott, G.D., Ekiel, I., Patel, G.B. (1993) Metabolic pathways in Methanococcus jannaschii and other methanogenic bacteria. Appl. Environ. Microbiol. 59, 10921098.
  • [92]
    Blaut, M. (1994) Metabolism of methanogens. Antonie Van Leeuwenhoek 66, 187208.
  • [93]
    Stams, A.J.M. (1994) Metabolic interactions between anaerobic bacteria in methanogenic environments. Antonie Van Leeuwenhoek 66, 271294.
  • [94]
    Kurr, M., Huber, R., König, H., Jannasch, H.W., Fricke, H., Trincone, A., Kristjansson, J.K., Stetter, K.O. (1991) Methanopyrus kandleri, gen. and sp. nov. represents a novel group of hyperthermophilic methanoges, growing at 110°C. Arch. Microbiol. 156, 239247.
  • [95]
    Casagrande, D.J. (1984) in: The Okefenokee Swamp (Cohen, A.D., Casagrande, D.J., Andrejko, M.J., Best, G.R., Eds.), Los Alamos, NM: Wetland surveys, pp. 391–408.
  • [96]
    Fisher, J.B. (1987) Distribution and occurrence of aliphatic acid anions in deep subsurface waters. Geochim. Cosmochim. Acta 51, 24592468.
  • [97]
    Cody, J.D., Hutcheon, I.E., Krouse, H.R. (1999) Fluid flow, mixing and the origin of CO2 and H2S by bacterial sulphate reduction in the Mannville Group, southern Alberta, Canada. Mar. Pet. Geol. 16, 495510.
  • [98]
    Nordstrom, D.K. and Southam, G. (1997) in: Geomicrobiology: Interactions between Microbes and Minerals, vol. 35 (Banfield, J.F., Nealson, K.H., Eds.), pp. 361–390. Mineralogical Society of America, Washington DC.
  • [99]
    Edwards, K.J., Schrenk, M.O., Hamers, R., Banfield, J.F. (1998) Microbial oxidation of pyrite: experiments using microorganisms from an extreme acidic environment. Am. Mineral. 83, 14441453.
  • [100]
    Edwards, K.J., Goebel, B.M., Rodgers, T.M., Schrenk, M.O., Gihring, T.M., Cardona, M.M., Hu, B., McGuire, M.M., Hamers, R.J., Pace, N.R., Banfield, J.F. (1999) Geomicrobiology of pyrite (FeS2) dissolution: case study at Iron Mountain, California. Geomicrobiol. J. 16, 155179.
  • [101]
    Schrenk, M.O., Edwards, K.J., Goodman, R.M., Hamers, R.J., Banfield, J.F. (1998) Distribution of Thiobacillus ferrooxidans and Leptospirillum ferrooxidans: implications for generation of acid mine drainage. Science 279, 15191522.
  • [102]
    Edwards, K.J., Bond, P.L., Gihring, T.M., Banfield, J.F. (2000) An archaeal iron-oxidizing extreme acidophile important in acid mine drainage. Science 287, 17961799.
  • [103]
    White, R.H. (1999) Morenci: making the most of world class resources, in: Copper Leaching, Solvent Extraction, Electrowinning Technology (Jergensen, G.V., II., Ed.), Society for Mining, Metallurgy, and Exploration, Littleton, CO.
  • [104]
    Krebs, W., Brombacher, C., Bosshard, P.P., Bachofen, R., Brandl, H. (1997) Microbial recovery of metals from solids. FEMS Microbiol. Rev. 20, 605617.
  • [105]
    Stolz, J.F., Oremland, R.S. (1999) Bacterial respiration of arsenic and selenium. FEMS Microbiol. Rev. 23, 615627.
  • [106]
    Newman, D.K., Ahmann, D., Morel, F.M.M. (1998) A brief review of microbial arsenate respiration. Geomicrobiol. J. 15, 255268.
  • [107]
    Lloyd, J.R., Yong, P., Macaskie, L.E. (1998) Enzymatic recovery of elemental palladium by using sulfate-reducing bacteria. Appl. Environ. Microbiol. 64, 46074609.
  • [108]
    Lloyd, J.R., Nolting, H.-F., Sole, V.A., Bosecker, K., Macaskie, L.E. (1998) Technetium reduction and precipitation by sulfate-reducing bacteria. Geomicrobiol. J. 15, 4558.
  • [109]
    Smith, T., Pitts, K., McGarvey, J.A., Summers, A.O. (1998) Bacterial oxidation of mercury metal vapor, Hg(0). Appl. Environ. Microbiol. 64, 13281332.
  • [110]
    Southam, G., Beveridge, T.J. (1994) The in vitro formation of placer gold by bacteria. Geochim. Cosmochim. Acta 58, 45274530.
  • [111]
    Watterson, J.R. (1991) Preliminary evidence for the involvement of budding bacteria in the origin of Alaskan placer gold. Geology 20, 315318.
  • [112]
    Sillitoe, R.H., Folk, R.L., Saric, N. (1996) Bacteria as mediators of copper sulfide enrichment during weathering. Science 272, 11531155.
  • [113]
    Gorby, Y.A., Lovely, D.R. (1992) Enzymic uranium precipitation. Environ. Sci. Technol. 26, 205207.
  • [114]
    Lovley, D.R., Phillips, E.J.P. (1992) Reduction of uranium by Desulfovibrio desulfuricans. Appl. Environ. Microbiol. 58, 850856.
  • [115]
    Lovley, D.R., Phillips, E.J.P., Gorby, Y.A., Landa, E.R. (1991) Microbial reduction of uranium. Nature 350, 413416.
  • [116]
    Boone, D.R., Liu, Y., Zhao, Z.-J., Balkwill, D., Drake, G.R., Stevens, T.O., Aldrich, H. (1995) Bacillus infernus sp. nov., an Fe(III)- and Mn(IV)-reducing anaerobe from the deep terrestrial subsurface. Int. J. Syst. Bacteriol. 45, 441448.
  • [117]
    Wilke, J.A., Hering, J.G. (1998) Rapid oxidation of geothermal arsenic(III) in streamwaters of the eastern Sierra Nevada. Environ. Sci. Technol. 32, 657662.
  • [118]
    Kirkland, D.W., Denison, R.E., Rooney, M.A. (1995) Diagenetic alteration of Permian strata at oil fields of south central Oklahoma, USA. Mar. Pet. Geol. 12, 629644.
  • [119]
    Kontak, D.J., Kerrick, R. (1997) An isotopic (C, O, Sr) study of vein gold deposits in the Meguma terrane, Nova Scotia: Implication for source reservoirs. Econ. Geol. 92, 161180.
  • [120]
    MaCaulay, C.I., Fallick, A.E., McLaughlin, O.M., Haszeldine, R.S., Pearson, M.J. (1998) The significance of δ13C of carbonate cements in reservoir sandstones: a regional perspective from the Jurassic of the northern North Sea. Int. Assoc. Sediment, Spec. Publ. 26, 395408.
  • [121]
    Stakes, D.S., Orange, D., Paduan, J.F., Salamy, K.A., Maher, N. (1999) Cold-seeps and authigenic carbonate formation in Monterey Bay, California. Mar. Geol. 159, 93109.
  • [122]
    Criss, R.E., Cooke, G.A., Day, S.D. (1988) An organic origin for the carbonate concretions of the Ohio Shale. US Geol. Surv. Bull. 1836, 121.
  • [123]
    Danson, M.J. (1993) in: The Biochemistry of the Archaea (Archaebacteria) (Kates, M. Ed.), p. 582. Elsevier Science, Amsterdam.
  • [124]
    Schröder, C., Selig, M., Schönheit, P. (1994) Glucose fermentation to acetate, CO2 and H2 in the anaerobic hyperthermophilic eubacterium Thermotoga maritima: involvement of the Embden–Meyerhof pathway. Arch. Microbiol. 161, 460470.
  • [125]
    Andreesen, J.R. (1994) Glycine metabolism in anaerobes. Antonie Van Leeuwenhoek 66, 223237.
  • [126]
    Jones, W.J., Leigh, J.A., Mayer, F., Woese, C.R., Wolfe, R.S. (1983) Methanococcus jannaschii sp. nov., an extremely thermophilic methanogen from a submarine hydrothermal vent. Arch. Microbiol. 136, 254261.
  • [127]
    Bult, C.J., White, O., Olsen, G.J., Zhou, L., Fleischmann, R.D., Sutton, G.G., Blake, J.A., FitzGerald, L.M., Clayton, R.A., Gocayne, J.D., Kerlavage, A.R., Dougherty, B.A., Tomb, J.-F., Adams, M.D., Reich, C.I., Overbeek, R., Kirkness, E.F., Weinstock, K.G., Merrick, J.M., Glodek, A., Scott, J.L., Geoghagen, N.S.M., Weidman, J.F., Fuhrmann, J.L., Nguyen, D., Utterback, T.R., Kelley, J.M., Peterson, J.D., Sadow, P.W., Hanna, M.C., Cotton, M.D., Roberts, K.M., Hurst, M.A., Kaine, B.P., Borodovsky, M., Klenk, H.-P., Fraser, C.M., Smith, H.O., Woese, C.R., Venter, J.C. (1996) Complete genome sequence of the methanogenic Archaeon, Methanococcus jannaschii. Science 273, 10581073.
  • [128]
    Zinder, S.H., Sowers, K.R., Ferry, J.G. (1985) Methanosarcina thermophila sp. nov., a thermophilic, acetotrophic, methane-producing bacterium. Int. J. Syst. Bacteriol. 35, 522523.
  • [129]
    Garrels, R.M. and Christ, C.L. (1965) Solutions, Minerals, and Equilibria, Freeman, Cooper and Company, San Francisco, CA.
  • [130]
    Stumm, W. and Morgan, J.J. (1996) Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters, edn. 3, John Wiley and Sons, New York.
  • [131]
    Anderson, G.M. (1996) Thermodynamics of Natural Systems, John Wiley and Sons, New York.
  • [132]
    Langmuir, D. (1997) Aqueous Environmental Geochemistry, Prentice Hall, Upper Saddle River, NJ.
  • [133]
    Quastel, J.H., Stephenson, M., Whetham, M.D. (1925) Some reactions of resting bacteria in relation to anaerobic growth. Biochem. J. 19, 304317.
  • [134]
    Aslander, A. (1928) Experiments on the eradication of Canada Thistle, Cirsium arvense, with chlorates and other herbicides. J. Agric. Res. 36, 915934.
  • [135]
    Bryan, E.H. and Rohlich, G.A. (1954) Biological reduction of sodium chlorate as applied to measurement of sewage B.O.D. Sewage and Industrial Wastes, 1315–1324.
  • [136]
    Hackenthal, E. (1965) Die Reduktion von Perchlorat durch Bakterien-II. Biochem. Pharmacol. 14, 13131324.
  • [137]
    Malmqvist, A., Welander, T., Gunnarsson, L. (1991) Anaerobic growth of microorganisms with chlorate as an electron acceptor. Appl. Environ. Microbiol. 57, 22292232.
  • [138]
    Wallace, W., Ward, T., Breen, A., Attaway, H. (1996) Identification of an anaerobic bacterium which reduces perchlorate and chlorate as Wolinella succinogenes. J. Ind. Microbiol. 16, 6872.
  • [139]
    Stepanyuk, V.V., Smirnova, G.F., Klyushnikova, T.M., Kanyuk, N.I., Panchenko, L.P., Nogina, T.M., Prima, V.I. (1992) New species of the Acinetobacter genus –Acinetobacter thermotoleranticus sp. nov. Mikrobiologiya (in Russian) 61, 490500.
  • [140]
    van Ginkel, C.G., Plugge, C.M., Stroo, C.A. (1995) Reduction of chlorate with various energy subsrates and inocula under anaerobic conditions. Chemosphere 31, 40574066.
  • [141]
    Bruce, R.A., Achenbach, L.A., Coates, J.D. (1999) Reduction of (per)chlorate by a novel organism isolated from paper mill waste. Environ. Microbiol. 1, 319329.
  • [142]
    Coates, J.D., Michaelidou, U., Bruce, R.A., O'Connor, S.M., Crespi, J.N. (1999) Ubiquity and diversity of dissimilatory (per)chlorate-reducing bacteria. Appl. Environ. Microbiol. 65, 52345241.
  • [143]
    Michaelidou, U., Coates, J.D. and Achenbach, L.A. (1999) Isolation and characterization of two novel (per)chlorate-reducing bacteria from swine waste lagoons. Book of Abstracts, 218th ACS National Meeting.
  • [144]
    Hackenthal, E., Mannheim, W., Hackenthal, R., Becher, R. (1964) Die Reduktion von Perchlorat durch Bakterien. I. Untersuchungen an intakten Zellen. Biochem. Pharm. 13, 195206.
  • [145]
    Stouthamer, A.H. (1967) Nitrate reduction in Aerobacter aerogenes. Arch. Mikrobiol. 56, 6875.
  • [146]
    De Groot, G.N., Stouthamer, A.H. (1969) Regulation of reductase formation in Proteus mirabilis 1. Formation of reductases and enzymes of the formic hydrogen–lyase complex in the wild type and in chlorate-resistant mutants. Arch. Microbiol. 66, 220233.
  • [147]
    Romanenko, V.I., Koren'kov, V.N., Kuznetsov, S.I. (1976) Bacterial decomposition of ammonium perchlorate. Mikrobiologiya (in Russian) 45, 204209.
  • [148]
    Malmqvist, A., Welander, T., Moore, E., Ternstrom, A., Molin, G., Stenstrom, I.-M. (1994) Ideonella dechloratans gen. nov., sp. nov., a new bacterium capable of growing anaerobically with chlorate as an electron acceptor. Syst. Appl. Microbiol. 17, 5864.
  • [149]
    Roldan, M.D., Reyes, F., Moreno-Vivian, C., Castillo, F. (1994) Chlorate and nitrate reduction in the phototrophic bacteria Rhodobacter capsulatus and Rhodobacter sphaeroides. Curr. Microbiol. 29, 241245.
  • [150]
    Rikken, G.B., Kroon, A.G.M., van Ginkel, C.G. (1996) Transformation of (per)chlorate into chloride by a newly isolated bacterium: reduction and dismutation. Appl. Microbiol. Biotechnol. 45, 420426.
  • [151]
    Tsunogai, S., Sase, T. (1969) Formation of iodide–iodine in the ocean. Deep-Sea Res. 16, 489496.
  • [152]
    Noyes, A.A., Kato, Y., Sosman, R.B. (1910) The hydrolysis of ammonium acetate and the ionization of water at high temperatures. J. Am. Chem. Soc. 32, 159178.
  • [153]
    Harned, H.S., Ehlers, R.W. (1933) The dissociation constant of acetic acid from 0 to 60° centigrade. J. Am. Chem. Soc. 55, 652656.
  • [154]
    Ellis, A.J. (1963) The ionization of acetic, propionic, n-butyric and benzoic acid in water, from conductance measurements up to 225°. J. Chem. Soc. 1963, 22992310.
  • [155]
    Lown, D.A., Thirsk, H.R., Wynne-Jones, L. (1970) Temperature and pressure dependence of the volume of ionization of acetic acid in water from 25 to 225°C and 1–3000 bar. Trans. Faraday Soc. 66, 5173.
  • [156]
    Fisher, J.R., Barnes, H.L. (1972) The ion-product constant of water to 350°C. J. Phys. Chem. 76, 9099.
  • [157]
    Oscarson, J.L., Gillespie, S.E., Christensen, J.J., Izatt, R.M., Brown, P.R. (1988) Thermodynamic quantities for the interaction of H+ and Na+ with C2H3O2 and Cl in aqueous solution from 275 to 320°C. J. Sol. Chem. 17, 865885.
  • [158]
    Mesmer, R.E., Patterson, C.S., Busey, R.H., Holmes, H.F. (1989) Ionization of acetic acid in NaCl(aq) media: A potentiometric study to 573 K and 130 bar. J. Phys. Chem. 93, 74837490.
  • [159]
    Dickson, A.G., Wesolowski, D.J., Palmer, D.A., Mesmer, R.E. (1990) Dissociation constant of bisulfate ion in aqueous sodium chloride solutions to 250°C. J. Phys. Chem. 94, 79787985.
  • [160]
    Harned, H.S. R. Davis Jr. (1943) The ionization constant of carbonic acid in water and the solubility of carbon dioxide in water and aqueous salt solutions from 0 to 50°. J. Am. Chem. Soc. 65, 20302037.
  • [161]
    Drummond, S.E. (1981) Ph.D. thesis, Pennsylvania State University, PA.
  • [162]
    Zawisza, A., Malesinska, B. (1981) Solubility of carbon dioxide in liquid water and water in gaseous carbon dioxide in the range 0.2–5 MPa and at temperatures up to 473 K. J. Chem. Eng. Data 26, 388391.
  • [163]
    Krumholz, L.R., McKinley, J.P., Ulrich, G.A., Suflita, J.M. (1997) Confined subsurface microbial communities in Cretaceous rock. Nature 386, 6466.
  • [164]
    Phelps, T.J., Raione, E.G., White, D.C., Fliermans, C.B. (1989) Microbial activities in deep subsurface environments. Geomicrobiol. J. 7, 7992.
  • [165]
    Jones, W.J., Stugard, C.E., Jannasch, H.W. (1989) Comparison of thermophilic methanogens from submarine hydrothermal vents. Arch. Microbiol. 151, 314318.
  • [166]
    Haldeman, D.L., Amy, P.S., Ringelberg, D., White, D.C. (1993) Characterization of the microbiology within a 21 m3 section of rock from the deep subsurface. Microb. Ecol. 26, 145159.
  • [167]
    Russell, C.E., Jacobson, R., Haldeman, D.L., Amy, P.S. (1994) Heterogeneity of deep subsurface microorganisms and correlations to hydrogeological and geochemical parameters. Geomicrobiol. J. 12, 3751.
  • [168]
    Brown, D.A., Kamineni, D.C., Sawicki, J.A., Beveridge, T.J. (1994) Minerals associated with biofilms occurring on exposed rock in a granitic underground research laboratory. Appl. Environ. Microbiol. 60, 31823191.
  • [169]
    Brown, D.A., Sherriff, B.L. (1997) Active ultramicrobacterial alteration of iron in granite. Proc. SPIE-Int. Soc. Opt. Eng. 3111, 510518.
  • [170]
    Love, C.A., Patel, B.K.C., Nichols, P.D., Stackebrandt, E. (1993) Desulfotomaculum australicum, sp. nov., a thermophilic sulfate-reducing bacterium isolated from the Great Artesian basin of Australia. Syst. Appl. Microbiol. 16, 244251.
  • [171]
    Wynter, C., Patel, B.K.C., Bain, P., Jersey, J.D., Hamilton, S., Inkerman, P.A. (1996) A novel thermostable dextranase from a Thermoanaerobacter species cultured from the geothermal waters of the Great Artesian Basin of Australia. FEMS Microbiol. Lett. 140, 271276.
  • [172]
    Byers, H.K., Stackebrandt, E., Hayward, C., Balckall, L.L. (1998) Molecular investigation of a microbial mat associated with the Great Artesian Basin. FEMS Microb. Ecol. 25, 391403.
  • [173]
    Ekendahl, S., Pedersen, K. (1994) Carbon transformation by attached bacterial populations in granitic groundwater from deep crystalline bed-rock of the Stripa research mine. Microbiology 140, 15651573.
  • [174]
    Olson, G.J., Dockins, W.S., McFeters, G.A., Iverson, W.P. (1981) Sulfate-reducing and methanogenic bacteria from deep aquifers in Montana. Geomicrobiol. J. 2, 327340.
  • [175]
    Liu, Y., Karnauchow, T.M., Jarrell, K.F., Balkwill, D.L., Drake, G.R., Ringelberg, D., Clarno, R., Boone, D.R. (1997) Description of two new thermophilic Desulfotomaculum spp., Desulfotomaculum putei sp. nov., from a deep terrestrial subsurface, and Desulfotomaculum luciae sp. nov., from a hot spring. Int. J. Syst. Bacteriol. 47, 615621.
  • [176]
    Grossman, D. and Schulman, S. (1995) The biosphere below, Earth, June 4, 35–40.
  • [177]
    Daumas, S., Lombart, R., Bianchi, A. (1986) A Bacteriological study of geothermal spring waters dating from the Dogger and Trias Period in the Paris Basin. Geomicrobiol. J. 4, 423433.
  • [178]
    Tardy-Jacquenod, C., Magot, M., Patel, B.K.C., Matheron, R., Caumette, P. (1998) Desulfotomaculum halophilum sp. nov., a halophilic sulfate-reducing bacterium isolated from oil production facilities. Int. J. Syst. Bacteriol. 48, 333338.
  • [179]
    Onstott, T.C., Phelps, T.J., Colwell, F.S., Ringelberg, D., White, D.C., Boone, D.R. (1998) Observations pertaining to the origin and ecology of microorganisms recoverd from the deep subsurface of Taylorsville Basin, Virginia. Geomicrobiol. J. 15, 353385.
  • [180]
    Nilsen, R.K., Torsvik, T., Lien, T. (1996) Desulfotomaculum thermocisternum sp. nov., a sulfate reducer isolated from a hot North Sea oil reservoir. Int. J. Syst. Bacteriol. 46, 397402.
  • [181]
    Greene, A.C., Patel, B.K.C., Sheehy, A.J. (1997) Deferribacter thermophilus gen. nov. sp. nov., a novel thermophilic manganese- and iron-reducing bacterium isolated from a petroleum reservoir. Int. J. Syst. Bacteriol. 47, 505509.
  • [182]
    Clark, D.A., Norris, P.R. (1996) Acidimicrobium ferrooxidans gen. nov., sp. nov. mixed-culture ferrous iron oxidation with Sulfobacillus species. Microbiology 142, 785790.
  • [183]
    Bridge, T.A.M., Johnson, B. (1998) Reduction of soluble iron and reductive dissolution of ferric iron-containing minerals by moderately thermophilic iron oxidizing bacteria. Appl. Environ. Microbiol. 64, 21812186.
  • [184]
    Wisotzkey, J.D. P. Jurtshuk Jr., Fox, G.E., Deinhard, G., Poralla, K. (1992) Comparitive sequence analyses on the 16S rRNA (rDNA) of Bacillus acidocaldarius, Bacillus acidoterrestris, and Bacillus cycloheptanicus and proposal for creation of a new genus, Alicyclobacillus gen. nov. Int. J. Syst. Bacteriol. 42, 263269.
  • [185]
    Darland, G., Brock, T.D. (1971) Bacillus acidocaldarius sp. nov., an acidophilic thermophilic spore-forming bacterium. J. Gen. Microbiol. 67, 915.
  • [186]
    Nicolaus, B., Improta, R., Manca, M.C., Lama, L., Esposito, E., Gambacorta, A. (1998) Alicyclobacilli from an unexplored geothermal soil in Antarctica: Mount Rittmann. Polar Biol. 19, 131141.
  • [187]
    Huber, R., Rossnagel, P., Woese, C.R., Rachel, R., Langworthy, T.A., Stetter, K.O. (1996) Formation of ammonium from nitrate during chemolithoautotrophic growth of the extremely thermophilic bacterium Ammonifex degensii gen. nov. sp. nov. Syst. Appl. Microbiol. 19, 4049.
  • [188]
    Engle, M., Li, Y., Woese, C., Wiegel, J. (1995) Isolation and characterization of a novel alkalitolerant thermophile, Anaerobranca horikoshii gen. nov., sp. nov. Int. J. Syst. Bacteriol. 45, 454461.
  • [189]
    Schenk, A., Aragno, M. (1979) Bacillus schlegelii, a new species of thermophilic, facultatively chemolithoautotrophic bacterium oxidizing molecular hydrogen. J. Gen. Microbiol. 115, 333341.
  • [190]
    Nicolaus, B., Lama, L., Esposito, E., Manca, M.C., Di Prisco, G., Gambacorta, A. (1996) Bacillus thermoantarcticus sp. nov., from Mount Melbourne, Antarctica a novel thermophilic species. Polar Biol. 16, 101104.
  • [191]
    Nicolaus, B., Marsiglia, F., Esposito, E., Trincone, A., Lama, L., Sharp, R., Di Prisco, G., Gambacorta, A. (1991) Isolation of five strains of thermophilic eubacteria in Antarctica. Polar Biol. 11, 425429.
  • [192]
    Sunna, A., Tokajian, S., Burghardt, J., Rainey, F., Antranikian, G., Hashwa, F. (1997) Identification of Bacillus kaustophilus, Bacillus thermocatenulatus and Bacillus strain HSR as members of Bacillus thermoleovorans. Syst. Appl. Microbiol. 20, 232237.
  • [193]
    Anderson, M., Laukkanen, M., Nurmiaho-Lassila, E.-L., Rainey, F.A., Niemela, S.I., Salkinoja-Salonen, M. (1995) Bacillus thermosphaericus sp. nov. a new thermophilic ureolytic Bacillus isolated from air. Syst. Appl. Microbiol. 18, 203220.
  • [194]
    Bonjour, F., Aragno, M. (1984) Bacillus tusciae, a new species of thermoacidophilic, facultatively chemolithoautotrophic, hydrogen oxidizing sporeformer from a geothermal area. Arch. Microbiol. 139, 397401.
  • [195]
    Kryukov, V.R., Savel'eva, N.D., Pusheva, M.A. (1983) Calderobacterium hydrogenophilum gen. et. sp. nov., an extremely thermophilic hydrogen bacterium and its hydrogenase activity. Mikrobiologiya (in Russian) 52, 781788.
  • [196]
    Mladenovska, Z., Mathrani, I.M., Ahring, B. (1995) Isolation and characterization of Caldicellulosiruptor lactoaceticus sp. nov., an extremely thermophilic, cellulolytic, anaerobic bacterium. Arch. Microbiol. 163, 223230.
  • [197]
    Huang, C.-Y., Patel, B., Mah, R., Baresi, L. (1998) Caldicellulosiruptor owensensis sp. nov., an anaerobic, extremely thermophilic, xylanolytic bacterium. Int. J. Syst. Bacteriol. 48, 9197.
  • [198]
    Rainey, F.A., Donnison, A.M., Janssen, P.H., Saul, D., Rodrigo, A., Bergquist, P.L., Daniel, R.M., Stackebrandt, E., Morgan, H.W. (1994) Description of Caldicellulosiruptor saccharolyticus gen. nov., sp. nov.: An obligately anaerobic, extremely thermophilic, cellulolytic bacterium. FEMS Microbiol. Let. 120, 263266.
  • [199]
    Chrisostomos, S., Patel, B.K.C., Dwivedi, P.P., Denman, S.E. (1996) Caloramator indicus sp. nov., a new thermophilic anaerobic bacterium isolated from the deep-seated nonvolcanically heated waters of an Indian artesian aquifer. Int. J. Syst. Bacteriol. 46, 497501.
  • [200]
    Tarlera, S., Muxi, L., Soubes, M., Stams, A.J.M. (1997) Caloramator proteoclasticus sp. nov., a new moderately thermophilic anaerobic proteolytic bacterium. Int. J. Syst. Bacteriol. 47, 651656.
  • [201]
    Pierson, B.K., Castenholz, R.W. (1974) A phototrophic gliding filamentous bacterium of hot springs, Chloroflexus aurantiacus, gen. and sp. nov. Arch. Microbiol. 100, 524.
  • [202]
    Li, Y., Mandelco, L., Wiegel, J. (1993) Isolation and characterization of a moderately thermophilic anaerobic alkaliphile, Clostridium paradoxum sp. nov. Int. J. Syst. Bacteriol. 43, 450460.
  • [203]
    Drent, W.J., Lahpor, G.A., Wiegant, W.M., Gottschal, J.C. (1991) Fermentation of inulin by Clostridium thermosuccinogenes sp. nov., a thermophilic anaerobic bacterium isolated from various habitats. Appl. Environ. Microbiol. 57, 455462.
  • [204]
    Rainey, F.A., Stackebrandt, E. (1993) Transfer of the type species of the genus Thermobacteroides to the genus Thermoanaerobacter as Thermoanaerobacter acetoethylicus (Ben-Bassat and Zeikus 1981) comb. nov., Description of Coprothermobacter gen. nov., and reclassification of Thermobacteroides proteolyticus as Coprothermobacter proteolyticus (Ollivier et al., 1985) comb. nov. Int. J. Syst. Bacteriol. 43, 857859.
  • [205]
    Ferreira, A.C., Nobre, M.F., Rainey, F.A., Silva, M.T., Wait, R., Burghardt, J., Ching, A.P., Da Costa, M.S. (1997) Deinococcus geothermalis sp. nov. and Deinococcus murrayi sp. nov., two extremely radiation-resistant and slightly thermophilic species from hot springs. Int. J. Bacteriol. 47, 939947.
  • [206]
    Rees, G.N., Grassia, G.S., Sheehy, A.J., Dwivedi, P.P., Patel, B.K.C. (1995) Desulfacinum infernum gen. nov., sp. nov., a thermophilic sulfate-reducing bacterium from a petroleum reservoir. Int. J. Syst. Bacteriol. 45, 8589.
  • [207]
    Nazina, T.N., Ivanova, A.E., Kanchaveli, L.P., Rozanova, E.P. (1988) A new sporeforming thermophilic methylotrophic sulfate-reducing bacterium, Desulfotomaculum kuznetsovii sp. nov. Mikrobiologiya (in Russian) 57, 823827.
  • [208]
    Karnauchow, T.M., Koval, S.F., Jarrell, K.F. (1992) Isolation and characterization of three thermophilic anaerobes from a St. Lucia hot spring. Syst. Appl. Microbiol. 15, 296310.
  • [209]
    Nazina, T.N., Rozanova, E.P. (1978) Thermophilic sulfate-reducing bacteria from oil strata. Mikrobiologiya (in Russian) 47, 142148.
  • [210]
    Min, H., Zinder, S.H. (1990) Isolation and characterization of a thermophilic sulfate-reducing bacterium Desulfotomaculum thermoacetoxidans sp. nov. Arch. Microbiol. 153, 399404.
  • [211]
    Tasaki, M., Kamagata, Y., Nakamura, K., Mikami, E. (1991) Isolation and characterization of a thermophilic benzoate-degrading, sulfate-reducing bacterium, Desulfotomaculum thermobenzoicum sp. nov. Arch. Microbiol. 155, 348352.
  • [212]
    Fardeau, M.-L., Ollivier, B., Patel, B.K.C., Dwivedi, P., Ragot, M., Garcia, J.-L. (1995) Isolation and characterization of a thermophilic sulfate-reducing bacterium, Desulfotomaculum thermosapovorans sp. nov. Int. J. Syst. Bacteriol. 45, 218221.
  • [213]
    Bonch-Osmolovskaya, E.A., Sokolova, T.G., Kostrikina, N.A., Zavarzin, G.A. (1990) Desulfurella acetivorans gen. nov. and sp. nov. – a new thermophilic sulfur reducing eubacterium. Arch. Microbiol. 153, 151155.
  • [214]
    Miroshnichenko, M.L., Rainey, F.A., Hippe, H., Chernyh, N.A., Kostrikina, N.A., Bonch-Osmolovskaya, E.A. (1998) Desulfurella kamchatkensis sp. nov. and Desulfurella propionica sp. nov., new sulfur-respiring thermophilic bacteria from Kamchatka thermal environments. Int. J. Syst. Bacteriol. 48, 475479.
  • [215]
    Miroshnichenko, M.L., Gongadze, G.A., Lysenko, A.M., Bonch-Osmolovskaya, E.A. (1994) Desulfurella multipotens sp. nov., a new sulfur-respiring thermophilic eubacterium from Raoul Island (Kermadec archipelago, New Zealand). Arch. Microbiol. 161, 8893.
  • [216]
    L'Haridon, S., Cilia, V., Messner, P., Raguenes, G., Gambacorta, A., Sleytr, U.B., Prieur, D., Jeanthon, C. (1998) Desulfurobacterium thermolithotrophum gen. nov. sp. nov., a novel autotrophic sulphur-reducing bacterium isolated from a deep-sea hydrothermal vent. Int. J. Syst. Bacteriol. 48, 701711.
  • [217]
    Svetlichnii, V.A., Svetlichnaya, T.P. (1988) Dictyoglomus turgidus sp. nov., a new extreme thermophilic eubacterium isolated from hot springs in the Uzon volcano crater. Mikrobiologiya (in Russian) 57, 435441.
  • [218]
    Huber, R., Woese, C.R., Langworthy, T.A., Kristjansson, J., Stetter, K.O. (1990) Fervidobacterium islandicum sp. nov., a new extremely thermophilic eubacterium belonging to the ‘Thermotogales. Arch. Microbiol. 154, 105111.
  • [219]
    Patel, B.K.C., Morgan, H.W., Daniel, R.M. (1985) Fervidobacterium nodosum gen. nov. and spec. nov., a new chemoorganotrophic, caldoactive, anaerobic bacterium. Arch. Microbiol. 141, 6369.
  • [220]
    Friedrich, A.B., Antranikian, G. (1996) Keratin degradation by Fervidobacterium pennavorans, a novel thermophilic anaerobic species of the order Thermotogales. Appl. Environ. Microbiol. 62, 28752882.
  • [221]
    Fiala, G., Woese, C.R., Langworthy, T.A., Stetter, K.O. (1990) Flexistipes sinusarabici, a novel genus and species of eubacteria occurring in the Atlantis II Deep brines of the Red Sea. Arch. Microbiol. 154, 120126.
  • [222]
    Davey, M.E., Wood, W.A., Key, R., Nakamura, K., Stahl, D.A. (1993) Isolation of three species of Geotoga and Petrotoga: two new genera, representing a new lineage in the bacterial line of descent distantly related to the ‘Thermotogales. Syst. Appl. Microbiol. 16, 191200.
  • [223]
    Cayol, J.-L., Ollivier, B., Patel, B.K.C., Prensier, G., Guezennec, J., Garcia, J.-L. (1994) Isolation and characterization of Halothermothrix orenii gen. nov., sp. nov., a halophilic, thermophilic, fermentative, strictly anaerobic bacterium. Int. J. Syst. Bacteriol. 44, 534540.
  • [224]
    Shima, S., Suzuki, K.-I. (1993) Hydrogenobacter acidophilus sp. nov., a thermoacidophilic, aerobic, hydrogen-oxidizing bacterium requiring elemental sulfur for growth. Int. J. Syst. Bacteriol. 43, 703708.
  • [225]
    Nishihara, H., Igarashi, Y., Kodama, T. (1990) A new isolate of Hydrogenobacter, an obligately chemolithoautotrophic, thermophilic, halophilic and aerobic hydrogen-oxidizing bacterium from seaside saline hot spring. Arch. Microbiol. 153, 294298.
  • [226]
    Kawasumi, T., Igarashi, Y., Kodama, T., Minoda, Y. (1984) Hydrogenobacter thermophilus gen. nov., sp. nov., an extremely thermophilic, aerobic, hydrogen-oxidizing bacterium. Int. J. Syst. Bacteriol. 34, 510.
  • [227]
    Kristjansson, J.K., Ingason, A., Alfredsson, G.A. (1985) Isolation of thermophilic obligately autotrophic hydrogen-oxidizing bacteria, similar to Hydrogenobacter thermophilus, from Icelandic hot springs. Arch. Microbiol. 140, 321325.
  • [228]
    Hayashi, N.R., Ishida, T., Yokota, A., Kodama, T., Igarashi, Y. (1999) Hydrogenophilus thermoluteolus gen. nov. sp. nov. a thermophilic, facultatively chemolithoautotrophic, hydrogen-oxidizing bacterium. Int. J. Syst. Bacteriol. 49, 783786.
  • [229]
    Goto, E., Kodama, T., Minoda, Y. (1978) Growth and taxonomy of thermophilic hydrogen bacteria. Agric. Biol. Chem. 42, 13051308.
  • [230]
    Giovannoni, S.J., Schabtach, E., Castenholz, R.W. (1987) Isosphaera pallida, gen. and comb. nov., a gliding, budding eubacterium from hot springs. Arch. Microbiol. 147, 276284.
  • [231]
    Chung, A.P., Rainey, F., Nobre, M.F., Burghardt, J., Da Costa, M.S. (1997) Miothermus cerbereus sp. nov., a new slightly thermophilic species with high levels of 3-hydroxy fatty acids. Int. J. Syst. Bacteriol. 47, 12251230.
  • [232]
    Nobre, M.F., Truper, H.G., Da Costa, M.S. (1996) Transfer of Thermus ruber (Loginova et al., 1984), Thermus silvanus (Tenreiro et al., 1995), and Thermus chliarophilus (Tenreiro et al., 1995) to Miothermus gen. nov. as Miothermus ruber comb. nov., Miothermus silvanus comb. nov. and Miothermus chliarophilus com. nov., respectively and emendation of the genus Thermus. Int. J. Syst. Bacteriol. 46, 604606.
  • [233]
    Malashenko, Y.R., Romanovskaya, V.A., Bogachenko, V.N., Shved, A.D. (1975) Thermophilic and thermotolerant methane-assimilating bacteria. Mikrobiolgiya (in Russian) 44, 855862.
  • [234]
    Slobodkin, A., Reysenbach, A.-L., Mayer, F., Wiegel, J. (1997) Isolation and characterization of the homoacetogenic thermophilic bacterium Moorella glycerini sp. nov. Int. J. Syst. Bacteriol. 47, 969974.
  • [235]
    Fontaine, F.E., Peterson, W.H., McCoy, E., Johnson, M.J., Ritter, G.J. (1942) A new type of glucose fermentation by Clostridium thermoaceticum nov. sp. J. Bacteriol. 43, 701715.
  • [236]
    Collins, M.D., Lawson, P.A., Willems, A., Cordoba, J.J., Fernandez-Garayzabal, J., Garcia, P., Cai, J., Hippe, H., Farrow, J.A.E. (1994) The phylogeny of the genus Clostridium: Proposal of five new genera and eleven new species combinations. Int. J. Syst. Bacteriol. 44, 812826.
  • [237]
    Lien, T., Madsen, M., Rainey, F.A., Birkeland, N.-K. (1998) Petrotoga mobilis sp. nov., from a North Sea oil-production well. Int. J. Syst. Bacteriol. 48, 10071013.
  • [238]
    Alfredsson, G.A., Kristjansson, J.K., Hjörleifsdottir, S. and Stetter, K.O. (1988) Rhodothermus marinus, gen. nov., sp. nov., a thermophilic, halophilic bacterium from submarine hot springs in Iceland. J. Gen. Microbiol., 299–306.
  • [239]
    Sako, Y., Takai, K., Ishida, Y., Uchida, A., Katayama, Y. (1996) Rhodothermus obamensis sp. nov., a modern lineage of extremely thermophilic marine bacteria. Int. J. Syst. Bacteriol. 46, 10991104.
  • [240]
    Carreto, L., Moore, E., Nobre, M.F., Wait, R., Riley, P.W., Sharp, R.J., Da Costa, M.S. (1996) Rubrobacter xylanophilus sp. nov., a new thermophilic species isolated from a thermally polluted effluent. Int. J. Syst. Bacteriol. 46, 460465.
  • [241]
    Suzuki, K., Collins, M.D., Iijima, E., Komagata, K. (1988) Chemotaxonomic characterization of a radiotolerant bacterium, Arthrobacter radiotolerans: Description of Rubrobacter radiotolerans gen. nov., comb. nov. FEMS Microbiol. Let. 52, 3340.
  • [242]
    Demharter, W., Hensel, R., Smida, J., Stackebrandt, E. (1989) Sphaerobacter thermophilus gen. nov., sp. nov. A deeply rooting member of the actinomycetes subdivision isolated from thermophilically treated sewage sludge. Syst. Appl. Microbiol. 11, 261266.
  • [243]
    Pohlschroeder, M., Leschine, S.B., Canale-Parola, E. (1994) Spirochaeta caldaria sp. nov., a thermophilic bacterium that enhances cellulose degradation by Clostridium thermocellum. Arch. Microbiol. 161, 1724.
  • [244]
    Aksenova, H.Y., Rainey, F.A., Janssen, P.H., Zavarzin, G.A. (1992) Spriochaeta thermophila sp. nov., an obligately anaerobic, polysaccharolytic, extremely thermophilic bacterium. Int. J. Syst. Bacteriol. 42, 175177.
  • [245]
    Norris, P.R., Clark, D.A., Owen, J.P., Waterhouse, S. (1996) Characteristics of Sulfobacillus acidophilus sp. nov. and other moderately thermophilic mineral-sulphide-oxidizing bacteria. Microbiology 142, 775783.
  • [246]
    Golovacheva, R.S., Karavaiko, G.I. (1978) A new genus of thermophilic spore-forming bacteria, Sulfobacillus. Mikrobiologiya (in Russian) 47, 815822.
  • [247]
    Golovacheva, R.S. (1979) Attachment of Sulfobacillus thermosulfidooxidans cells to the surface of sulfide minerals. Mikrobiologiya (in Russian) 48, 528533.
  • [248]
    Takai, K., Inoue, A., Hirokoshi, K. (1999) Thermaerobacter marianensis gen. nov., sp. nov., an aerobic extremely thermophilic marine bacterium from the 11 000 m deep Mariana trench. Int. J. Syst. Bacteriol. 49, 619628.
  • [249]
    Ben-Bassat, A., Zeikus, J.G. (1981) Thermobacteroides acetoethylicus gen. nov. and spec. nov., a new chemoorganotrophic, anaerobic, thermophilic bacterium. Arch. Microbiol. 128, 365370.
  • [250]
    Cayol, J.-L., Ollivier, B., Patel, B.K.C., Ravot, G., Magot, M., Ageron, E., Grimont, P.A.D., Garcia, J.-L. (1995) Description of Thermoanaerobacter brockii subsp. lactiethylicus subsp. nov., isolated from a deep subsurface French oil well, a proposal to reclassify Thermoanaerobacter finnii as Thermoanaerobacter brockii subsp. finnii comb. nov., and an emended description of Thermoanaerobacter brockii. Int. J. Syst. Bacteriol. 45, 783789.
  • [251]
    Zeikus, J.G., Hegge, P.W., Anderson, M.A. (1979) Thermoanaerobium brockii gen. nov. and sp. nov., a new chemoorganotrophic, caldoactive anaerobic bacterium. Arch. Microbiol. 122, 4148.
  • [252]
    Lee, Y.-E., Jain, M.K., Lee, C., Lowe, S.E., Zeikus, G. (1993) Taxonomic distinction of saccharolytic thermophilic anaerobes: description of Thermoanaerobacterium xylanolyticum gen. nov., sp. nov., and Thermoanaerobacterium saccharolyticum gen. nov., sp. nov.; reclassification of Thermoanaerobium brockii, Clostridium thermosulfurogenes, and Clostridium thermohydrosulfuricum E100-69 as Thermoanaerobacter brockii comb. nov., Thermoanaerobacterium thermosulfurigenes com. nov., and Thermoanaerobacter thermohydrosulfuricus comb. nov., respectively; and transfer of Clostridium thermohydrosulfuricum 39E to Thermoanaerobacter ethanolicus. Int. J. Syst. Bacteriol. 43, 4151.
  • [253]
    Wiegel, J., Ljungdahl, L.G. (1981) Thermoanaerobacter ethanolicus gen. nov., spec. nov., a new, extreme thermophilic, anaerobic bacterium. Arch. Microbiol. 128, 343348.
  • [254]
    Leigh, J.A., Mayer, F., Wolfe, R.S. (1981) Acetogenium kivui, a new thermophilic hydrogen-oxidizing, acetogenic bacterium. Arch. Microbiol. 129, 275280.
  • [255]
    Larsen, L., Nielsen, P., Ahring, B.K. (1997) Thermoanaerobacter mathranii sp. nov., an ethanol-producing, extremely thermophilic anaerobic bacterium from a hot spring in Iceland. Arch. Microbiol. 168, 114119.
  • [256]
    Bonch-Osmolovskaya, E.A., Miroshnichenko, M.L., Chernykh, N.A., Kostrikina, N.A., Pikuta, E.V., Rainey, F.A. (1997) Reduction of elemental sulfur by moderately thermophilic organotrophic bacteria and the description of Thermoanaerobacter sulfurophilus sp. nov. Microbiology 66, 483489.
  • [257]
    Cook, G.M., Rainey, F.A., Patel, B.K.C., Morgan, H.W. (1996) Characterization of a new obligately anaerobic thermophile, Thermoanaerobacter wiegelii sp. nov. Int. J. Syst. Bacteriol. 46, 123127.
  • [258]
    Liu, S.-Y., Rainey, F.A., Morgan, H.W., Mayer, F., Wiegel, J. (1996) Thermoanaerobacterium aotearoense sp. nov., a slightly acidophilic, anaerobic thermophile isoltaed from various hot springs in New Zealand and emendation of the genus Thermoanerobacterium. Int. J. Syst. Bacteriol. 46, 388396.
  • [259]
    Itoh, T., Suzuki, K.-i., Nakase, T. (1998) Thermocladium modestius gen. nov., sp. nov., a new genus of the rod-shaped, extremely thermophilic Crenarchaeote. Int. J. Syst. Bacteriol. 48, 879887.
  • [260]
    Engle, M., Li, Y., Rainey, F., DeBlois, S., Mai, V., Reichert, A., Mayer, F., Messner, P., Wiegel, J. (1996) Thermobrachium celere gen. nov. sp. nov., a rapidly growing thermophilic, alkalitolerant, and proteolytic obligate anaerobe. Int. J. Syst. Bacteriol. 46, 10251033.
  • [261]
    Huber, R., Dyba, D., Huber, H., Burggraf, S., Rachel, R. (1998) Sulfur-inhibited Thermosphaera aggregans sp. nov., a new genus of hyperthermophilic archaea isolated after its prediction from environmentally derived 16S rRNA sequences. Int. J. Syst. Bacteriol. 48, 3138.
  • [262]
    Korn-Wendisch, F., Rainey, F., Kroppenstedt, R.M., Kempf, A., Majazza, A., Kutzner, H.J., Stackebrandt, E. (1995) Thermocrispum gen. nov., a new genus of the order Actinomycetales, and description of Thermocrispum municipale sp. nov. and Thermocrispum agreste sp. nov. Int. J. Syst. Bacteriol. 45, 6777.
  • [263]
    Zeikus, J.G., Dawson, M.A., Thompson, T.E., Ingvorsen, K., Hatchikian, E.C. (1983) Microbial ecology of volcanic sulphidogenesis: isolation and characterization of Thermodesulfobacterium commune gen. nov. and sp. nov. J. Gen. Microbiol. 129, 11591169.
  • [264]
    Rozanova, E.P., Khudyakova, A.I. (1974) A new nonspore-forming thermophilic sulfate-reducing organism, Desulfovibrio thermophilus nov. sp. Mikrobiologiya (in Russian) 43, 10691075.
  • [265]
    Rozanova, E.P., Pivovarova, T.A. (1988) Reclassification of Desulfovibrio thermophilus (Rozanova, Khudyakova, 1974). Mikrobiologiya (in Russian) 57, 102106.
  • [266]
    Beeder, J., Torsvik, T., Lien, T. (1995) Thermodesulforhabdus norvegicus gen. nov., sp. nov., a novel thermophilic sulfate-reducing bacterium from oil field water. Arch. Microbiol. 164, 331336.
  • [267]
    Henry, E.A., Devereux, R., Maki, J.S., Gilmour, C.C., Woese, C.R., Mandelco, L., Schauder, R., Ramsen, C.C., Mitchell, R. (1994) Characterization of a new thermophilic sulfate-reducing bacterium Thermodesulfovibrio yellowstonii, gen. nov. and sp. nov. its phylogenetic relationship to Thermodesulfobacterium commune and their origins deep within the bacterial domain. Arch. Microbiol. 161, 6269.
  • [268]
    Cayol, J.-L., Ducerf, S., Garcia, J.-L. and Patel, B.K.C. (1998) Thermohalobacter berrensis gen. nov., sp. nov., a novel thermophilic strictly halophilic bacterium from a solar saltern. Int. Conf. Thermophiles '98 Prog. Abstr. B-P2.
  • [269]
    Zacharova, E.V., Mitrofanova, T.I., Krasilnikova, E.N., Kondratieva, E.N. (1993) Thermohydrogenium kirishiense gen. nov. and sp. nov., a new anaerobic thermophilic bacterium. Arch. Microbiol. 160, 492497.
  • [270]
    Zarilla, K.A., Perry, J.J. (1984) Thermophilum album gen. nov. and sp. nov., a bacterium obligate for thermophily and n-alkane substrates. Arch. Microbiol. 137, 286290.
  • [271]
    Jackson, T.J., Ramaley, R.F., Meinschein, W.G. (1973) Thermomicrobium a new genus of extremely thermophilic bacteria. Int. J. Syst. Bacteriol. 23, 2836.
  • [272]
    Tenreiro, S., Nobre, M.F., Rainey, F.A., Miguel, C., Da Costa, M.S. (1997) Thermonema rossianum sp. nov., a new thermophilic and slightly halophilic species from saline hot springs in Naples, Italy. Int. J. Syst. Bacteriol. 47, 122126.
  • [273]
    Huber, R., Woese, C.R., Langworthy, T.A., Fricke, H., Stetter, K.O. (1989) Thermosipho africanus gen. nov., represents a new genus of thermophilic eubacteria within the ‘Thermotogales. Syst. Appl. Microbiol. 12, 3237.
  • [274]
    Svetlitshnyi, V., Rainey, F., Wiegel, J. (1996) Thermosyntropha lipolytica gen. nov., sp. nov., a lipolytic, anaerobic, alkalitolerant, thermophilic bacterium utilizing short- and long-chain fatty acids in syntrophic coculture with a methanogenic archaeum. Int. J. Syst. Bacteriol. 46, 11311137.
  • [275]
    Slobodkin, A., Reysenbach, A.-L., Strutz, N., Dreier, M., Wiegel, J. (1997) Thermoterrabacterium ferrireducens gen. nov., sp. nov., a thermophilic anaerobic dissimilatory Fe(III)-reducing bacterium from a continental hot spring. Int. J. Syst. Bacteriol. 47, 541547.
  • [276]
    Odinstova, E.V., Jannasch, H.W., Mamone, J.A., Langworthy, T.A. (1996) Thermothrix azorensis sp. nov., an obligately chemolithoautotrophic, sulfur-oxidizing, thermophilic bacterium. Int. J. Syst. Bacteriol. 46, 422428.
  • [277]
    Caldwell, D.E., Caldwell, S.J., Laycock, J.P. (1976) Thermothrix thioparus gen. et sp. nov. a facultatively anaerobic facultative chemolithotroph living at neutral pH and high temperature. Can. J. Microbiol. 22, 15091517.
  • [278]
    Brannan, D.K., Caldwell, D.E. (1980) Thermothrix thiopara: growth and metabolism of a newly isolated thermophile capable of oxidizing sulfur and sulfur compounds. Appl. Environ. Microbiol. 40, 211216.
  • [279]
    Ravot, G., Magot, M., Fardeau, M.-L., Patel, B.K.C., Prensier, G., Egan, A., Garcia, J.-L., Ollivier, B. (1995) Thermotoga elfii sp. nov., a novel thermophilic bacterium from an African oil-producing well. Int. J. Syst. Bacteriol. 45, 308314.
  • [280]
    Fardeau, M.-L., Ollivier, B., Patel, B.K.C., Magot, M., Thomas, P., Rimbault, A., Rocchiccioli, F., Garcia, J.-L. (1997) Thermotoga hypogea sp. nov., a xylanolytic, thermophilic bacterium from an oil-producing well. Int. J. Syst. Bacteriol. 47, 10131019.
  • [281]
    Jeanthon, C., Reysenbach, A.-L., L'Haridon, S., Gambacorta, A., Pace, N.R., Glenat, P., Prieur, D. (1995) Thermotoga subterranea sp. nov., a new thermophilic bacterium isolated from a continental oil reservoir. Arch. Microbiol. 64, 9197.
  • [282]
    Windberger, E., Huber, R., Trincone, A., Fricke, H., Stetter, K.O. (1989) Thermotoga thermarum sp. nov. and Thermotoga neapolitana occurring in African continental solfataric springs. Arch. Microbiol. 151, 506512.
  • [283]
    Brock, T.D., Freeze, H. (1969) Thermus aquaticus gen. nov. and sp. nov., a non-sporulating extreme thermophile. J. Bacteriol. 98, 289297.
  • [284]
    Williams, R.A.D., Smith, K.E., Welch, S.G., Micallef, J. (1996) Thermus oshimai sp. nov., isolated from hot springs in Portugal, Iceland, and the Azores, and comment on the concept of a limited geopgraphical distribution of Thermus species. Int. J. Syst. Bacteriol. 46, 403408.
  • [285]
    Oshima, T., Imahori, K. (1974) Description of Thermus thermophilus (Yoshida and Oshima) comb. nov., a nonsporulating thermophilic bacterium from a Japanese thermal spa. Int. J. Syst. Bacteriol. 24, 102112.
  • [286]
    Egorova, A.A., Deryugina, Z.P. (1963) The spore-forming thermophilic thiobacterium. Mikrobiologiya (in Russian) 32, 439446.
  • [287]
    Huber, R., Langworthy, T.A., König, H., Thomm, M., Woese, C.R., Sleytr, U.B., Stetter, K.O. (1986) Thermotoga maritima sp. nov. represents a new genus of unique extremely thermophilic eubacteria growing up to 90°C. Arch. Microbiol. 144, 324333.
  • [288]
    Jannasch, H.W., Huber, R., Belkin, S., Stetter, K.O. (1988) Thermotoga neapolitana sp. nov. of the extremely thermophilic, eubacterial genus Thermotoga. Arch. Microbiol. 150, 103104.
  • [289]
    Fuchs, T., Huber, H., Burggraf, S., Stetter, K.O. (1996) 16S rDNA-based phylogeny of the Archaeal order Sulfolobales and reclassification of Desulfurolobus ambivalens as Acidianus ambivalens comb. nov. Syst. Appl. Microbiol. 19, 5660.
  • [290]
    Zillig, W., Yeats, S., Holz, I., Bock, A., Gropp, F., Rettenberger, M., Lutz, S. (1985) Plasmid-related anaerobic autotrophy of the novel archaebacterium Sulfolobus ambivalens. Nature 313, 789791.
  • [291]
    Zillig, W., Yeats, S., Holz, I., Bock, A., Rettenberger, M., Gropp, F., Simon, G. (1986) Desulfurolobus ambivalens, gen. nov., sp. nov., an autotrophic archaebacterium facultatively oxidizing or reducing sulfur. Syst. Appl. Microbiol. 8, 197203.
  • [292]
    Segerer, A., Neuner, A., Kristjansson, J., Stetter, K.O. (1986) Acidianus infernus gen. nov., sp. nov., and Acidianus brierleyi comb. nov. facultatively aerobic, extremely acidophilic thermophilic sulfur-metabolizing archaebacteria. Int. J. Syst. Bacteriol. 36, 559564.
  • [293]
    Huber, G., Drobner, E., Huber, H., Stetter, K.O. (1992) Growth by aerobic oxidation of molecular hydrogen in Archaea – a metabolic property so far unknown for this domain. Syst. Appl. Microbiol. 15, 502504.
  • [294]
    Brierley, C.L., Brierley, J.A. (1973) A chemoautotrophic and thermophilic microorganism isolated from an acid hot spring. Can. J. Microbiol. 19, 183188.
  • [295]
    Huber, H., Jannasch, H., Rachel, R., Fuchs, T., Stetter, K.O. (1997) Archaeoglobus veneficus sp. nov., a novel facultative chemolithoautotrophic hyperthermophilic sulfite reducer, isolated from abyssal black smokers. Syst. Appl. Microbiol. 20, 374380.
  • [296]
    Fuchs, T., Huber, H., Teiner, K., Burggraf, S., Stetter, K.O. (1995) Metallosphaera prunae, sp. nov., a novel metal-mobilizing, thermoacidophilic archaeum, isolated from a uranium mine in Germany. Syst. Appl. Microbiol. 18, 560566.
  • [297]
    Huber, G., Spinnler, C., Gambacorta, A., Stetter, K.O. (1989) Metallosphaera sedula gen. and sp. nov. represents a new genus of aerobic, metal-mobilizing, thermoacidophilic archaebacteria. Syst. Appl. Microbiol. 12, 3847.
  • [298]
    Kotelnikova, S.V., Obraztsova, A.Y., Gongadze, G.M., Laurinavichius, K.S. (1993) Methanobacterium thermoflexum sp. nov. and Methanobacterium defluvii sp. nov., thermophilic rod-shaped methanogens isolated from anaerobic digestor sludge. Syst. Appl. Microbiol. 16, 427435.
  • [299]
    Blotevogel, K.-H., Fischer, U. (1985) Isolation and characterization of a new thermophilic and autotrophic methane producing bacterium: Methanobacterium thermoaggregans spec. nov. Arch. Microbiol. 142, 218222.
  • [300]
    Blotevogel, K.-H., Fischer, U., Mocha, M., Jannsen, S. (1985) Methanobacterium thermoalcaliphilum spec. nov., a new moderately alkaliphilic and thermophilic autotrophic methanogen. Arch. Microbiol. 142, 211217.
  • [301]
    Laurinavichyus, K.S., Kotel'nikova, S.V., Obraztsova, A.Y. (1988) New species of thermophilic methane-producing bacteria. Mikrobiologiya (in Russian) 57, 10351041.
  • [302]
    Huber, H., Thomm, M., König, H., Thies, G., Stetter, K.O. (1982) Methanococcus thermolithotrophicus, a novel thermophilic lithotrophic methanogen. Arch. Microbiol. 132, 4750.
  • [303]
    Jeanthon, C., L'Haridon, S., Reysenbach, A.L., Corre, E., Vernet, M., Messner, P., Sleytr, U.B., Prieur, D. (1999) Methanococcus vulcanius sp. nov., a novel hyperthermophilic methanogen isolated from East Pacific Rise, and identification of Methanococcus sp. DSM 4213T as Methanococcus fervens sp. nov. Int. J. Syst. Bacteriol. 49, 583589.
  • [304]
    Boone, D.R., Whitman, W.B. and Rouviere, P., (1993) in: Methanogenesis – Ecology, Physiology, Biochemistry and Genetics (Ferry, J.G., Ed.), pp. 35–80. Chapman and Hall, New York.
  • [305]
    Zhulina, T.N., Zavarzin, G.A. (1987) Methanohalobium evestigatus nov. gen., nov. sp., an extreme halophilic methane-forming archaebacterium. Doklady Akad. Nauk SSSR (in Russian) 293, 464468.
  • [306]
    Zeikus, J.G., Wolfe, R.S. (1972) Methanobacterium thermoautotrophicus sp. nov., an anaerobic, autotrophic, extreme thermophile. J. Bacteriol. 109, 707713.
  • [307]
    Winter, J., Lerp, C., Zabel, H.-P., Wildenauer, F.X., König, H., Schindler, F. (1984) Methanobacterium wolfei, sp. nov., a new tungsten-requiring, thermophilic, autotrophic methanogen. Syst. Appl. Microbiol. 5, 457466.
  • [308]
    Kamagata, Y., Kawasaki, H., Oyzizu, H., Nakamura, K., Mikami, E., Endo, G., Koga, Y., Yamasato, K. (1992) Characterization of three thermophilic strains of Methanothrix (‘Methanosaeta’) thermophila sp. nov. and rejection of Methanothrix (‘Methanosaeta’) thermoacetophila. Int. J. Syst. Bacteriol. 42, 463468.
  • [309]
    Takai, K., Sugai, A., Itoh, T., Horikoshi, K. (2000) Palaeococcus ferrophilus gen. nov., sp. nov., a barophilic, hyperthermophilic archaeon from a deep-sea hydrothermal vent chimney. Int. J. Syst. Evol. Microbiol. 50, 489500.
  • [310]
    Schleper, C., Puehler, G., Holz, I., Gambacorta, A., Janekovic, D., Santarius, U., Klenk, H.-P., Zillig, W. (1995) Picrophilus gen. nov., fam. nov. a novel aerobic, heterotrophic, thermoacidophilic genus and family comprising archaea capable of growth around pH 0. J. Bacteriol. 177, 70507059.
  • [311]
    Schleper, C., Puhler, G., Klenk, H.-P., Zillig, W. (1996) Picrophilus oshimae and Picrophilus torridus fam. nov., gen. nov., sp. nov., two species of hyperacidophilic, thermophilic, heterotrophic, aerobic archaea. Int. J. Syst. Bacteriol. 46, 814816.
  • [312]
    Segerer, A.H., Trincone, A., Gahrtz, M., Stetter, K.O. (1991) Stygiolobus azoricus gen. nov., sp. nov. represents a novel genus of anaerobic, extremely thermoacidophilic archaebacteria of the order Sulfolobales. Int. J. Syst. Bacteriol. 41, 495501.
  • [313]
    Brock, T.D., Brock, K.M., Belly, R.T., Weiss, R.L. (1972) Sulfolobus: a new genus of sulfur-oxidizing bacteria living at low pH and high temperature. Arch. Microbiol. 84, 5468.
  • [314]
    Segerer, A., Stetter, K.O., Klink, F. (1985) Two contrary modes of chemolithotrophy in the same archaebacterium. Nature 313, 787789.
  • [315]
    Brock, T.D., Cook, S., Petersen, S., Mosser, J.L. (1976) Biogeochemistry and bacteriology of ferrous iron oxidation in geothermal habitats. Geochim. Cosmochim. Acta 40, 493500.
  • [316]
    Takayanagi, S., Kawasaki, H., Sugimori, K., Yamada, T., Sugai, A., Ito, T., Yamasato, K., Shioda, M. (1996) Sulfolobus hakonensis sp. nov., a novel species of acidothermophilic archaeon. Int. J. Syst. Bacteriol. 46, 377382.
  • [317]
    Huber, G., Stetter, K.O. (1991) Sulfolobus metallicus, sp. nov., a novel strictly chemolithoautotroph thermophilic archaeal species of metal-mobilizers. Syst. Appl. Microbiol. 14, 372378.
  • [318]
    Grogan, D., Palm, P., Zillig, W. (1990) Isolate B12, which harbors a virus-like element, represents a new species of the archaebacterial genus Sulfolobus, Sulfolobus shibatae, sp. nov. Arch. Microbiol. 154, 594599.
  • [319]
    Grogan, D.W. (1989) Phenotypic characterization of the archaebacterial genus Sulfolobus: comparison of five wild-type strains. J. Bacteriol. 171, 67106719.
  • [320]
    Zillig, W., Stetter, K.O., Wunderl, S., Schulz, W., Priess, H., Scholz, I. (1980) The Sulfolobus–‘Caldariella’ group: taxonomy on the basis of the structure of DNA-dependent RNA polymerases. Arch. Microbiol. 125, 259269.
  • [321]
    Golovacheva, R.S., Val'ekho-Roman, K.M., Troitskii, A.V. (1987) Sulfurococcus mirabilis gen. nov., sp. nov., a new thermophilic archaebacterium with the ability to oxidize sulfur. Mikrobiologiya (in Russian) 56, 100107.
  • [322]
    Karavaiko, G.I., Golyshina, O.V., Troitskii, A.V., Valieho-Roman, K.M., Golovacheva, R.S., Pivovarova, T.A. (1994) Sulfurococcus yellowstonii sp. nov., a new species of iron and sulfur oxidizing thermoacidophilic archaebacteria. Mikrobiologiya (in Russian) 63, 668682.
  • [323]
    Ronimus, R.S., Reysenbach, A.-L., Musgrave, D.R., Morgan, H.W. (1997) The phylogenetic position of the Thermococcus isolate AN1 based on 16S rRNA gene sequence analysis: a proposal that AN1 represents a new species, Thermococcus zilligii sp. nov. Arch. Microbiol. 168, 245248.
  • [324]
    Klages, K.U., Morgan, H.W. (1994) Characterization of an extremely thermophilic sulphur-metabolizing archaebacterium belonging to the Thermococcales. Arch. Microbiol. 162, 261266.
  • [325]
    Segerer, A., Langworthy, T.A., Stetter, K.O. (1988) Thermoplasma acidophilum and Thermoplasma volcanium sp. nov. from solfatara fields. Syst. Appl. Microbiol. 10, 161171.
  • [326]
    Darland, G., Brock, T.D., Samsonoff, W., Conti, S.F. (1970) A thermophilic, acidophilic, mycoplasma isolated from a coal refuse pile. Science 170, 14161418.
  • [327]
    Sako, Y., Nomura, N., Uchida, A., Ishida, Y., Morii, H., Koga, Y., Hoaki, T., Maruyama, T. (1996) Aeropyrum pernix gen. nov., sp. nov., a novel aerobic hyperthermophilic archaeon growing at temperatures up to 100°C. Int. J. Syst. Bacteriol. 46, 10701077.
  • [328]
    Stetter, K.O., Lauerer, G., Thomm, M., Neuner, A. (1987) Isolation of extremely thermophilic sulfate reducers: evidence for a novel branch of archaebacteria. Science 236, 822824.
  • [329]
    Stetter, K.O. (1988) Archaeoglobus fulgidus gen. nov., sp. nov. a new taxon of extremely thermophilic archaebacteria. Syst. Appl. Microbiol. 10, 172173.
  • [330]
    Beeder, J., Nilsen, R.K., Rosnes, J.T., Torsvik, T., Lien, T. (1994) Archaeoglobus fulgidus isolated from hot North Sea oil field waters. Appl. Environ. Microbiol. 60, 12271231.
  • [331]
    Burggraf, S., Jannasch, H.W., Nicolaus, B., Stetter, K.O. (1990) Archaeoglobus profundus sp. nov., represents a new species within the sulfate-reducing archaebacteria. Syst. Appl. Microbiol. 13, 2428.
  • [332]
    Itoh, T., Suzuki, K.-I., Sanchez, P.C., Nakase, T. (1999) Caldivirga maquilingensis gen. nov., sp. nov., a new genus of rod-shaped crenarchaeote isolated from a hot spring in the Philippines. Int. J. Syst. Bacteriol. 49, 11571163.
  • [333]
    Svetlitshnyi, V.A., Slesarev, A.I., Svetlichnaya, T.P., Zavarzin, G.A. (1987) Caldococcus litoralis gen. nov. sp. nov., a new marine extremely thermophilic archaebacterium reducing elemental sulfur. Mikrobiologiya (in Russian) 56, 831838.
  • [334]
    Aoshima, M., Yamagishi, A., Oshima, T. (1996) Eubacteria-type isocitrate dehydrogenase from an archaeon: cloning, sequencing, and expression of a gene encoding isocitrate dehyrogenase from a hyperthermophilic archaebacterium, Caldococcus noboribetus. Arch. Biochem. Biophys. 336, 7785.
  • [335]
    Aoshima, M., Oshima, T. (1997) Purification and characterization of isocitrate dehydrogenase from a hyperthermophilic archaebacterium, Caldococcus noboribetus. Biochim. Biophys. Acta 1340, 227234.
  • [336]
    Bonch-Osmolovskaya, E.A., Slesarev, A.I., Miroshnichenko, M.L., Svetlichnaya, T.P., Alekseev, V.A. (1988) Characteristics of Desulfurococcus amylolyticus nov. sp. – a new extremely thermophilic archaebacterium isolated from thermal springs of Kamchatka and Kunashir Island. Mikrobiologiya (in Russian) 57, 94101.
  • [337]
    Zillig, W., Stetter, K.O., Prangishvilli, D., Schäfer, W., Wunderl, S., Janekovic, D., Holz, I., Palm, P. (1982) Desulfurococcaceae, the second family of extremely thermophilic, anaerobic, sulfur-respiring Thermoproteales. Zentralblatt Bakteriol. Mikrobiol. Hyg. 1 Abt. Originale C 3, 304317.
  • [338]
    Zillig, W., Holz, I., Janekovic, D., Klenk, H.-P., Imsel, E., Trent, J., Wunderl, S., Forjaz, V.H., Coutinho, R., Ferreira, T. (1990) Hyperthermus butylicus, a hyperthermophilic sulfur-reducing archaebacterium that ferments peptides. J. Bacteriol. 172, 39593965.
  • [339]
    Zhao, H., Wood, A.G., Widdel, F., Bryant, M.P. (1988) An extremely thermophilic Methanococcus from a deep sea hydrothermal vent and its plasmid. Arch. Microbiol. 150, 178183.
  • [340]
    Burggraf, S., Fricke, H., Neuner, A., Kristjansson, J., Rouvier, P., Mandelco, L., Woese, C.R., Stetter, K.O. (1990) Methanococcus igneus sp. nov., a novel hyperthermophilic methanogen from a shallow submarine hydrothermal vent. Syst. Appl. Microbiol. 13, 263269.
  • [341]
    Jeanthon, C., L'Haridon, S., Reysenbach, A.L., Vernet, M., Messner, P., Sleytr, U.B., Prieur, D. (1998) Methanococcus infernus sp. nov., a novel hyperthermophilic lithotrophic methanogen isolated from a deep-sea hydrothermal vent. Int. J. Syst. Bacteriol. 48, 913918.
  • [342]
    Huber, R., Kurr, M., Jannasch, H.W., Stetter, K.O. (1989) A novel group of abyssal methanogenic archaebacteria (Methanopyrus) growing at 110°C. Nature 342, 833834.
  • [343]
    Stetter, K.O., Thomm, M., Winter, J., Wildgruber, G., Huber, H., Zillig, W., Janecovic, D., König, H., Palm, P., Wunderl, S. (1981) Methanothermus fervidus, sp. nov., a novel extremely thermophilic methanogen isolated from an Icelandic hot spring. Bakteriol. Mikrobiol. Hyg. 1 Abt. Originale C 2, 166178.
  • [344]
    Lauerer, G., Kristjansson, J.K., Langworthy, T.A., König, H., Stetter, K.O. (1986) Methanothermus sociabilis sp. nov., a second species within the Methanothermaceae growing at 97°C. Syst. Appl. Microbiol. 8, 100105.
  • [345]
    Völkl, P., Huber, R., Drobner, E., Rachel, R., Burggraf, S., Trincone, A., Stetter, K.O. (1993) Pyrobaculum aerophilum sp. nov., a novel nitrate-reducing hyperthermophilic archaeum. Appl. Environ. Microbiol. 1993, 29182926.
  • [346]
    Huber, R., Kristjansson, J.K., Stetter, K.O. (1987) Pyrobaculum gen. nov., a new genus of neutrophilic rod-shaped archaebacteria from continental solfataras growing optimally at 100°C. Arch. Microbiol. 149, 95101.
  • [347]
    Erauso, G., Reysenbach, A.-L., Godfroy, A., Muenier, J.-R., Crump, B., Partensky, F., Baross, J.A., Marteinsson, V., Barbier, G., Pace, N.R., Prieur, D. (1993) Pyrococcus abyssi sp. nov., a new hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. Arch. Microbiol. 160, 338349.
  • [348]
    Pledger, R.J., Baross, J.A. (1991) Preliminary description and nutritional characterization of a chemoorganotrophic archaeobacterium growing at temperatures of up to 100°C isolated from a submarine hydrothermal vent environment. J. Gen. Microbiol. 137, 203211.
  • [349]
    Fiala, G., Stetter, K.O. (1986) Pyrococcus furiosus sp. nov. represents a novel genus of marine heterotrophic archaebacteria growing optimally at 100°C. Arch. Microbiol. 145, 5661.
  • [350]
    Gonzalez, J.M., Masuchi, Y., Robb, F.T., Ammerman, J.W., Maeder, D.L., Yanagibayashi, M., Tamaoka, J., Kato, C. (1998) Pyrococcus horikoshii sp. nov., a hyperthermophilic archaeon isolated from a hydrothermal vent at the Okinawa Trough. Extremophiles 2, 123130.
  • [351]
    Zillig, W., Holz, I., Klenk, H.-P., Trent, J., Wunderl, S., Janekovic, D., Imsel, E., Haas, B. (1987) Pyrococcus woesei, sp. nov., an ultra-thermophilic marine archaebacterium, representing a novel order, Thermococcales. Syst. Appl. Microbiol. 9, 6270.
  • [352]
    Pley, U., Schipka, J., Gambacorta, A., Jannasch, H.W., Fricke, H., Rachel, R., Stetter, K.O. (1991) Pyrodictum abyssi sp. nov. represents a novel heterotrophic marine archaeal hyperthermophile growing at 110°C. Syst. Appl. Microbiol. 14, 245253.
  • [353]
    Stetter, K.O., König, H., Stackebrandt, E. (1983) Pyrodictium gen. nov., a new genus of submarine disc-shaped sulphur reducing archaebacteria growing optimally at 105°C. Syst. Appl. Microbiol. 4, 535551.
  • [354]
    Fiala, G., Stetter, K.O., Jannasch, H.W., Langworthy, T.A., Madon, J. (1986) Staphylothermus marinus sp. nov. represents a novel genus of extremely thermophilic submarine heterotrophic archaebacteria growing up to 98°C. Syst. Appl. Microbiol. 8, 106113.
  • [355]
    Jochimsen, B., Peinemann-Simon, S., Volker, H., Stuben, D., Botz, R., Stoffers, P., Dando, P.R., Thomm, M. (1997) Stetteria hydrogenophila, gen. nov. and sp. nov., a novel mixotrophic sulfur-dependent crenarchaeote isolated from Milos, Greece. Extremophiles 1, 6773.
  • [356]
    Hensel, R., Matussek, K., Michalke, K., Tacke, L., Tindall, B.J., Kohlhoff, M., Siebers, B., Dielenschneider, J. (1997) Sulfophobococcus zilligii gen. nov., spec. nov. a novel hyperthermophilic Archaeum isolated from hot alkaline springs of Iceland. Syst. Appl. Microbiol. 20, 102110.
  • [357]
    Kurosawa, N., Itoh, Y.H., Iwai, T., Sugai, A., Uda, I., Kimura, N., Horiuchi, T., Itoh, T. (1998) Sulfurisphaera ohwakuensis gen. nov., sp. nov., a novel extremely thermophilic acidophile of the order Sulfolobales. Int. J. Syst. Bacteriol. 48, 451456.
  • [358]
    Dirmeier, R., Keller, M., Hafenbradl, D., Braun, F.-J., Rachel, R., Burggraf, S., Stetter, K.O. (1998) Thermococcus acidaminovorans sp. nov., a new hyperthermophilic alkalophilic archaeon growing on amino acids. Extremophiles 2, 109114.
  • [359]
    Canganella, F., Jones, W.J., Gambacorta, A., Antranikian, G. (1998) Thermococcus guaymasensis sp. nov. and Thermococcus aggregans sp. nov., two novel thermophilic archaea isolated from Guaymas Basin hydrothermal vent site. Int. J. Syst. Bacteriol. 48, 11811185.
  • [360]
    Keller, M., Braun, F.-J., Dirmeier, R., Hafenbradl, D., Burggraf, S., Rachel, R., Stetter, K.O. (1995) Thermococcus alcaliphilus sp. nov., a new hyperthermophilic archaeum growing on polysulfide at alkaline pH. Arch. Microbiol. 164, 390395.
  • [361]
    Marteinsson, V.T., Birrien, J.-L., Reysenbach, A.-L., Vernet, M., Marie, D., Gambacorta, A., Messner, P., Sleytr, U.B., Prieur, D. (1999) Thermococcus barophilus sp. nov., a new barophilic and hyperthermophilic archaeon isolated under high hydrostatic pressure from a deep-sea hydrothermal vent. Int. J. Syst. Bacteriol. 49, 351359.
  • [362]
    Duffaud, G.D., D'Hennezel, O.B., Peek, A.S., Reysenbach, A.-L., Kelly, R.M. (1998) Isolation and characterization of Thermococcus barossii, sp. nov., a hyperthermophilic archaeon isolated from a hydrothermal vent flange formation. Syst. Appl. Microbiol. 21, 4049.
  • [363]
    Zillig, W., Holz, I., Janekovic, D., Schafer, W., Reiter, W.D. (1983) The archaebacterium Thermococcus celer represents a novel genus within the thermophilic branch of the archaebacteria. Syst. Appl. Microbiol. 4, 8894.
  • [364]
    Huber, R., Stohr, J., Hohenhaus, S., Rachel, R., Burggraf, S., Jannasch, H.W., Stetter, K.O. (1995) Thermococcus chitonophagus sp. nov., a novel, chitin-degrading, hyperthermophilic archaeum from a deep-sea hydrothermal vent environment. Arch. Microbiol. 164, 255264.
  • [365]
    Godfroy, A., Meunier, J.-R., Guezennec, J., Lesongeur, F., Raguenes, G., Rimbault, A., Barbier, G. (1996) Thermococcus fumicolans sp. nov., a new hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent in the North Fiji Basin. Int. J. Syst. Bacteriol. 46, 11131119.
  • [366]
    Miroshnichenko, M.L., Gongadze, G.M., Rainey, F.A., Kostyukova, A.S., Lysenko, A.M., Chernyh, N.A., Bonch-Osmolovskaya, E.A. (1998) Thermococcus gorgonarius sp. nov. and Thermococcus pacificus sp. nov. heterotrophic extremely thermophilic archaea from New Zealand submarine hot vents. Int. J. Syst. Bacteriol. 48, 2329.
  • [367]
    Godfroy, A., Lesongeur, F., Raguenes, G., Querellou, J., Antoine, E., Meunier, J.-R., Guezennec, J., Barbier, G. (1997) Thermococcus hydrothermalis sp. nov., a new hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. Int. J. Syst. Bacteriol. 47, 622626.
  • [368]
    Neuner, A., Jannasch, H.W., Belkin, S., Stetter, K.O. (1990) Thermococcus litoralis sp. nov. a new species of extremely thermophilic marine archaebacteria. Arch. Microbiol. 153, 205207.
  • [369]
    Belkin, S., Jannasch, H.W. (1985) A new extremely thermophilic, sulfur-reducing heterotrophic, marine bacterium. Arch. Microbiol. 141, 181186.
  • [370]
    Gonzalez, J.M., Kato, C., Horikoshi, K. (1995) Thermococcus peptonophilus sp. nov., a fast-growing, extremely thermophilic archaebacterium isolated from deep-sea hydrothermal vents. Arch. Microbiol. 164, 159164.
  • [371]
    Kobayashi, T., Kwak, Y.S., Akiba, T., Kudo, T., Horikoshi, K. (1994) Thermococcus profundus sp. nov., a new hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. Syst. Appl. Microbiol. 17, 232236.
  • [372]
    Grote, R., Li, L., Tamaoka, J., Kato, C., Horikoshi, K., Antranikian, G. (1999) Thermococcus siculi sp. nov., a novel hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent at the Mid-Okinawa trough. Extremophiles 3, 5562.
  • [373]
    Miroshnichenko, M.L., Bonch-Osmolovskaya, E.A., Neuner, A., Kostrikina, N.A., Chernych, N.A., Alekseev, V.A. (1989) Thermococcus stetteri sp. nov., a new extremely thermophilic marine sulfur-metabolizing archaebacterium. Syst. Appl. Microbiol. 12, 257262.
  • [374]
    Stetter, K.O., Fiala, G., Huber, G., Huber, R., Segerer, A. (1990) Hyperthermophilic microorganisms. FEMS Microbiol. Rev. 75, 117124.
  • [375]
    Fischer, F., Zillig, W., Stetter, K.O., Schreiber, G. (1983) Chemolithoautotrophic metabolism of anaerobic extremely thermophilic archaebacteria. Nature 301, 511513.
  • [376]
    Zillig, W., Gierl, A., Schreiber, G., Wunderl, S., Janekovic, D., Stetter, K.O., Klenk, H.P. (1983) The archaebacterium Thermofilum pendens represents a novel genus of thermophilic, anaerobic sulfur respiring Thermoproteales. Syst. Appl. Microbiol. 4, 7987.
  • [377]
    Zillig, W., Stetter, K.O., Schäfer, W., Janekovic, D., Wunderl, S., Holz, I., Palm, P. (1981) Thermoproteales: a novel type of extremely thermoacidophilic anaerobic archaebacteria isolated from Icelandic solfataras. Bakteriol. Mikrobiol. Hyg. 1. Abt. Originale C 2, 205227.
  • [378]
    Bonch-Osmolovskaya, E.A., Miroshnichenko, M.L., Kostrikina, N.A., Chernych, N.A., Zavarzin, G.A. (1990) Thermoproteus uzoniensis sp. nov., a new extremely thermophilic archaebacterium from Kamchatka continental hot springs. Arch. Microbiol. 154, 556559.
  • [379]
    The Prokaryotes: A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications, vol. 1 (Balows A., Truper, H.G., Dworkin, M., Harder, W. and Schleifer, K.-H., Eds.), Springer-Verlag, (1992) New York.
  • [380]
    Finster, K., Liesack, W., Tindall, B.J. (1997) Sulfurospirillum arachanense sp. nov., a new microaerophilic sulfur reducing bacterium. Int. J. Syst. Bacteriol. 47, 12121217.
  • [381]
    Doelle, H.W. (1969) Bacterial Metabolism, Academic Press, New York.
  • [382]
    Plyasunov, A.V., O'Connell, J.P., Wood, R.H., Shock, E.L. (2000) Infinite dilution partial molar properties of aqueous solutions on nonelectrolytes. II. Equations for the standard thermodynamic functions of hydration of volatile nonelectrolytes over wide ranges of conditions including subcritical temperatures. Geochim. Cosmochim. Acta 64, 27792795.
  • [383]
    Drozd, J.W. (1976) Energy coupling and respiration in Nitrosomonas europea. Arch. Microbiol. 110, 257262.
  • [384]
    Suzuki, I., Dular, U., Kwok, S.C. (1974) Ammonia or ammonium ion as substrate for oxidation by Nitrosomonas europaea cells and extracts. J. Bacteriol. 120, 556558.
  • [385]
    Tamegai, H., Li, L., Masui, N., Kato, C. (1997) A denitrifying bacterium from the deep sea at 11000 m depth. Extremophiles 1, 207211.
  • [386]
    Petursdottir, S.K., Kristjansson, J.K. (1997) Silicibacter lacuscaerulensis gen. nov., sp. nov., a mesophilic moderately halophilic bacterium characteristic of the Blue Lagoon geothermal lake in Iceland. Extremophiles 1, 9499.
  • [387]
    Gottschalk, G. (1986) Bacterial Metabolism, 2nd edn., Springer-Verlag, New York.
  • [388]
    Murray, P.A., Zinder, S.H. (1984) Nitrogen fixation by a methanogenic archaebacterium. Nature 312, 284286.
  • [389]
    Postgate, J.R., Kent, H.M. (1985) Diazotrophy within Desulfovibrio. J. Gen. Microbiol. 131, 21192122.
  • [390]
    Nazina, T.N., Rozanova, E.P., Kalininskaya, T.A. (1979) Fixation of molecular nitrogen by sulfate-reducing bacteria from oil strata. Mikrobiologiya (in Russian) 48, 133136.
  • [391]
    Bergey's Manual of Systematic Bacteriology, vol. 3 (Holt, J.G., Staley, J.T., Bryant, M.P. and Pfennig, N., Eds.), Williams and Wilkins, (1989) Baltimore, MD.
  • [392]
    Olsen, G. (1999) What's eating the free lunch. Nature 400, 403405.
  • [393]
    Newman, D.K., Kennedy, E.K., Coates, J.D., Ahmann, D., Ellis, D.J., Lovley, D.R., Morel, F.M.M. (1997) Dissimilatory arsenate and sulfate reduction in Desulfotomaculum auripigmentum sp. nov. Arch. Microbiol. 168, 380388.
  • [394]
    Pikuta, E.V., Zhilina, T.N., Zavarzin, G.A., Kostrikina, N.A., Osipov, G.A., Rainey, F.A. (1998) Desulfonatronum lacustre gen. nov., sp. nov. a new alkaliphilic sulfate-reducing bacterium utilizing ethanol. Mikrobiologiya (in Russian) 67, 123131.
  • [395]
    Zhilina, T.N., Zavarzin, G.A., Rainey, F.A., Pikuta, E.N., Osipov, G.A., Kostrikina, N.A. (1997) Desulfonatronovibrio hydrogenovorans gen. nov., sp. nov., an alkaliphilic, sulfate-reducing bacterium. Int. J. Syst. Bacteriol. 47, 144149.
  • [396]
    Lien, T., Madsen, M., Steen, I.H., Gjerdevik, K. (1998) Desulfobulbus rhabdoformis sp. nov., a sulfate reducer from a water–oil separation system. Int. J. Syst. Bacteriol. 48, 469474.
  • [397]
    Bak, F., Cypionka, H. (1987) A novel type of energy metabolism involving fermentation of inorganic sulphur compounds. Nature 326, 891892.
  • [398]
    Bak, F., Pfennig, N. (1987) Chemolithotrophic growth of Desulfovibrio sulfodismutans sp. nov. by disproportionation of inorganic sulfur compounds. Arch. Microbiol. 147, 184189.
  • [399]
    Finster, K., Liesack, W., Thamdrup, B. (1998) Elemental sulfur and thiosulfate disproportionation by Desulfocapsa sulfoexigens sp. nov., a new anaerobic bacterium isolated from marine surface sediment. Appl. Environ. Microbiol. 64, 119125.
  • [400]
    Janssen, P.H., Schuhmann, A., Bak, F., Liesack, W. (1996) Disproportionation of inorganic sulfur compounds by sulfate-reducing bacterium Desulfocapsa thiozymogenes gen. nov., sp. nov. Arch. Microbiol. 166, 184192.
  • [401]
    Durand, P., Reysenbach, A.-L., Prieur, D., Pace, N. (1993) Isolation and characterization of Thiobacillus hydrothermalis sp. nov., a mesophilic obligately chemolithotrophic bacterium isolated from a deep-sea hydrothermal vent in Fiji Basin. Arch. Microbiol. 159, 3944.
  • [402]
    Jannasch, H.W., Wirsen, C.O., Nelson, D.C., Robertson, L.A. (1985) Thiomicrospira crunogena sp. nov., a colorless, sulfur-oxidizing bacterium from a deep-sea hydrothermal vent. Int. J. Syst. Bacteriol. 35, 422424.
  • [403]
    Brinkhoff, T., Muyzer, G., Wirsen, C., Kuever, J. (1999) Thiomicrospira chilensis sp. nov., a mesophilic obligately chemolithoautotrophic sulfur-oxidizing bacterium isolated from a Thioploca mat. Int. J. Syst. Bacteriol. 49, 875879.
  • [404]
    Ehrlich, H.L. (1996) Geomicrobiology, 3rd edn., Marcel Dekker, New York.
  • [405]
    Pollock, M.R., Knox, R. (1943) Bacterial reduction of tetrathionate. Biochem. J. 37, 476481.
  • [406]
    Huber, H., Stetter, K.O. (1989) Thiobacillus prosperus sp. nov., represents a new group of halotolerant metal-mobilizing bacteria isolated from a marine geothermal field. Arch. Microbiol. 151, 479485.
  • [407]
    The Prokaryotes: A Handbook on Habitats, Isolation and Identification of Bacteria, vol. 1 (Starr, M.P., Stolp, H., Truper, H.G., Belows, A. and Schlegel, H.G., Eds.), Springer-Verlag, (1981) New York.
  • [408]
    Gundersen, J.K., Jorgensen, B.B., Larsen, E., Jannasch, H.W. (1992) Mats of giant sulphur bacteria on deep-sea sediments due to fluctuating hydrothermal flow. Nature 360, 454456.
  • [409]
    Jorgensen, B.B., Revsbech, N.P. (1983) Colorless sulfur bacteria, Beggiotoa spp. and Thiovulum spp., in O2 and H2S microgradients. Appl. Environ. Microbiol. 45, 12611270.
  • [410]
    van den Ende, F.P., van Gemerden, H. (1993) Sulfide oxidation under oxygen limitation by a Thiobacillus thioparus isolated from a marine microbial mat. FEMS Microbiol. Ecol. 13, 6978.
  • [411]
    Fossing, H., Gallardo, V.A., Jorgensen, B.B., Huttel, M., Nielsen, L.P., Schulz, H., Canfield, D.E., Forster, S., Glud, R.N., Gundersen, J.K., Kuver, J., Ramsing, N.B., Teske, A., Thamdrup, B., Ulloa, O. (1995) Concentration and transport of nitrate by the mat forming sulphur bacterium Thioploca. Nature 374, 713715.
  • [412]
    Ollivier, B., Fardeau, M.-L., Cayol, J.-L., Magot, M., Patel, B.K.C., Prensier, G., Garcia, J.-L. (1998) Methanocalculus halotolerans gen. nov., sp. nov., isolated from an oil-producing well. Int. J. Syst. Bacteriol. 48, 821828.
  • [413]
    Ollivier, B., Cayol, J.-L., Patel, B.K.C., Magot, M., Fardeau, M.-L., Garcia, J.-L. (1997) Methanoplanus petrolearius sp. nov., a novel methanogenic bacterium from an oil producing well. FEMS Microbiol. Lett. 147, 5156.
  • [414]
    Nozhevnikova, A.N., Chudina, V.I. (1984) Morphology of the thermophilic acetate methane bacterium Methanothrix thermoacetophila sp. nov. Mikrobiologiya (in Russian) 53, 756760.
  • [415]
    Zhilina, T.N., Zavarzin, G.A., Detkova, E.N., Rainey, F.A. (1996) Natroniella acetigena gen. nov. sp. nov., an extremely haloalkaliphilic, homoacetic bacterium: a new member of Haloanerobiales. Curr. Microbiol. 32, 320326.
  • [416]
    Downey, R.J. (1966) Nitrate reductase and respiratory adaptation in Bacillus stearothermophilus. J. Bacteriol. 91, 634641.
  • [417]
    Ni, S., Boone, D.R. (1991) Isolation and characterization of a dimethyl sulfide-degrading methanogen, Methanolobus siciliae HI350, from an oil well, characterization of M. siliae T4/MT, and emendation of M. siciliae. Int. J. Syst. Bacteriol. 41, 410416.
  • [418]
    Mathrani, I.M., Boone, D.R., Mah, R.A., Fox, G.E., Lau, P.P. (1988) Methanohalophilus zhilinae sp. nov., an alkaliphilic, halophilic, methylotrophic methanogen. Int. J. Syst. Bacteriol. 38, 139142.
  • [419]
    Zinder, S.H. (1993) in: Methanogenesis – Ecology, Physiology, Biochemistry, and Genetics (Ferry, J. Ed.), Chapman and Hall, New York.
  • [420]
    Widdel, F. (1986) Growth of methanogenic bacteria in pure culture with 2-propanol and other alcohols as hydrogen donors. Appl. Environ. Microbiol. 51, 10561062.
  • [421]
    Zellner, G., Winter, J. (1987) Secondary alcohols as hydrogen donors for CO2-reduction by methanogenesis. FEMS Microbiol. Lett. 44, 323328.
  • [422]
    Lovley, D.R., Phillips, E.J.P. (1988) Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl. Environ. Microbiol. 54, 14721480.
  • [423]
    Lovley, D.R., Giovannoni, S.J., White, D.C., Champine, J.E., Phillips, E.J.P., Gorby, Y.A., Goodwin, S. (1993) Geobacter metallireducens gen. nov. sp. nov., a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals. Arch. Microbiol. 159, 336344.
  • [424]
    Oremland, R.S., Blum, J.S., Culbertson, C.W., Visscher, P.T., Miller, L.G., Dowdle, P., Strohmaier, F.E. (1994) Isolation, growth and metabolism of an obligately anaerobic selenate-respiring bacterium, strain SES-3. Appl. Environ. Microbiol. 60, 30113019.
  • [425]
    Blum, J.S., Bindi, A.B., Buzzelli, J., Stolz, J.F., Oremland, R.S. (1998) Bacillus arsenicoselenatis, sp. nov., and Bacillus selenitireducens, sp. nov. two haloalkaliphiles from Mono Lake, California that respire oxyanions of selenium and arsenic. Arch. Microbiol. 171, 1930.
  • [426]
    Laverman, A., Blum, J.S., Shaefer, J.K., Phillips, E.J.P., Lovley, D.R., Oremland, R.S. (1995) Growth of strain SES-3 with arsenate and other diverse electron acceptors. Appl. Environ. Microbiol. 61, 35563561.
  • [427]
    Hippe, H., Caspari, D., Fiebig, K., Gottschalk, G. (1979) Utilization of trimethylamine and other N-methyl compounds for growth and methane formation by Methanosarcina barkeri. Proc. Natl. Acad. Sci. USA 76, 494498.
  • [428]
    Rabus, R., Widdel, F. (1995) Anaerobic degradation of ethylbenzene and other aromatic hydrocarbons by new denitrifying bacteria. Arch. Microbiol. 163, 96103.
  • [429]
    Hinrichs, K.-U., Hayes, J.M., Sylva, S.P., Brewer, P.G., DeLong, E.F. (1999) Methane-consuming archaebacteria in marine sediments. Nature 398, 802805.
  • [430]
    Coates, J.D., Lonergan, D.J., Philips, E.J.P., Jenter, H., Lovely, D.R. (1995) Desulfuromonas palmitatis sp. nov., a marine dissimilatory Fe(III) reducer that can oxidize long-chain fatty acids. Arch. Microbiol. 164, 406413.
  • [431]
    Pfennig, N., Biebl, H. (1976) Desulfuromonas acetoxidans gen. nov. and sp. nov., a new anaerobic, sulfur-reducing, acetate-oxidizing bacterium. Arch. Microbiol. 110, 312.
  • [432]
    F. Caccavo Jr., Lonergan, D.J., Lovley, D.R., Davis, M., Stolz, J., McInerney, M.J. (1994) Geobacter sulfurreducens sp. nov., a hydrogen- and acetate-oxidizing dissimilatory metal-reducing microorganism. Appl. Environ. Microbiol. 60, 37523759.
  • [433]
    Isaksen, M.F., Teske, A. (1996) Desulforhopalus vacuolatus gen. nov., sp. nov., a new moderately psychrophilic sulfate-reducing bacterium with gas vacuoles isolated from a temperate estuary. Arch. Microbiol. 166, 160168.
  • [434]
    Rabus, R., Nordhaus, R., Ludwig, W., Widdel, F. (1993) Complete oxidation of toluene under strictly anoxic conditions by a new sulfate redcuing bacterium. Appl. Environ. Microbiol. 59, 14441451.
  • [435]
    Newman, D.K., Beveridge, T.J., Morel, F.M.M. (1997) Precipitation of arsenic trisulfide by Desulfotomaculum auripigmentum. Appl. Environ. Microbiol. 63, 20222028.
  • [436]
    Rueter, P., Rabus, R., Wilkes, H., Aeckersberg, F., Rainey, F.A., Jannasch, H.W., Widdel, F. (1994) Anaerobic oxidation of hydrocarbons in crude oil by new types of sulphate-reducing bacteria. Nature 372, 455458.
  • [437]
    Aeckersberg, F., Bak, F., Widdel, F. (1991) Anaerobic oxidation of saturated hydrocarbons to CO2 by a new type of sulfate-reducing bacterium. Arch. Microbiol. 156, 514.
  • [438]
    Yamada, K., Kinoshita, S., Tsunoda, T. and Aida, K. (1972) The Microbial Production of Amino Acids, Halsted Press, New York.
  • [439]
    Magot, M., Ravot, G., Campaignolle, X., Ollivier, B., Patel, B.K.C., Fardeau, M.L., Thomas, P., Crolet, J.L., Garcia, J.L. (1997) Dethiosulfovibrio peptidovorans gen. nov., sp. nov., a new anaerobic, slightly halophilic, thiosulfate-reducing bacterium from corroding offshore oil wells. Int. J. Syst. Bacteriol. 47, 818824.
  • [440]
    Sawers, G. (1998) The anaerobic degredation of l-serine and l-threonine in enterobacteria: networks of pathways and regulatory signals. Arch. Microbiol. 171, 15.
  • [441]
    Madigan, M.T., Martinko, J.M. and Parker, J. (1997) Brock Biology of Microorganisms, edn. 8, Prentice Hall, Upper Saddle River, NJ.
  • [442]
    Brock, T.D., Gustafson, J. (1976) Ferric iron reduction by sulfur-and iron-oxidizing bacteria. Appl. Environ. Microbiol. 32, 567571.
  • [443]
    Thermophiles: General, Molecular and Applied Microbiology (Brock, T.D., Ed.), John Wiley and Sons, (1986) New York.
  • [444]
    Extremophiles: Microbial Life in Extreme Environments (Horikoshi, K. and Grant, W.D. Eds.), Wiley-Liss, (1998) New York.
  • [445]
    Oremland, R.S., Hollibaugh, J.T., Maest, A.S., Presser, T.S., Miller, L.G., Culbertson, C.W. (1989) Selenate reduction to elemental selenium by anaerobic bacteria in sediments and culture: biogeochemical significance of a novel sulfate-independent respiration. Appl. Environ. Microbiol. 55, 23332343.
  • [446]
    Shock, E.L. (2001) Corrections to standard partial molal enthalpies of formation of aqueous species. Geochim. Cosmochim. Acta, in preparation.
  • [447]
    Robie, R.A. and Hemingway, B.S. (1995) Thermodynamic Properties of Minerals and Related Substances at 298.15 K and 1 Bar (105 Pa) Pressure and at Higher Temperatures, US Geological Survey Bulletin, vol. 2131, United States Government Printing Office, Washington, DC.
  • [448]
    Fredrickson, D.R., Chasanov, M.G. (1971) The enthalpy of molybdenum disulfide to 1200 K by drop calorimetry. J. Chem. Thermo. 3, 693696.
  • [449]
    O'Hare, P.A.G., Lewis, B.M., Parkinson, B.A. (1988) Standard molar enthalpy of formation by flourine-combustion calorimetry of tungsten diselenide (WSe2). Thermodynamics of high-temperature vaporization of WSe2. Revised value of the standard molar enthalpy of formation of molybdenite (MoS2). J. Chem. Thermo. 20, 681691.
  • [450]
    McCollom, T.M., Shock, E.L. (1997) Geochemical constraints on chemolithoautotrophic metabolism by microorganisms in seafloor hydrothermal systems. Geochim. Cosmochim. Acta 61, 43754391.
  • [451]
    Stull, D.R., Westrum, E.F., Jr. and Sinke, G.C. (1969) The Chemical Thermodynamics of Organic Compounds, John Wiley and Sons, New York.
  • [452]
    Plyasunov, A.V., O'Connell, J.P., Wood, R.H. and Shock, E.L. (2001) Infinite dilution partial molar properties of aqueous nonelectrolytes. III. Prediction algorithm and parameters for some inorganic solutes. Geochim. Cosmochim. Acta, in preparation.