SEARCH

SEARCH BY CITATION

References

  • [1]
    Fox, J.L (1993) Fungal infection rates are increasing. ASM News 10, 515518.
  • [2]
    Anaissie, E.J (1992) Opportunistic mycosis in the immunocompromissed host: experience at a cancer center and review. Clin. Infect. Dis. 14, 4353.
  • [3]
    Banerjee, S.N., Emori, T.J., Culver, D.H (1991) Secular trends in nosocomial primary bloodstream infections in the United States. 1980–1989 National Nosocomial Infections Surveillance System. Am. J. Med. 91 (Suppl. 3B), 86S89S.
  • [4]
    Shaberg, D.R., Culver, D.H., Gaynes, R.P (1991) Major trends in the microbial etiology of nosocomial infection. Am. J. Med. 91 (Suppl. 3B), 72S75S.
  • [5]
    Vaqué Rafart, J. and Grupo de Trabajo EPINE (1998) Evolución de la prevalencia de las infecciones nosocomiales en los hospitales españoles. EPINE 1990–1997 Sociedad Española de Medicina Preventiva, Salud Pública e Higiene, Madrid.
  • [6]
    Pfaller, M.A., Jones, R.N., Doern, G.V., Sader, H.S., Messer, S.A., Houston, A, Coffman, S, Hollis, R.J (2000) Bloodstream infections due to Candida species: SENTRY antimicrobial surveillance program in North America and Latin America, 1997–1998. Antimicrob. Agents Chemother. 44, 747751.
  • [7]
    Edmond, M.B., Wallace, S.E., McClish, D.K., Pfaller, M.A., Jones, R.N., Wenzel, R.P (1999) Nosocomial bloodstream infections in United States hospitals: a three-year analysis. Clin. Infect. Dis. 29, 239244.
  • [8]
    Bennett, J.E. (1996) Antimicrobial agents: antifungal agents. In: Goodman and Gilman's The Pharmacological Basis of Therapeutics (Gilman, A.G., Rall, T.W., Sies, A.S. and Taylor, P., Eds.), pp. 1165–1181. Pergamon Press, Elmsford, NY.
  • [9]
    Dupont, B. (1992) Antifungal therapy in AIDS patients. In: New Strategies in Fungal Disease (Bennett, J.E., Hay, R.J. and Peterson, P.K., Eds.), pp. 290–300. Churchill Livingstone, London.
  • [10]
    Rex, J.H., Rinaldi, M.G., Pfaller, M.A (1995) Resistance of Candida species to fluconazole. Antimicrob. Agents Chemother. 1, 18.
  • [11]
    Sanglard, D, Kuchler, K, Ischer, F, Pagani, J.L., Monod, M, Bille, J (1995) Mechanisms of resistance to azole antifungal agents in Candida albicans isolates from AIDS patients involve specific multidrug transporters. Antimicrob. Agents Chemother. 39, 23782386.
  • [12]
    van den Bossche, H, Dromer, F, Improvisi, I, Lozano-Chiu, M, Rex, J.H., Sanglard, D (1998) Antifungal drug resistance in pathogenic fungi. Med. Mycol. 36 (Suppl. 1), 119128.
  • [13]
    Odds, F.C (1994) Candida species and virulence. ASM News 60, 313318.
  • [14]
    Cutler, J.E (1991) Putative virulence factors of Candida albicans. Annu. Rev. Microbiol. 45, 187218.
  • [15]
    Kobayashi, G.S., Cutler, J.E (1998) Candida albicans hyphal formation and virulence: is there a clearly defined role. Trends Microbiol. 6, 9294.
  • [16]
    Georgopapadakou, N.H., Walsh, T.J (1996) Antifungal agents: chemotherapeutic targets and immunological strategies. Antimicrob. Agents Chemother. 40, 279291.
  • [17]
    Perfect, J.R (1996) Fungal virulence genes as targets for antifungal chemotherapy. Antimicrob. Agents Chemother. 40, 15771583.
  • [18]
    Odds, F.C. (1988) Candida and Candidosis. Baillière Tindall, London.
  • [19]
    Ryley, J.F., Ryley, N.G (1990) Candida albicans– do mycelia matter. J. Med. Vet. Mycol. 28, 225239.
  • [20]
    Magee, P.T (1998) Which came first: the hypha or the yeast. Science 277, 5253.
  • [21]
    Corner, B.E., Magee, P.T (1997) Candida pathogenesis: unravelling the threads of infection. Curr. Biol. 7, R691R694.
  • [22]
    Hogan, L.H., Klein, B.S., Levitz, S.M (1996) Virulence factors of medically important fungi. Clin. Microbiol. Rev. 4, 469488.
  • [23]
    Falkow, S (1988) Molecular Koch's postulates applied to microbial pathogenicity. Rev. Infect. Dis. 10 (Suppl. 2), S274S276.
  • [24]
    Pla, J, Gil, C, Monteoliva, L, Navarro-García, F, Sánchez, M, Nombela, C (1996) Understanding Candida albicans at the molecular level. Yeast 12, 16771702.
  • [25]
    Scherer, S, Magee, P.T (1990) Genetics of Candida albicans. Microbiol. Rev. 54, 226241.
  • [26]
    Lott, T.J., Magee, P.T., Barton, R, Chu, W, Kwon-Chung, K.J., Grindle, S, Homma, M, Iwaguchi, S.-I, Kelly, R, Lasker, B.A et al. (1992) The molecular genetics of Candida albicans. J. Med. Vet. Mycol. 30 (Suppl. 1), 7785.
  • [27]
    Kurtz, M.B. and Scherer, S. (1991) Molecular genetics of human fungal pathogens. In: More Gene Manipulations in Fungi (Bennet, J.W. and Lasure, L.L., Eds.), pp. 342–363. Academic Press, San Diego, CA.
  • [28]
    Fonzi, W.A., Irwin, M.Y (1993) Isogenic strain construction and gene mapping in Candida albicans. Genetics 134, 717728.
  • [29]
    Alani, E, Cao, L, Kleckner, N (1987) A method for gene disruption that allows repeated use of URA3 selection in the construction of multiply disrupted yeast strains. Genetics 116, 541545.
  • [30]
    Gorman, J.A., Gorman, J.W., Koltin, Y (1992) Direct selection of galactokinase-negative mutants of Candida albicans using 2-deoxy-galactose. Curr. Genet. 21, 203206.
  • [31]
    Saporito-Irwin, S.M., Birse, C.E., Sypherd, P.S., Fonzi, W.A (1995) PHR1, a pH-regulated gene of Candida albicans, is required for morphogenesis. Mol. Cell. Biol. 15, 601613.
  • [32]
    Morschhäuser, J, Michel, S, Staib, P (1999) Sequential gene disruption in Candida albicans by FLP-mediated site-specific recombination. Mol. Microbiol. 32, 547556.
  • [33]
    Negredo, A, Monteoliva, L, Gil, C, Pla, J, Nombela, C (1997) Cloning, analysis and one-step disruption of the ARG5, 6 gene of Candida albicans. Microbiology 143, 297302.
  • [34]
    Wilson, R.B., Davis, D, Mitchell, A.P (1999) Rapid hypothesis testing with Candida albicans through gene disruption with short homology regions. J. Bacteriol. 181, 18681874.
  • [35]
    Enloe, B, Diamond, A, Mitchell, A.P (2000) A single-transformation gene function test in diploid Candida albicans. J. Bacteriol. 182, 57305736.
  • [36]
    Magee, B.B., Magee, P.T (2000) Induction of mating in Candida albicans by construction of MTLa and MTLα strains. Science 289, 310313.
  • [37]
    Hull, C.M., Raisner, R.M., Johnson, A.D (2000) Evidence for mating of the ‘asexual’ yeast Candida albicans in a mammalian host. Science 289, 307310.
  • [38]
    D.H. Brown Jr., Slobodkin, I.V., Kumamoto, C.A (1996) Stable transformation and regulated expression of an inducible reporter construct in Candida albicans using restriction enzyme-mediated integration. Mol. Gen. Genet. 251, 7580.
  • [39]
    Jiang, W, Gerhold, D, Kmiec, E.B., Hauser, M, Becker, J.M., Koltin, Y (1997) The topoisomerase I gene from Candida albicans. Microbiology 143, 377386.
  • [40]
    Braun, B.R., Johnson, A.D (1997) Control of filament formation in Candida albicans by the transcriptional repressor TUP1. Science 277, 105109.
  • [41]
    Leuker, C.E., Sonneborn, A, Delbruck, S, Ernst, J.F (1997) Sequence and promoter regulation of the PCK1 gene encoding phosphoenolpyruvate carboxykinase of the fungal pathogen Candida albicans. Gene 192, 235240.
  • [42]
    Stoldt, V.R., Sonneborn, A, Leuker, C.E., Ernst, J.F (1997) Efg1p, an essential regulator of morphogenesis of the human pathogen Candida albicans, is a member of a conserved class of bHLH proteins regulating morphogenetic processes in fungi. EMBO J. 16, 19821991.
  • [43]
    Sonneborn, A, Tebarth, B, Ernst, J.F (1999) Control of white-opaque phenotypic switching in Candida albicans by the Efg1p morphogenetic regulator. Infect. Immun. 67, 46554660.
  • [44]
    Kvaal, C.A., Srikantha, T, Soll, D.R (1997) Misexpression of the white-phase-specific gene WH11 in the opaque phase of Candida albicans affects switching and virulence. Infect. Immun. 65, 44684475.
  • [45]
    Kvaal, C, Lachke, S.A., Srikantha, T, Daniels, K, McCoy, J, Soll, D.R (1999) Misexpression of the opaque-phase-specific gene PEP1 (SAP1) in the white phase of Candida albicans confers increased virulence in a mouse model of cutaneous infection. Infect. Immun. 67, 66526662.
  • [46]
    Gari, E, Piedrafita, L, Aldea, M, Herrero, E (1997) A set of vectors with a tetracycline-regulatable promoter system for modulated gene expression in Saccharomyces cerevisiae. Yeast 13, 837848.
  • [47]
    Nakayama, H, Mio, T, Nagahashi, S, Kakado, M, Arosawa, M, Aoki, Y (2000) Tetracycline-regulatable system to tightly control gene expression in the pathogenic fungus Candida albicans. Infect. Immun. 68 (12), 67126719.
  • [48]
    Gillum, A.M., Tsay, E.Y.H., Kirsch, D.R (1984) Isolation of the Candida albicans gene for orotidine-5′-phosphate decarboxylase by complementation of S. cerevisiaeura3 and E. coli pyrF mutations. Mol. Gen. Genet. 198, 179182.
  • [49]
    Köhler, G.A., White, T.C., Agabian, N (1997) Overexpression of a cloned IMP dehydrogenase gene of Candida albicans confers resistance to the specific inhibitor mycophenolic acid. J. Bacteriol. 179, 23312338.
  • [50]
    Wirsching, S, Michel, S, Morschhäuser, J (2000) Targeted gene disruption in Candida albicans wild-type strains: the role of the MDR1 gene in fluconazole resistance of clinical Candida albicans isolates. Mol. Microbiol. 36, 856865.
  • [51]
    Kirsch, D.R., Whitney, R.R (1991) Pathogenicity of Candida albicans auxotrophic mutants in experimental infections. Infect. Immun. 59, 32973300.
  • [52]
    Gow, N.A.R., Robbins, P.W., Lester, J.W., Brown, A.J.P., Fonzi, W.A., Chapman, T, Kinsman, O.S (1994) A hyphal-specific chitin synthase gene (CHS2) is not essential for growth, dimorphism, or virulence of Candida albicans. Proc. Natl. Acad. Sci. USA 91, 62166220.
  • [53]
    Weinberg, R.A., McWherter, C.A., Freeman, S.K., Wood, D.C., Gordon, J.I., Lee, S.C (1995) Genetic studies reveal that myristoylCoA:protein N-myristoyltransferase is an essential enzyme in Candida albicans. Mol. Microbiol. 16, 241250.
  • [54]
    Bulawa, C.E., Miller, D.W., Henry, L.K., Becker, J.M (1995) Attenuated virulence of chitin-deficient mutants of Candida albicans. Proc. Natl. Acad. Sci. USA 92, 1057010574.
  • [55]
    Becker, J.M., Henry, L.K., Jiang, W, Koltin, Y (1995) Reduced virulence of Candida albicans mutants affected in multidrug resistance. Infect. Immun. 63, 45154518.
  • [56]
    Mio, T, Yabe, T, Sudoh, M, Satoh, Y, Nakajima, T, Arisawa, M, Yamada-Okabe, H (1996) Role of three chitin synthase genes in the growth of Candida albicans. J. Bacteriol. 178, 24162419.
  • [57]
    Yaar, L, Mevarech, M, Koltin, Y (1997) A Candida albicans RAS-related gene (CaRSR1) is involved in budding, cell morphogenesis and hypha development. Microbiology 143, 30333044.
  • [58]
    Han, Y, Cutler, J.E (1997) Assessment of a mouse model of neutropenia and the effect of an anti-candidiasis monoclonal antibody in these animals. J. Infect. Dis. 175, 11691175.
  • [59]
    Hube, B, Sanglard, D, Odds, F.C., Hess, D, Monod, M, Schafer, W, Brown, A.J., Gow, N.A.R (1997) Disruption of each of the secreted aspartyl proteinase genes SAP1, SAP2, and SAP3 of Candida albicans attenuates virulence. Infect. Immun. 65, 35293538.
  • [60]
    Lacasse, M, Fortier, C, Chakir, J, Cote, L, Deslauriers, N (1993) Acquired resistance and persistence of Candida albicans following oral candidiasis in the mouse: a model of the carrier state in humans. Oral Microbiol. Immunol. 8, 313318.
  • [61]
    Meitner, S.W., Bowen, W.H., Haidaris, C.G (1990) Oral and esophageal Candida albicans infection in hyposalivatory rats. Infect. Immun. 58, 22282236.
  • [62]
    Cole, M.F., Bowen, W.H., Zhao, X, Cihlar, R.L (1995) Avirulence of Candida albicans auxotrophic mutants in a rat model of oropharyngeal candidiasis. FEMS Microbiol. Lett. 126, 177180.
  • [63]
    Zhao, X.J., McElhaney-Feser, G.E., Bowen, W.H., Cole, M.F S.E. Broedel Jr., Cihlar, R.L (1996) Requirement for the Candida albicans FAS2 gene for infection in a rat model of oropharyngeal candidiasis. Microbiology 142, 25092514.
  • [64]
    Andrutis, K.A., Riggle, P.J., Kumamoto, C.A., Tzipori, S (2000) Intestinal lesions associated with disseminated candidiasis in an experimental animal model. J. Clin. Microbiol. 38, 23172323.
  • [65]
    Riggle, P.J., Andrutis, K.A., Chen, X, Tzipori, S.R., Kumamoto, C.A (1999) Invasive lesions containing filamentous forms produced by a Candida albicans mutant that is defective in filamentous growth in culture. Infect. Immun. 67, 36493652.
  • [66]
    Kinneberg, K.M., Bendel, C.M., Jechorek, R.P., Cebelinski, E.A., Gale, C.A., Berman, J.G., Erlandsen, S.L., Hostetter, M.K., Wells, C.L (1999) Effect of INT1 gene on Candida albicans murine intestinal colonization. J. Surg. Res. 87, 245251.
  • [67]
    Guhad, F.A., Jensen, H.E., Aalbaek, B, Rycroft, A, Hau, J (1995) A murine model for the study of mycotic mastitis. J. Comp. Pathol. 113, 315325.
  • [68]
    Guhad, F.A., Jensen, H.E., Aalbaek, B, Csank, C, Mohamed, O, Harcus, D, Thomas, D.Y., Whiteway, M, Hau, J (1998) Mitogen-activated protein kinase-defective Candida albicans is avirulent in a novel model of localized murine candidiasis. FEMS Microbiol. Lett. 166, 135139.
  • [69]
    De Bernardis, F, Lorenzini, R, Morelli, L, Cassone, A (1989) Experimental rat vaginal infection with Candida parapsilosis. FEMS Microbiol. Lett. 53, 137141.
  • [70]
    Sobel, J.D., Muller, G, McCormick, J.F (1985) Experimental chronic vaginal candidosis in rats. Sabouraudia 23, 199206.
  • [71]
    O'Day, D.M., Head, W.S., Robinson, R.D., Yang, R, Shetlar, D, Wang, M.X (1999) Contact lens-induced infection – a new model of Candida albicans keratitis. Invest. Ophthalmol. Vis. Sci. 40, 16071611.
  • [72]
    Braun, B.R., Head, W.S., Wang, M.X., Johnson, A.D (2000) Identification and characterization of TUP1-regulated genes in Candida albicans. Genetics 156, 3144.
  • [73]
    Kretschmar, M, Hube, B, Bertsch, T, Sanglard, D, Merker, R, Schroder, M, Hof, H, Nichterlein, T (1999) Germ tubes and proteinase activity contribute to virulence of Candida albicans in murine peritonitis. Infect. Immun. 67, 66376642.
  • [74]
    Londono, P, Gao, X.M., Bowe, F, McPheat, W.L., Booth, G, Dougan, G (1998) Evaluation of the intranasal challenge route in mice as a mucosal model for Candida albicans infection. Microbiology 144, 22912298.
  • [75]
    Tsarfaty, I, Sandovsky-Losica, H, Mittelman, L, Berdicevsky, I, Segal, E (2000) Cellular actin is affected by interaction with Candida albicans. FEMS Microbiol. Lett. 189, 225232.
  • [76]
    Sentandreu, M, Nieto, A, Iborra, A, Elorza, M.V., Pontón, J, Fonzi, W.A., Sentandreu, R (1997) Cloning and characterization of CSP37, a novel gene encoding a putative membrane protein of Candida albicans. J. Bacteriol. 179, 46544663.
  • [77]
    San Millán, R, Elguezabal, N, Regulez, P, Moragues, M.D., Quindós, G, Pontón, J (2000) Effect of salivary secretory IgA on the adhesion of candida albicans to polystyrene. Microbiology 146, 21052112.
  • [78]
    Watts, H.J., Cheah, F.S., Hube, B, Sanglard, D, Gow, N.A (1998) Altered adherence in strains of Candida albicans harbouring null mutations in secreted aspartic proteinase genes. FEMS Microbiol. Lett. 159, 129135.
  • [79]
    Bailey, A, Wadsworth, E, Calderone, R (1995) Adherence of Candida albicans to human buccal epithelial cells: host-induced protein synthesis and signaling events. Infect. Immun. 63, 569572.
  • [80]
    Arie, Z.R., Altboum, Z, Sandovsky-Losica, H, Segal, E (1998) Adhesion of Candida albicans mutant strains to host tissue. FEMS Microbiol. Lett. 163, 121127.
  • [81]
    Eck, R, Hundt, S, Hartl, A, Roemer, E, Kunkel, W (1999) A multicopper oxidase gene from Candida albicans: cloning, characterization and disruption. Microbiology 145, 24152422.
  • [82]
    Gale, C.A., Bendel, C.M., McClellan, M, Hauser, M, Becker, J.M., Berman, J, Hostetter, M.K (1998) Linkage of adhesion, filamentous growth, and virulence in Candida albicans to a single gene, INT1. Science 279, 13551358.
  • [83]
    Filler, S.G., Swerdloff, J.N., Hobbs, C, Luckett, P.M (1995) Penetration and damage of endothelial cells by Candida albicans. Infect. Immun. 63, 976983.
  • [84]
    Zink, S, Nass, T, Rosen, P, Ernst, J.F (1996) Migration of the fungal pathogen Candida albicans across endothelial monolayers. Infect. Immun. 64, 50855091.
  • [85]
    Korting, H.C., Patzak, U, Schaller, M, Maibach, H.I (1998) A model of human cutaneous candidosis based on reconstructed human epidermis for the light and electron microscopic study of pathogenesis and treatment. J. Infect. 36, 259267.
  • [86]
    Schaller, M, Korting, H.C., Schafer, W, Bastert, J, Chen, W, Hube, B (1999) Secreted aspartic proteinase (Sap) activity contributes to tissue damage in a model of human oral candidosis. Mol. Microbiol. 34, 169180.
  • [87]
    Weide, M.R., Ernst, J.F (1999) Caco-2 monolayer as a model for transepithelial migration of the fungal pathogen Candida albicans. Mycoses 42 (Suppl. 2), 6167.
  • [88]
    Manning, M, Snoddy, C.B., Fromtling, R.A (1984) Comparative pathogenicity of auxotrophic mutants of Candida albicans. Can. J Microbiol. 30, 3135.
  • [89]
    Shepherd, M.G (1985) Pathogenicity of morphological and auxotrophic mutants of Candida albicans in experimental infections. Infect. Immun. 50, 541544.
  • [90]
    Lay, J, Henry, L.K., Clifford, J, Koltin, Y, Bulawa, C.E., Becker, J.M (1998) Altered expression of selectable marker URA3 in gene-disrupted Candida albicans strains complicates interpretation of virulence studies. Infect. Immun. 66, 53015306.
  • [91]
    Perfect, J.R., Toffaletti, D.L., Rude, T.H (1993) The gene encoding phosphoribosylaminoimidazole carboxylase (ADE2) is essential for growth of Cryptococcus neoformans in cerebrospinal fluid. Infect. Immun. 61, 44464451.
  • [92]
    Alonso-Monge, R, Navarro-García, F, Molero, G, Diez-Orejas, R, Gustin, M, Pla, J, Sánchez, M, Nombela, C (1999) Role of the mitogen-activated protein kinase Hog1p in morphogenesis and virulence of Candida albicans. J. Bacteriol. 181, 30583068.
  • [93]
    Zhao, X.J., McElhaney-Feser, G.E., Sheridan, M.J., Broedel, S.E.J., Cihlar, R.L (1997) Avirulence of Candida albicans FAS2 mutants in a mouse model of systemic candidiasis. Infect. Immun. 65, 829832.
  • [94]
    Zaragoza, O, Blazquez, M.A., Gancedo, C (1998) Disruption of the Candida albicans TPS1 gene encoding trehalose-6-phosphate synthase impairs formation of hyphae and decreases infectivity. J. Bacteriol. 180, 38093815.
  • [95]
    Argüelles, J.C., Rodríguez, T, Álvarez-Peral, F.J (1999) Trehalose hydrolysis is not required for human serum-induced dimorphic transition in Candida albicans: evidence from a tps1/tps1 mutant deficient in trehalose synthesis. Res. Microbiol. 150, 521529.
  • [96]
    Eck, R, Bergmann, C, Ziegelbauer, K, Schonfeld, W, Kunkel, W (1997) A neutral trehalase gene from Candida albicans: molecular cloning, characterization and disruption. Microbiology 143, 37473756.
  • [97]
    Zaragoza, O, Rodríguez, C, Gancedo, C (2000) Isolation of the MIG1 gene from Candida albicans and effects of its disruption on catabolite repression. J. Bacteriol. 182, 320326.
  • [98]
    Petter, R, Chang, Y.C., Kwon-Chung, K.J (1997) A gene homologous to Saccharomyces cerevisiae SNF1 appears to be essential for the viability of Candida albicans. Infect. Immun. 65, 49094917.
  • [99]
    Payne, S.M (1993) Iron acquisition in microbial pathogenesis. Trends Microbiol. 1, 6669.
  • [100]
    Ramanan, N, Wang, Y (2000) A high-affinity iron permease essential for Candida albicans virulence. Science 288, 10621064.
  • [101]
    Fratti, R.A., Belanger, P.H., Ghannoum, M.A J.E. Edwards Jr., Filler, S.G (1998) Endothelial cell injury caused by Candida albicans is dependent on iron. Infect. Immun. 66, 191196.
  • [102]
    Swoboda, R.K., Bertram, G, Delbruck, S, Ernst, J.F., Gow, N.A.R., Gooday, G.W., Brown, A.J.P (1994) Fluctuations in glycolytic mRNA levels during morphogenesis in Candida albicans reflect underlying changes in growth and are not a response to cellular dimorphism. Mol. Microbiol. 13, 663672.
  • [103]
    Sarthy, A.V., McGonigal, T, Coen, M, Frost, D.J., Meulbroek, J.A., Goldman, R.C (1997) Phenotype in Candida albicans of a disruption of the BGL2 gene encoding a 1,3-beta-glucosyltransferase. Microbiology 143, 367376.
  • [104]
    González, M.M., Diez-Orejas, R, Molero, G, Alvarez, A.M., Pla, J, Nombela, C, Sánchez-Pérez, M (1997) Phenotypic characterization of a Candida albicans strain deficient in its major exoglucanase. Microbiology 143, 30233032.
  • [105]
    Mio, T, Kokado, M, Arisawa, M, Yamada-Okabe, H (2000) Reduced virulence of Candida albicans mutants lacking the GNA1 gene encoding glucosamine-6-phosphate acetyltransferase. Microbiology 146, 17531758.
  • [106]
    Timpel, C, Strahl-Bolsinger, S, Ziegelbauer, K, Ernst, J.F (1998) Multiple functions of Pmt1p-mediated protein O-mannosylation in the fungal pathogen Candida albicans. J. Biol. Chem. 273, 2083720846.
  • [107]
    Timpel, C, Zink, S, Strahl-Bolsinger, S, Schroppel, K, Ernst, J (2000) Morphogenesis, adhesive properties, and antifungal resistance depend on the Pmt6 protein mannosyltransferase in the fungal pathogen Candida albicans. J. Bacteriol. 182, 30633071.
  • [108]
    Buurman, E.T., Westwater, C, Hube, B, Brown, A.P., Odds, F.C., Gow, N.A.R (1998) Molecular analysis of CaMnt1p, a mannosyl transferase important for adhesion and virulence of Candida albicans. Proc. Natl. Acad. Sci. USA 95, 76707675.
  • [109]
    Southard, S.B., Specht, C.A., Mishra, C, Chen-Weiner, J, Robbins, P.W (1999) Molecular analysis of the Candida albicans homolog of Saccharomyces cerevisiae MNN9, required for glycosylation of cell wall mannoproteins. J. Bacteriol. 181, 74397448.
  • [110]
    Mühlschlegel, F.A., Fonzi, W.A (1997) PHR2 of Candida albicans encodes a functional homolog of the pH-regulated gene PHR1 with an inverted pattern of pH-dependent expression. Mol. Cell. Biol. 17, 59605967.
  • [111]
    Popolo, L, Vai, M (1998) Defects in assembly of the extracellular matrix are responsible for altered morphogenesis of a Candida albicans phr1 mutant. J. Bacteriol. 180, 163166.
  • [112]
    Fonzi, W.A (1999) PHR1 and PHR2 of Candida albicans encode putative glycosidases required for proper cross-linking of beta-1,3- and beta-1,6-glucans. J. Bacteriol. 181, 70707079.
  • [113]
    Ghannoum, M.A., Spellberg, B, Saporito-Irwin, S.M., Fonzi, W.A (1995) Reduced virulence of Candida albicans PHR1 mutants. Infect. Immun. 63, 45284530.
  • [114]
    De Bernardis, F, Mühlschlegel, F.A., Cassone, A, Fonzi, W.A (1998) The pH of the host niche controls gene expression in and virulence of Candida albicans. Infect. Immun. 66, 33173325.
  • [115]
    Staab, J.F., Ferrer, C.A., Sundstrom, P (1996) Developmental expression of a tandemly repeated, proline- and glutamine-rich amino acid motif on hyphal surfaces on Candida albicans. J. Biol. Chem. 271, 62986305.
  • [116]
    Staab, J.F., Sundstrom, P (1998) Genetic organization and sequence analysis of the hypha-specific cell wall protein gene HWP1 of Candida albicans. Yeast 14, 681686.
  • [117]
    Sharkey, L.L., McNemar, M.D., Saporito-Irwin, S.M., Sypherd, P.S., Fonzi, W.A (1999) HWP1 functions in the morphological development of Candida albicans downstream of EFG1, TUP1, and RBF1. J. Bacteriol. 181, 52735279.
  • [118]
    Staab, J.F., Bradway, S.D., Fidel, P.L., Sundstrom, P (1999) Adhesive and mammalian transglutaminase substrate properties of Candida albicans Hwp1. Science 283, 15351538.
  • [119]
    Tsuchimori, N, Sharkey, L.L., Fonzi, W.A., French, S.W J.E. Edwards Jr., Filler, S.G (2000) Reduced virulence of HWP1-deficient mutants of Candida albicans and their interactions with host cells. Infect. Immun. 68, 19972002.
  • [120]
    Gale, C, Finkel, D, Tao, N, Meinke, M, McClellan, M, Olson, J, Kendrick, K, Hostetter, M (1996) Cloning and expression of a gene encoding an integrin-like protein in Candida albicans. Proc. Natl. Acad. Sci. USA 93, 357361.
  • [121]
    Bendel, C.M., Kinneberg, K.M., Jechorek, R.P., Gale, C.A., Erlandsen, S.L., Hostetter, M.K., Wells, C.L (1999) Systemic infection following intravenous inoculation of mice with Candida albicans int1 mutant strains. Mol. Genet. Metab. 67, 343351.
  • [122]
    Chaffin, W.L., Lopez-Ribot, J.L., Casanova, M, Gozalbo, D, Martinez, J.P (1998) Cell wall and secreted proteins of Candida albicans: identification, function, and expression. Microbiol. Mol. Biol. Rev. 62, 130180.
  • [123]
    Gow, N.A.R (1994) Growth and guidance of the fungal hypha. Microbiology 140, 31933205.
  • [124]
    Hubbard, M.J., Markie, D, Poulter, R (1986) Isolation and morphological characterization of a mycelial mutant of Candida albicans. J. Bacteriol. 165, 6165.
  • [125]
    Gil, C, Pomés, R, Nombela, C (1990) Isolation and characterization of Candida albicans morphological mutants derepressed for the formation of filamentous hypha-type structures. J. Bacteriol. 172, 23842391.
  • [126]
    Diez-Orejas, R, Molero, G, Ríos, I, Vázquez, A, Gil, C, Nombela, C, Sánchez-Pérez, M (1999) Low virulence of a morphological Candida albicans mutant. FEMS Microbiol. Lett. 176, 311319.
  • [127]
    Roberts, R.L., Fink, G.R (1994) Elements of a single MAP kinase cascade in Saccharomyces cerevisiae mediate two developmental programs in the same cell type: mating and invasive growth. Genes Dev. 8, 29742985.
  • [128]
    Gimeno, C.J., Ljungdahl, P.O., Styles, C.A., Fink, G.R (1992) Unipolar cell divisions in the yeast S. cerevisiae lead to filamentous growth regulation by starvation and RAS. Cell 68, 10771090.
  • [129]
    Liu, H, Styles, C.A., Fink, G.R (1993) Elements of the yeast pheromone response pathway required for filamentous growth of diploids. Science 262, 17411744.
  • [130]
    Mösch, H.U., Fink, G.R (1997) Dissection of filamentous growth by transposon mutagenesis in Saccharomyces cerevisiae. Genetics 145, 671684.
  • [131]
    Mösch, H.U., Roberts, R.L., Fink, G.R (1996) Ras2 signals via the Cdc42/Ste20/mitogen-activated protein kinase module to induce filamentous growth in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 93, 53525356.
  • [132]
    Leberer, E, Harcus, D, Broadbent, I.D., Clark, K.L., Dignard, D, Ziegelbauer, K, Schmidt, A, Gow, N.A.R., Brown, A.J.P., Thomas, D.Y (1996) Signal transduction through homologs of the Ste20p and Ste7p protein kinases can trigger hyphal formation in the pathogenic fungus Candida albicans. Proc. Natl. Acad. Sci. USA 93, 1321713222.
  • [133]
    Köhler, J, Fink, G.R (1996) Candida albicans strains heterozygous and homozygous for mutations in mitogen-activated protein kinase signaling components have defects in hyphal development. Proc. Natl. Acad. Sci. USA 93, 1322313228.
  • [134]
    Leberer, E, Ziegelbauer, K, Schmidt, A, Harcus, D, Dignard, D, Ash, J, Johnson, L, Thomas, D.Y (1997) Virulence and hyphal formation of Candida albicans require the Ste20p-like protein kinase CaCla4p. Curr. Biol. 7, 539546.
  • [135]
    Clark, K.L., Feldmann, P.J., Dignard, D, Larocque, R, Brown, A.J.P., Lee, M.G., Thomas, D.Y., Whiteway, M (1995) Constitutive activation of the Saccharomyces cerevisiae mating response pathway by a MAP kinase kinase from Candida albicans. Mol. Gen. Genet. 249, 609621.
  • [136]
    Whiteway, M, Dignard, D, Thomas, D.Y (1992) Dominant negative selection of heterologous genes: isolation of Candida albicans genes that interfere with Saccharomyces cerevisiae mating factor-induced cell cycle arrest. Proc. Natl. Acad. Sci. USA 89, 94109414.
  • [137]
    Malathi, K, Ganesan, K, Datta, A (1994) Identification of a putative transcription factor in Candida albicans that can complement the mating defect of Saccharomyces cerevisiae ste12 mutants. J. Biol. Chem. 269, 2294522951.
  • [138]
    Liu, H, Köhler, J, Fink, G.R (1994) Suppression of hyphal formation in Candida albicans by mutation of a STE12 homolog. Science 266, 17231726.
  • [139]
    Csank, C, Schröppel, K, Leberer, E, Harcus, D, Mohamed, O, Meloche, S, Thomas, D.Y., Whiteway, M (1998) Roles of the Candida albicans mitogen-activated protein kinase homolog, Cek1p, in hyphal development and systemic candidiasis. Infect. Immun. 66, 27132721.
  • [140]
    Lo, H.J., Kohler, J.R., DiDomenico, B, Loebenberg, D, Cacciapuoti, A, Fink, G.R (1997) Nonfilamentous C. albicans mutants are avirulent. Cell 90, 939949.
  • [141]
    Navarro-García, F, Sánchez, M, Pla, J, Nombela, C (1995) Functional characterization of the MKC1 gene of Candida albicans, which encodes a mitogen-activated protein kinase homolog related to cell integrity. Mol. Cell. Biol. 15, 21972206.
  • [142]
    Navarro-García, F, Alonso-Monge, R, Rico, H, Pla, J, Sentandreu, R, Nombela, C (1998) A role for the MAP kinase gene MKC1 in cell wall construction and morphological transitions in Candida albicans. Microbiology 144, 411424.
  • [143]
    Diez-Orejas, R, Molero, G, Navarro-García, F, Pla, J, Nombela, C, Sánchez-Pérez, M (1997) Reduced virulence of Candida albicans MKC1 mutants: a role for a mitogen-activated protein kinase in pathogenesis. Infect. Immun. 65, 833837.
  • [144]
    Csank, C, Makris, C, Meloche, S, Schröppel, K, Röllinghoff, M, Dignard, D, Thomas, D.Y., Whiteway, M (1997) Derepressed hyphal growth and reduced virulence in a VH1 family-related protein phosphatase mutant of the human pathogen Candida albicans. Mol. Biol. Cell 8, 25392551.
  • [145]
    San José, C, Monge, R.A., Pérez-Díaz, R.M., Pla, J, Nombela, C (1996) The mitogen-activated protein kinase homolog HOG1 gene controls glycerol accumulation in the pathogenic fungus Candida albicans. J. Bacteriol. 178, 58505852.
  • [146]
    Calera, J.A., Choi, G.H., Calderone, R.A (1998) Identification of a putative histidine kinase two-component phosphorelay gene (CaHK1) in Candida albicans. Yeast 14, 665674.
  • [147]
    Calera, J.A., Calderone, R (1999) Flocculation of hyphae is associated with a deletion in the putative CaHK1 two-component histidine kinase gene from Candida albicans. Microbiology 145, 14311442.
  • [148]
    Calera, J.A., Zhao, X.J., De Bernardis, F, Sheridan, M, Calderone, R (1999) Avirulence of Candida albicans CaHK1 mutants in a murine model of hematogenously disseminated candidiasis. Infect. Immun. 67, 42804284.
  • [149]
    Alex, L.A., Korch, C, Selitrennikoff, C.P., Simon, M.I (1998) COS1, a two-component histidine kinase that is involved in hyphal development in the opportunistic pathogen Candida albicans. Proc. Natl. Acad. Sci. USA 95, 70697073.
  • [150]
    Nagahashi, S, Mio, T, Ono, N, Yamada-Okabe, T, Arisawa, M, Bussey, H, Yamada-Okabe, H (1998) Isolation of CaSLN1 and CaNIK1, the genes for osmosensing histidine kinase homologues, from the pathogenic fungus Candida albicans. Microbiology 144, 425432.
  • [151]
    Yamada-Okabe, T, Mio, T, Ono, N, Kashima, Y, Matsui, M, Arisawa, M, Yamada-Okabe, H (1999) Roles of three histidine kinase genes in hyphal development and virulence of the pathogenic fungus Candida albicans. J. Bacteriol. 181, 72437247.
  • [152]
    Calera, J.A., Calderone, R.A (1999) Identification of a putative response regulator two-component phosphorelay gene (CaSSK1) from Candida albicans. Yeast 15, 12431254.
  • [153]
    Calera, J.A., Zhao, X.J., Calderone, R (2000) Defective hyphal development and avirulence caused by a deletion of the SSK1 response regulator gene in Candida albicans. Infect. Immun. 68, 518525.
  • [154]
    Ishii, N, Yamamoto, M, Lahm, H.W., Iizumi, S, Yoshihara, F, Nakayama, H, Arisawa, M, Aoki, Y (1997) A DNA-binding protein from Candida albicans that binds to the RPG box of Saccharomyces cerevisiae and the telomeric repeat sequence of C. albicans. Microbiology 143, 417427.
  • [155]
    Hube, B, Monod, M, Schofield, D.A., Brown, A.J.P., Gow, N.A.R (1994) Expression of seven members of the gene family encoding secretory aspartyl proteinases in Candida albicans. Mol. Microbiol. 14, 8799.
  • [156]
    Monod, M, Togni, G, Hube, B, Sanglard, D (1994) Multiplicity of genes encoding secreted aspartic proteinases in Candida species. Mol. Microbiol. 13, 357368.
  • [157]
    Magee, B.B., Hube, B, Wright, R.J., Sullivan, P.J., Magee, P.T (1993) The genes encoding the secreted aspartyl proteinases of Candida albicans constitute a family with at least three members. Infect. Immun. 61, 32403243.
  • [158]
    Monod, M, Hube, B, Hess, D, Sanglard, D (1998) Differential regulation of SAP8 and SAP9, which encode two new members of the secreted aspartic proteinase family in Candida albicans. Microbiology 144, 27312737.
  • [159]
    Schaller, M, Schafer, W, Korting, H.C., Hube, B (1998) Differential expression of secreted aspartyl proteinases in a model of human oral candidosis and in patient samples from the oral cavity. Mol. Microbiol. 29, 605615.
  • [160]
    Schaller, M, Hube, B, Ollert, M.W., Schafer, W, Borg-von Zepelin, M, Thoma-Greber, E, Korting, H.C (1999) In vivo expression and localization of Candida albicans secreted aspartyl proteinases during oral candidiasis in HIV-infected patients. J. Invest. Dermatol. 112, 383386.
  • [161]
    Staib, P, Kretschmar, M, Nichterlein, T, Hof, H, Morschhäuser, J (2000) Differential activation of a Candida albicans virulence gene family during infection. Proc. Natl. Acad. Sci. USA 97, 61026107.
  • [162]
    Sanglard, D, Hube, B, Monod, M, Odds, F.C., Gow, N.A.R (1997) A triple deletion of the secreted aspartyl proteinase genes SAP4, SAP5, and SAP6 of Candida albicans causes attenuated virulence. Infect. Immun. 65, 35393546.
  • [163]
    Ibrahim, A.S., Filler, S.G., Sanglard, D J.E. Edwards Jr., Hube, B (1998) Secreted aspartyl proteinases and interactions of Candida albicans with human endothelial cells. Infect. Immun. 66, 30033005.
  • [164]
    De Bernardis, F, Arancia, S, Morelli, L, Hube, B, Sanglard, D, Schafer, W, Cassone, A (1999) Evidence that members of the secretory aspartyl proteinase gene family, in particular SAP2, are virulence factors for Candida vaginitis. J. Infect. Dis. 179, 201208.
  • [165]
    Hube, B (1999) Possible role of secreted proteinases in Candida albicans infections. Rev. Iberoam. Micol. 15, 6568.
  • [166]
    Borg-von Zepelin, M, Beggah, S, Boggian, K, Sanglard, D, Monod, M (1998) The expression of the secreted aspartyl proteinases Sap4 to Sap6 from Candida albicans in murine macrophages. Mol. Microbiol. 28, 543554.
  • [167]
    Hube, B (1999) Candida albicans secreted aspartyl proteases. Curr. Top. Med. Mycol. 1996, 5569.
  • [168]
    Leidich, S.D., Ibrahim, A.S., Fu, Y, Koul, A, Jessup, C, Vitullo, J, Fonzi, W, Mirbod, F, Nakashima, S, Nozawa, Y, Ghannoum, M.A (1998) Cloning and disruption of caPLB1, a phospholipase B gene involved in the pathogenicity of Candida albicans. J. Biol. Chem. 273, 2607826086.
  • [169]
    Sugiyama, Y, Nakashima, S, Mirbod, F, Kanoh, H, Kitajima, Y, Ghannoum, M.A., Nozawa, Y (1999) Molecular cloning of a second phospholipase B gene, caPLB2 from Candida albicans. Med. Mycol. 37, 6167.
  • [170]
    Wysong, D.R., Christin, L, Sugar, A.M., Robbins, P.W., Diamond, R.D (1998) Cloning and sequencing of a Candida albicans catalase gene and effects of disruption of this gene. Infect. Immun. 66, 19531961.
  • [171]
    Nakagawa, Y, Koide, K, Watanabe, K, Morita, Y, Mizuguchi, I, Akashi, T (1999) The expression of the pathogenic yeast Candida albicans catalase gene in response to hydrogen peroxide. Microbiol. Immunol. 43, 645651.
  • [172]
    Feng, Q, Summers, E, Guo, B, Fink, G (1999) Ras signaling is required for serum-induced hyphal differentiation in Candida albicans. J. Bacteriol. 181, 63396346.
  • [173]
    Fu, Y, Filler, S.G., Spellberg, B.J., Fonzi, W, Ibrahim, A.S., Kanbe, T, Ghannoum, M.A., Edwards, J.E.J (1998) Cloning and characterization of CAD1/AAF1, a gene from Candida albicans that induces adherence to endothelial cells after expression in Saccharomyces cerevisiae. Infect. Immun. 66, 20782084.
  • [174]
    Rieg, G, Fu, Y, Ibrahim, A.S., Zhou, X, Filler, S.G J.E. Edwards Jr. (1999) Unanticipated heterogeneity in growth rate and virulence among Candida albicans AAF1 null mutants. Infect. Immun. 67, 31933198.
  • [175]
    Bruckmann, A, Kunkel, W, Hartl, A, Wetzker, R, Eck, R (2000) A phosphatidylinositol 3-kinase of Candida albicans influences adhesion, filamentous growth and virulence. Microbiology 146, 27552764.
  • [176]
    Falkow, S (1997) What is pathogen. ASM News 63, 359365.
  • [177]
    Ashman, R.B., Fulurija, A, Papadimitriou, J.M (1996) Strain-dependent differences in host response to Candida albicans infection in mice are related to organ susceptibility and infectious load. Infect. Immun. 64, 18661869.
  • [178]
    Mendoza, A, Serramia, M.J., Capa, L, Garcia-Bustos, J.F (1999) Translation elongation factor 2 is encoded by a single essential gene in Candida albicans. Gene 229, 183191.
  • [179]
    Mao, Y, Kalb, V.F., Wong, B (1999) Overexpression of a dominant-negative allele of SEC4 inhibits growth and protein secretion in Candida albicans. J. Bacteriol. 181, 72357242.
  • [180]
    Monteoliva, L, Sánchez, M, Pla, J, Gil, C, Nombela, C (1996) Cloning of Candida albicans SEC14 gene homologue coding for a putative essential function. Yeast 12, 10971105.
  • [181]
    Saeed, F.A (2000) Production of pyruvate by Candida albicans: proposed role in virulence. FEMS Microbiol. Lett. 190, 3538.
  • [182]
    Staib, P, Kretschmar, M, Nichterlein, T, Kohler, G, Michel, S, Hof, H, Hacker, J, Morschhäuser, J (1999) Host-induced, stage-specific virulence gene activation in Candida albicans during infection. Mol. Microbiol. 32, 533546.
  • [183]
    Whelan, W.L., Magee, P.T (1981) Natural heterozygosity in Candida albicans. J. Bacteriol. 145, 896903.
  • [184]
    Guhad, F.A., Csank, C, Jensen, H.E., Thomas, D.Y., Whiteway, M, Hau, J (1998) Reduced pathogenicity of a Candida albicans MAP kinase phosphatase (CPP1) mutant in the murine mastitis model. APMIS 106, 10491055.