• [1]
    Gilman, A.G. (1984) G proteins and dual control of adenylate cyclase. Cell 36, 577579.
  • [2]
    Gilman, A.G. (1987) G-proteins: Transducers of receptor-generated signals. Annu. Rev. Biochem. 56, 615649.
  • [3]
    Levitzki, A., Bar-Sinai, A. (1991) The regulation of adenylyl cyclase by receptor-operated G proteins. Pharmacol. Ther. 50, 271283.
  • [4]
    Simon, M.I., Strathmann, M.P., Gautam, N. (1991) Diversity of G proteins in signal transduction. Science 252, 802808.
  • [5]
    Clapham, D.E., Neer, E.J. (1993) New roles for G-protein βγ-dimers in transmembrane signalling. Nature 365, 403406.
  • [6]
    Sternweis, P.C. (1994) The active role of βγ in signal transduction. Curr. Opin. Cell. Biol. 6, 198203.
  • [7]
    Taylor, S.S., Buechler, J.A., Yonemoto, W. (1990) cAMP-dependent protein kinase: framework for a diverse family of regulatory enzymes. Annu. Rev. Biochem. 59, 9711005.
  • [8]
    Gimeno, C.J., Ljungdahl, P.O., Styles, C.A., Fink, G.R. (1992) Unipolar cell divisions in the yeast S. cerevisiae lead to filamentous growth regulation by starvation and RAS. Cell 68, 10771090.
  • [9]
    Guillermond, A. (1920) The yeasts. John Wiley and Sons, New York.
  • [10]
    Lorenz, M.C., Heitman, J. (1997) Yeast pseudohyphal growth is regulated by GPA2, a G protein α homolog. EMBO J. 16, 70087018.
  • [11]
    Pan, X., Heitman, J. (1999) Cyclic AMP-dependent protein kinase regulates pseudohyphal differentiation in Saccharomyces cerevisiae. Mol. Cell. Biol. 19, 48744887.
  • [12]
    Rupp, S., Summers, E., Lo, H., Madhani, H., Fink, G. (1999) MAP kinase and cAMP filamentation signaling pathways converge on the unusually large promoter of the yeast FLO11 gene. EMBO J. 18, 12571269.
  • [13]
    Mösch, H.-U., Fink, G.R. (1997) Dissection of filamentous growth by transposon mutagenesis in Saccharomyces cerevisiae. Genetics 145, 671684.
  • [14]
    Mösch, H.-U., Kubler, E., Krappmann, S., Fink, G.R., Braus, G.H. (1999) Crosstalk between the Ras2p-controlled mitogen-activated protein kinase and cAMP pathways during invasive growth of Saccharomyces cerevisiae. Mol. Biol. Cell 10, 13251335.
  • [15]
    Matsumoto, K., Uno, I., Ishikawa, T. (1983) Control of cell division in Saccharomyces cerevisiae mutants defective in adenylate cyclase and cAMP-dependent protein kinase. Exp. Cell Res. 146, 151161.
  • [16]
    Matsumoto, K., Uno, I., Ishikawa, T. (1984) Identification of the structural gene and nonsense alleles for adenylate cyclase in Saccharomyces cerevisiae. J. Bacteriol. 157, 277282.
  • [17]
    Casperson, G.F., Walker, N., Bourne, H.R. (1985) Isolation of the gene encoding adenylate cyclase in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 82, 50605063.
  • [18]
    Nikawa, J., Sass, P., Wigler, M. (1987) The cloning and characterization of the low affinity cAMP phosphodiesterase gene of S. cerevisiae. Mol. Cell. Biol. 7, 36293636.
  • [19]
    Sass, P., Field, J., Nikawa, J., Toda, T., Wigler, M. (1986) Cloning and characterization of the high affinity cAMP phosphodiesterase of S. cerevisiae. Proc. Natl. Acad. Sci. 83, 93039307.
  • [20]
    Ma, P., Wera, S., Dijck, P.V., Thevelein, J.M. (1999) The PDE1-encoded low-affinity phosphodiesterase in the yeast Saccharomyces cerevisiae has a specific function in controlling agonist-induced cAMP signaling. Mol. Biol. Cell 10, 91104.
  • [21]
    Thevelein, J.M., Cauwenberg, L., Colombo, S., Winde, J.H.D., Donation, M., Dumortier, F., Kraakman, L., Lemaire, K., Ma, P., Nauwelaers, D., Rolland, F., Teunissen, A., Dijck, P.V., Versele, M., Wera, S., Winderickx, J. (2000) Nutrient-induced signal transduction through the protein kinase A pathway and its role in the control of metabolism, stress resistance, and growth in yeast. Enzyme Microb. Technol. 26, 819825.
  • [22]
    Colombo, S., Ma, P., Cauwenberg, L., Winderickx, J., Crauwels, M., Teunissen, A., Nauwelaers, D., Winde, J.H.d., Gorwa, M., Colavizza, D., Thevelein, J.M. (1998) Involvement of distinct G-proteins, Gpa2 and Ras, in glucose- and intracellular acidification-induced cAMP signalling in the yeast Saccharomyces cerevisiae. EMBO J. 17, 33263341.
  • [23]
    Thevelein, J.M., De Winde, J.H. (1999) Novel sensing mechanisms and targets for the cAMP-protein kinase A pathway in the yeast Saccharomyces cerevisiae. Mol. Microbiol. 33, 904918.
  • [24]
    Jiang, Y., Davis, C., Broach, J.R. (1998) Efficient transition to growth on fermentable carbon sources in Saccharomyces cerevisiae requires signaling through the Ras pathway. EMBO J. 17, 69426951.
  • [25]
    Cameron, S., Levin, L., Zoller, M., Wigler, M. (1988) cAMP-independent control of sporulation, glycogen metabolism, and heat shock resistance in S. cerevisiae. Cell 53, 555566.
  • [26]
    Durnez, P., Pernambuco, M.B., Oris, E., Argüelles, J.-C., Mergelsberg, H., Thevelein, J.M. (1994) Activation of trehalase during growth induction by nitrogen sources in the yeast Saccharomyces cerevisiae depends on the free catalytic subunits of cAMP-dependent protein kinase, but not on functional Ras proteins. Yeast 10, 10491064.
  • [27]
    Nakafuku, M., Obara, T., Kaibuchi, K., Miyajima, I., Miyajima, A., Itoh, H., Nakamura, S., Arai, K.-i., Matsumoto, K., Kaziro, Y. (1988) Isolation of a second yeast Saccharomyces cerevisiae gene (GPA2) coding for guanine nucleotide-binding regulatory protein: Studies on its structure and possible functions. Proc. Natl. Acad. Sci. USA 85, 13741378.
  • [28]
    Kübler, E., Mösch, H.U., Rupp, S., Lisanti, M.P. (1997) Gpa2p, a G-protein α-subunit, regulates growth and pseudohyphal development in Saccharomyces cerevisiae via a cAMP-dependent mechanism. J. Biol. Chem. 272, 2032120323.
  • [29]
    Kraakman, L., Lemaire, K., Ma, P., Teunissen, A.W.R.H., Donaton, M.C.V., Dijck, P.V., Winderickx, J., De Winde, J.H., Thevelein, J.M. (1999) A Saccharomyces cerevisiae G-protein coupled receptor, Gpr1, is specifically required for glucose activation of the cAMP pathway during the transition to growth on glucose. Mol. Microbiol. 32, 10021012.
  • [30]
    Lorenz, M.C., Pan, X., Harashima, T., Cardenas, M.E., Xue, Y., Hirsch, J.P., Heitman, J. (2000) The G protein-coupled receptor GPR1 is a nutrient sensor that regulates pseudohyphal differentiation in Saccharomyces cerevisiae. Genetics 154, 609622.
  • [31]
    Xue, Y., Batlle, M., Hirsch, J.P. (1998) GPR1 encodes a putative G protein-coupled receptor that associates with the Gpa2p Gα subunit and functions in a Ras-independent pathway. EMBO J. 17, 19962007.
  • [32]
    Yun, C., Tamaki, H., Nakayama, R., Yamamoto, K., Kumagai, H. (1998) Gpr1p, a putative G-protein coupled receptor, regulates glucose-dependent cellular cAMP level in yeast Saccharomyces cerevisiae. Biochem. Biophys. Res. Commun. 252, 2933.
  • [33]
    Beullens, M., Mbonyi, K., Geerts, L., Gladines, D., Detremerie, K., Jans, A.W., Thevelein, J.M. (1988) Studies on the mechanism of the glucose-induced cAMP signal in glycolysis and glucose repression mutants of the yeast Saccharomyces cerevisiae. Eur. J. Biochem. 172, 227231.
  • [34]
    Rolland, F., De Winde, J.H., Lemaire, K., Boles, E., Thevelein, J.M., Winderickx, J. (2000) Glucose-induced cAMP signalling in yeast requires both a G-protein coupled receptor system for extracellular glucose detection and a separable hexose kinase-dependent sensing process. Mol. Microbiol. 38, 348358.
  • [35]
    Ansari, K., Martin, S., Farkasovsky, M., Ehbrecht, I.M., Kuntzel, H. (1999) Phospholipase C binds to the receptor-like GPR1 protein and controls pseudohyphal differentiation in Saccharomyces cerevisiae. J. Biol. Chem. 274, 3005230058.
  • [36]
    Donzeau, M., Bandlow, W. (1999) The yeast trimeric guanine nucleotide-binding protein α subunit, Gpa2p, controls the meiosis-specific kinase Ime2p activity in response to nutrients. Mol. Cell. Biol. 19, 61106119.
  • [37]
    Toda, T., Uno, I., Ishikawa, T., Powers, S., Kataoka, T., Broek, D., Cameron, S., Broach, J., Matsumoto, K., Wigler, M. (1985) In yeast, RAS proteins are controlling elements of adenylate cyclase. Cell 40, 2736.
  • [38]
    Kataoka, T., Powers, S., McGill, C., Fasano, O., Strathern, J., Broach, J., Wigler, M. (1984) Genetic analysis of yeast RAS1 and RAS2 genes. Cell 37, 437445.
  • [39]
    Tatchell, K., Chaleff, D., Defeo-Jones, D., Scolnick, E. (1984) Requirement of either of a pair of ras-related genes of Saccharomyces cerevisiae for spore viability. Nature 309, 523527.
  • [40]
    Kataoka, T., Broek, D., Wigler, M. (1985) DNA sequence and characterization of the S. cerevisiae gene encoding adenylate cyclase. Cell 43, 493505.
  • [41]
    Mösch, H.U., Roberts, R.L., Fink, G.R. (1996) Ras2 signals via the Cdc42/Ste20/mitogen-activated protein kinase module to induce filamentous growth in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 93, 53525356.
  • [42]
    Toda, T., Cameron, S., Sass, P., Zoller, M., Scott, J.D., McMullen, B., Hurwitz, M., Krebs, E.G., Wigler, M. (1987) Cloning and characterization of BCY1, a locus encoding a regulatory subunit of the cyclic AMP-dependent protein kinase in Saccharomyces cerevisiae. Mol. Cell. Biol. 7, 13711377.
  • [43]
    Toda, T., Cameron, S., Sass, P., Zoller, M., Wigler, M. (1987) Three different genes in S. cerevisiae encode the catalytic subunits of the cAMP-dependent protein kinase. Cell 50, 277287.
  • [44]
    Robertson, L.S., Fink, G.R. (1998) The three yeast A kinases have specific signaling functions in pseudohyphal growth. Proc. Natl. Acad. Sci. USA 95, 1378313787.
  • [45]
    Broek, D., Samiy, N., Fasano, O., Fujiyama, A., Tamanoi, F., Northup, J., Wigler, M. (1985) Differential activation of yeast adenylate cyclase by wild-type and mutant ras proteins. Cell 41, 763769.
  • [46]
    Martinez-Pastor, M.T., Marchler, G., Schuller, C., Marchler-Bauer, A., Ruis, H., Estruch, F. (1996) The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress response element (STRE). EMBO J. 15, 22272235.
  • [47]
    Schmitt, A.P., McEntee, K. (1996) Msn2p, a zinc finger DNA-binding protein, is the transcriptional activator of the multistress response in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 93, 57775782.
  • [48]
    Boy-Marcotte, E., Perrot, M., Bussereau, F., Boucherie, H., Jacquet, M. (1998) Msn2p and Msn4p control a large number of genes induced at the diauxic transition which are repressed by cyclic AMP in Saccharomyces cerevisiae. J. Bacteriol. 180, 10441052.
  • [49]
    Smith, A., Ward, M.P., Garrett, S. (1998) Yeast PKA represses Msn2p/Msn4p-dependent gene expression to regulate growth, stress response and glycogen accumulation. EMBO J. 17, 35563564.
  • [50]
    Reinders, A., Bürckert, N., Boller, T., Wiemken, A., DeVirgilio, C. (1998) Saccharomyces cerevisiae cAMP-dependent protein kinase controls entry into stationary phase through the Rim15p protein kinase. Genes Dev. 12, 29432955.
  • [51]
    Vidan, S., Mitchell, A.P. (1997) Stimulation of yeast meiotic gene expression by the glucose-repressible protein kinase Rim 15p. Mol. Cell. Biol. 17, 26882697.
  • [52]
    Lambrechts, M.G., Bauer, F.F., Marmur, J., Pretorius, I.S. (1996) Muc1, a mucin-like protein that is regulated by Mss10, is critical for pseudohyphal differentiation in yeast. Proc. Natl. Acad. Sci. USA 93, 84198424.
  • [53]
    Liu, H., Styles, C.A., Fink, G.R. (1996) Saccharomyces cerevisiae S288C has a mutation in FLO8, a gene required for filamentous growth. Genetics 144, 967978.
  • [54]
    Lo, W.-S., Dranginis, A.M. (1998) The cell surface flocculin Flo11 is required for pseudohyphae formation and invasion by Saccharomyces cerevisiae. Mol. Biol. Cell 9, 161171.
  • [55]
    Mbonyi, K., Aelst, L.V., Argüelles, J.C., Jans, A.W.H., Thevelein, J.M. (1990) Glucose-induced hyperaccumulation of cyclic AMP and defective glucose repression in yeast strains with reduced activity of cyclic AMP-dependent protein kinase. Mol. Cell. Biol. 10, 45184523.
  • [56]
    Versele, M., De Winde, J.H., Thevelein, J.M. (1999) A novel regulator of G protein signalling in yeast, Rgs2, downregulates glucose-activation of the cAMP pathway through direct inhibition of Gpa2. EMBO J. 18, 55775591.
  • [57]
    Griffioen, G., Anghileri, P., Imre, E., Baroni, M.D., Ruis, H. (2000) Nutritional control of nucleocytoplasmic localization of cAMP-dependent protein kinase catalytic and regulatory subunits in Saccharomyces cerevisiae. J. Biol. Chem. 275, 14491456.
  • [58]
    Griffioen, G., Branduardi, P., Ballarini, A., Anghileri, P., Norbeck, J., Baroni, M.D., Ruis, H. (2001) Nucleocytoplasmic distribution of budding yeast protein kinase A regulatory subunit Bcy1 requires Zds1 and is regulated by Yak1-dependent phosphorylation of its targeting domain. Mol. Cell. Biol. 21, 511523.
  • [59]
    Davey, J. (1998) Fusion of a fission yeast. Yeast 14, 15291566.
  • [60]
    Yamamoto, M. (1996) The molecular control mechanisms of meiosis in fission yeast. Trends Biochem. Sci. 21, 1822.
  • [61]
    Isshiki, T., Mochizuki, N., Maeda, T., Yamamoto, M. (1992) Characterization of a fission yeast gene, gpa2, that encodes a Gα subunit involved in the monitoring of nutrition. Genes Dev. 6, 24552462.
  • [62]
    Hatanaka, M., Shimoda, C. (2001) The cyclic AMP/PKA signal pathway is required for initiation of spore germination in Schizosaccharomyces pombe. Yeast 18, 207217.
  • [63]
    Yamawaki-Kataoka, Y., Tamaoki, T., Choe, H.R., Tanaka, H., Kataoka, T. (1989) Adenylate cyclases in yeast: a comparison of the genes from Schizosaccharomyces pombe and Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 86, 56935697.
  • [64]
    Maeda, T., Watanabe, Y., Kunitomo, H., Yamamoto, M. (1994) Cloning of the pka1 gene encoding the catalytic subunit of the cAMP-dependent protein kinase in Schizosaccharomyces pombe. J. Biol. Chem. 269, 96329637.
  • [65]
    Hoffman, C.S., Winston, F. (1990) Isolation and characterization of mutants constitutive for expression of the fbp1 gene of Schizosaccharomyces pombe. Genetics 124, 807816.
  • [66]
    Hoffman, C.S., Winston, F. (1991) Glucose repression of transcription of the Schizosaccharomyces pombe fbp1 gene occurs by a cAMP signaling pathway. Genes Dev. 5, 561571.
  • [67]
    Byrne, S.M., Hoffman, C.S. (1993) Six git genes encode a glucose-induced adenylate cyclase activation pathway in the fission yeast Schizosaccharomyces pombe. J. Cell Sci. 105, 10951100.
  • [68]
    Nocero, M., Isshiki, T., Yamamoto, M., Hoffman, C.S. (1994) Glucose repression of fbp1 transcription in Schizosaccharomyces pombe is partially regulated by adenylate cyclase activation by a G protein α subunit encoded by gpa2 (git8). Genetics 138, 3945.
  • [69]
    Welton, R.M., Hoffman, C.S. (2000) Glucose monitoring in fission yeast via the gpa2 Gα, the git5 Gβ and the git3 putative glucose receptor. Genetics 156, 513521.
  • [70]
    Young, D., Riggs, M., Field, J., Vojtek, A., Broek, D., Wigler, M. (1989) The adenylyl cyclase gene from Schizosaccharomyces pombe. Proc. Natl. Acad. Sci. USA 86, 79897993.
  • [71]
    Maeda, T., Mochizuki, N., Yamamoto, M. (1990) Adenylyl cyclase is dispensable for vegetative cell growth in the fission yeast Schizosaccharomyces pombe. Proc. Natl. Acad. Sci. USA 87, 78147818.
  • [72]
    Landry, S., Pettit, M.T., Apolinario, E., Hoffman, C.S. (2000) The fission yeast git5 gene encodes a Gβ subunit required for glucose-triggered adenylate cyclase activation. Genetics 154, 14631471.
  • [73]
    Kim, D.-U., Park, S.-K., Chung, K.-S., Choi, M.-U., Yoo, H.-S. (1996) The G protein β subunit Gpb1 of Schizosaccharomyces pombe is a negative regulator of sexual development. Mol. Gen. Genet. 252, 2032.
  • [74]
    Jin, M., Fujita, M., Culley, B.M., Apolinario, E., Yamamoto, M., Maundrell, K., Hoffman, C.S. (1995) sck1, a high copy number suppressor of defects in the cAMP-dependent protein kinase pathway in fission yeast, encodes a protein homologous to the Saccharomyces cerevisiae SCH9 kinase. Genetics 140, 457467.
  • [75]
    De Voti, J., Seydoux, G., Beach, D., McLeod, M. Interaction between ran1+ protein kinase and cAMP dependent protein kinase as negative regulators of fission yeast meiosis,. EMBO J. 10, 1991. 3759
  • [76]
    Sugimoto, A., Iino, Y., Maeda, T., Watanabe, Y., Yamamoto, M. (1991) Schizosaccharomyces pombeste11+ encodes a transcription factor with an HMG motif that is a critical regulator of sexual development. Genes Dev. 5, 19901999.
  • [77]
    Xu, H.P., White, M., Marcus, S., Wigler, M. (1994) Concerted action of RAS and G proteins in the sexual response pathways of Schizosaccharomyces pombe. Mol. Cell. Biol. 14, 5058.
  • [78]
    Kanoh, J., Watanabe, Y., Ohsugi, M., Iino, Y., Yamamoto, M. (1996) Schizosaccharomyces pombe gad7+ encodes a phosphoprotein with a bZIP domain, which is required for proper G1 arrest and gene expression under nitrogen starvation. Genes Cells 1, 391408.
  • [79]
    Shiozaki, K., Russell, P. (1996) Conjugation, meiosis, and the osmotic stress response are regulated by Spc1 kinase through Atf1 transcription factor in fission yeast. Genes Dev. 10, 22762288.
  • [80]
    Takeda, T., Toda, T., Kominami, K., Kohnosu, A., Yanagida, M., Jones, N. (1995) Schizosaccharomyces pombe atf1+ encodes a transcription factor required for sexual development and entry into stationary phase. EMBO J. 14, 61936208.
  • [81]
    Wilkinson, M.G., Samuels, M., Takeda, T., Toone, W.M., Shieh, J.C., Toda, T., Millar, J.B., Jones, N. (1996) The Atf1 transcription factor is a target for the Sty1 stress-activated MAP kinase pathway in fission yeast. Genes Dev. 10, 22892301.
  • [82]
    Neely, L.A., Hoffman, C.S. (2000) Protein kinase A and mitogen-activated protein kinase pathways antagonistically regulate fission yeast fbp1 transcription by employing different modes of action at two upstream activation sites. Mol. Cell. Biol. 20, 64266434.
  • [83]
    Lo, W.S., Dranginis, A.M. (1996) FLO11, a yeast gene related to the STA genes, encodes a novel cell surface flocculin. J. Bacteriol. 178, 71447151.
  • [84]
    Casadevall, A. and Perfect, J.R. (1998) Cryptococcus neoformans, 541 pp. ASM, Washington, DC.
  • [85]
    Granger, D.L., Perfect, J.R., Durack, D.T. (1985) Virulence of Cryptococcus neoformans: regulation of capsule synthesis by carbon dioxide. J. Clin. Invest. 76, 508516.
  • [86]
    Kwon-Chung, K.J., Rhodes, J.C. (1986) Encapsulation and melanin formation as indicators of virulence in Cryptococcus neoformans. Infect. Immun. 51, 218223.
  • [87]
    Chang, Y.C., Penoyer, L.A., Kwon-Chung, K.J. (1996) The second capsule gene of Cryptococcus neoformans, CAP64, is essential for virulence. Infect. Immun. 64, 19771983.
  • [88]
    Kwon-Chung, K.J., Polacheck, I., Popkin, T.J. (1982) Melanin-lacking mutants of Cryptococcus neoformans and their virulence for mice. J. Bacteriol. 150, 14141421.
  • [89]
    Wang, Y., Aisen, P., Casadevall, A. (1995) Cryptococcus neoformans melanin and virulence: mechanism of action. Infect. Immun. 63, 31313136.
  • [90]
    Salas, S.D., Bennett, J.E., Kwon-Chung, K.J., Perfect, J.R., Williamson, P.R. (1996) Effect of the laccase gene, CNLAC1, on virulence of Cryptococcus neoformans. J. Exp. Med. 184, 377386.
  • [91]
    Cox, G.M., Mukherjee, J., Cole, G.T., Casadevall, A., Perfect, J.R. (2000) Urease as a virulence factor in experimental Cryptococcosis. Infect. Immun. 68, 443448.
  • [92]
    Odom, A., Muir, S., Lim, E., Toffaletti, D.L., Perfect, J., Heitman, J. (1997) Calcineurin is required for virulence of Cryptococcus neoformans. EMBO J. 16, 25762589.
  • [93]
    Kwon-Chung, K.J., Edman, J.C., Wickes, B.L. (1992) Genetic association of mating types and virulence in Cryptococcus neoformans. Infect. Immun. 60, 602605.
  • [94]
    Nurudeen, T.A., Ahearn, D.G. (1979) Regulation of melanin production by Cryptococcus neoformans. J. Clin. Microbiol 10, 724729.
  • [95]
    Polacheck, I., Hearing, V.J., Kwon-Chung, K.J. (1982) Biochemical studies of phenoloxidase and utilization of catecholamines in Cryptococcus neoformans. J. Bacteriol. 150, 12121220.
  • [96]
    Torres-Guererro, H., Edman, J.C. (1994) Melanin-deficient mutants of Cryptococcus neoformans. J. Med. Vet. Mycol. 32, 303313.
  • [97]
    Williamson, P.R. (1994) Biochemical and molecular characterization of the diphenol oxidase of Cryptococcus neoformans: Identification as a laccase. J. Bacteriol. 176, 656664.
  • [98]
    Nosanchuk, J.D., Rosas, A.L., Casadevall, A. (1998) The antibody response to fungal melanin in mice. J. Immunol. 160, 60266031.
  • [99]
    Nosanchuk, J.D., Valadon, P., Feldmesser, M., Casadevall, A. (1999) Melanization of Cryptococcus neoformans in murine infection. Mol. Cell. Biol. 19, 745750.
  • [100]
    Nosanchuk, J.D., Rosas, A.L., Lee, S.C., Casadevall, A. (2000) Melanization of Cryptococcus neoformans in human brain tissue. Lancet 355, 20492050.
  • [101]
    Rosas, A.L., Nosanchuk, J.D., Feldmesser, M., Cox, G.M., McDade, H.C., Casadevall, A. (2000) Synthesis of polymerized melanin by Cryptococcus neoformans in infected rodents. Infect. Immun. 68, 28452853.
  • [102]
    Vartivarian, S.E., Anaissie, E.J., Cowart, R.E., Sprigg, H.A., Tingler, M.J., Jacobson, E.S. (1993) Regulation of cryptococcal capsular polysaccharide by iron. J. Infect. Dis. 167, 186190.
  • [103]
    Feldmesser, M., Kress, Y., Novikoff, P., Casadevall, A. (2000) Cryptococcus neoformans is a facultative intracellular pathogen in murine pulmonary infection. Infect. Immun. 68, 42254237.
  • [104]
    Murphy, J.W., Moorehead, J.W. (1982) Regulation of cell-mediated immunity in cryptococcosis. I. Induction of specific afferent T suppressor cells by cryptoccal antigen. J. Immunol. 128, 276283.
  • [105]
    Murphy, J.W., Mosley, R.L., Moorhead, J.W. (1983) Regulation of cell-mediated immunity in cryptococcosis. II. Characterization of first-order T suppressor cells (Ts1) and induction of second-order suppressor cells. J. Immunol. 130, 28762881.
  • [106]
    Diamond, R.D., May, J.E., Kane, M.A., Frank, M.M., Bennett, J.E. (1974) The role of the classical and alternate complement pathways in host defenses against Cryptococcus neoformans infection. J. Immunol. 112, 22602270.
  • [107]
    Macher, A.M., Bennett, J.E., Gadek, J.E., Frank, M.M. (1978) Complement depletion in cryptococcal sepsis. J. Immunol. 120, 16861690.
  • [108]
    Vecchiarelli, A., Retini, C., Pietrella, D., Monari, C., Tascini, C., Beccari, T., Kozel, T.R. (1995) Downregulation by cryptococcal polysaccharide of tumor necrosis factor α and interleukin-1 β secretion from human monocytes. Infect. Immun. 63, 29192923.
  • [109]
    Dong, Z.M., Murphy, J.W. (1995) Effects of the two varieties of Cryptococcus neoformans cells and culture filtrate antigens on neutrophil locomotion. Infect. Immun. 63, 26322644.
  • [110]
    Chang, Y.C., Kwon-Chung, K.J. (1994) Complementation of a capsule-deficient mutation of Cryptococcus neoformans restores its virulence. Mol. Cell. Biol. 14, 49124919.
  • [111]
    Moore, T.D.E., Edman, J.C. (1993) The α-mating type locus of Cryptococcus neoformans contains a peptide pheromone gene. Mol. Cell. Biol. 13, 19621970.
  • [112]
    Alspaugh, J.A., Davidson, R.C. and Heitman, J. (2000) Morphogenesis of Cryptococcus neoformans. In: Dimorphism in Human Pathogenic and Apathogenic Yeasts (Ernst, J.F. and Schmidt, A., Eds.), pp. 217–238. Contrib. Microbiol., Karger, Basel.
  • [113]
    Wickes, B.L., Mayorga, M.E., Edman, U., Edman, J.C. (1996) Dimorphism and haploid fruiting in Cryptococcus neoformans: Association with the α-mating type. Proc. Natl. Acad. Sci. USA 93, 73277331.
  • [114]
    Wang, P., Perfect, J.R., Heitman, J. (2000) The G-protein β subunit GPB1 is required for mating and haploid fruiting in Cryptococcus neoformans. Mol. Cell. Biol. 20, 352362.
  • [115]
    Alspaugh, J.A., Perfect, J.R., Heitman, J. (1997) Cryptococcus neoformans mating and virulence are regulated by the G-protein α subunit GPA1 and cAMP. Genes Dev. 11, 32063217.
  • [116]
    D'Souza, C.A., Alspaugh, J.A., Yue, C., Harashima, T., Cox, G.M., Perfect, J.R. and Heitman, J. (2001) cAMP dependent protein kinase controls mating and virulence of the fungal pathogen Cryptococcus neoformans. Mol. Cell. Biol., in press.
  • [117]
    Alspaugh, J.A., Perfect, J.R., Heitman, J. (1998) Signal transduction pathways regulating differentiation and pathogenicity of Cryptococcus neoformans. Fungal Genet. Biol. 25, 114.
  • [118]
    Wang, P., Heitman, J. (1999) Signal transduction cascades regulating mating, filamentation, and virulence in Cryptococcus neoformans. Curr. Opin. Microbiol. 2, 358362.
  • [119]
    Tolkacheva, T., McNamara, P., Piekarz, E., Courchesne, W. (1994) Cloning of a Cryptococcus neoformans gene, GPA1, encoding a G-protein α-subunit homolog. Infect. Immun. 62, 28492856.
  • [120]
    Alspaugh, J.A., Cavallo, L.M., Perfect, J.R., Heitman, J. (2000) RAS1 regulates filamentation, mating and growth at high temperature of Cryptococcus neoformans. Mol. Microbiol. 36, 352365.
  • [121]
    Nielsen, O., Davey, J., Egel, R. (1992) The ras1 function of Schizosaccharomyces pombe mediates pheromone-induced transcription. EMBO J. 11, 13911395.
  • [122]
    Aberg, J.A., Mundy, L.M., Powderly, W.G. (1999) Pulmonary cryptococcosis in patients without HIV infection. Chest 115, 734740.
  • [123]
    Nunez, M., Peacock, J.E., R. Chin, J. (2000) Pulmonary cryptococcosis in the immunocompetent host, Therapy with oral fluconazole a report of four cases and a review of the literature. Chest 118, 527534.
  • [124]
    Patel, P., Ramanathan, J., Kayser, M., Baran, J. (2000) Primary cutaneous cryptococcosis of the nose in an immunocompetent woman. J. Am. Acad. Dermatol. 43, 344345.
  • [125]
    Wickes, B.L., Edman, U., Edman, J.C. (1997) The Cryptococcus neoformans STE12α gene: a putative Saccharomyces cerevisiae STE12 homologue that is mating type specific. Mol. Microbiol. 26, 951960.
  • [126]
    Yue, C., Cavallo, L.M., Alspaugh, J.A., Wang, P., Cox, G.M., Perfect, J.R., Heitman, J. (1999) The STE12α homolog is required for haploid filamentation but largely dispensable for mating and virulence in Cryptococcus neoformans. Genetics 153, 16011615.
  • [127]
    Chang, Y.C., Wickes, B.L., Miller, G.F., Penoyer, L.A., Kwon-Chung, K.J. (2000) Cryptococcus neoformans STE12α regulates virulence but is not essential for mating. J. Exp. Med. 191, 871882.
  • [128]
    Banuett, F. (1995) Genetics of Ustilago maydis, a fungal pathogen that induces tumors in maize. Annu. Rev. Genet. 29, 179208.
  • [129]
    Banuett, F. (1992) Ustilago maydis, the delightful blight. Trends Genet. 8, 174180.
  • [130]
    Kahmann, R., Basse, C., Feldbrugge, M. (1999) Fungal-plant signalling in the Ustilago maydis–maize pathosystem. Curr. Opin. Microbiol. 2, 647650.
  • [131]
    Bölker, M., Urban, M., Kahmann, R. (1992) The a mating type locus of U. maydis specifies cell signaling components. Cell 68, 441450.
  • [132]
    Kronstad, J.W., Leong, S.A. (1989) Isolation of two alleles of the b locus of Ustilago maydis. Proc. Natl. Acad. Sci. USA 86, 978982.
  • [133]
    Schulz, B., Banuett, F., Dahl, M., Schlesinger, R., Schafer, W., Martin, T., Herskowitz, I., Kahmann, R. (1990) The b alleles of U. maydis whose combinations program pathogenic development, code for polypeptides containing a homeodomain-related motif. Cell 60, 295306.
  • [134]
    Gillissen, B., Borgemann, J., Sandmann, C., Schroeer, B., Bolker, M., Kahmann, R. (1992) A two-component regulatory system for self/non-self recognition in Ustilago maydis. Cell 68, 647657.
  • [135]
    Kernkamp, M.F. (1939) Genetic and environmental factors affecting growth types of Ustilago zeae. Phytopathology 29, 473484.
  • [136]
    Gold, S., Duncan, G., Barrett, K., Kronstad, J. (1994) cAMP regulates morphogenesis in the fungal pathogen Ustilago maydis. Genes Dev. 8, 28052816.
  • [137]
    Ruiz-Herrera, J., Leon, C.G., Guevara-Olvera, L., Carabez-Trejo, A. (1995) Yeast-mycelial dimorphism of haploid and diploid strains of Ustilago maydis. Microbiology 141, 695703.
  • [138]
    Barrett, K.J., Gold, S.E., Kronstad, J.W. (1993) Identification and complementation of a mutation to constitutive filamentous growth in Ustilago maydis. Mol. Plant–Microbe Interact. 6, 274283.
  • [139]
    Krüger, J., Loubradou, G., Regenfelder, E., Hartmann, A., Kahmann, R. (1998) Crosstalk between cAMP and pheromone signalling pathways in Ustilago maydis. Mol. Gen. Genet. 260, 193198.
  • [140]
    Mayorga, M.E., Gold, S.E. (1998) Characterization and molecular genetic complementation of mutants affecting dimorphism in the fungus Ustilago maydis. Fungal Genet. Biol. 24, 364376.
  • [141]
    Mayorga, M.E., Gold, S.E. (1999) A MAP kinase encoded by the ubc3 gene of Ustilago maydis is required for filamentous growth and full virulence. Mol. Microbiol. 34, 485497.
  • [142]
    Andrews, D.L., Egan, J.D., Mayorga, M.E., Gold, S.E. (2000) The Ustilago maydis ubc4 and ubc5 genes encode members of a MAP kinase cascade required for filamentous growth. Mol. Plant–Microbe Interact. 13, 781786.
  • [143]
    Gold, S.E., Brogdon, S.M., Mayorga, M.E., Kronstad, J.W. (1997) The Ustilago maydis regulatory subunit of a cAMP-dependent protein kinase is required for gall formation in maize. Plant Cell 9, 15851594.
  • [144]
    Dürrenberger, F., Wong, K., Kronstad, J.W. (1998) Identification of a cAMP-dependent protein kinase catalytic subunit required for virulence and morphogenesis in Ustilago maydis. Proc. Natl. Acad. Sci. USA 95, 56845689.
  • [145]
    Krüger, J., Loubradou, G., Wanner, G., Regenfelder, E., Feldbrugge, M., Kahmann, R. (2000) Activation of the cAMP pathway in Ustilago maydis reduces fungal proliferation and teliospore formation in plant tumors. Mol. Plant–Microbe Interact. 13, 10341040.
  • [146]
    Regenfelder, E., Spellig, T., Hartmann, A., Lauenstein, S., Bölker, M., Kahmann, R. (1997) G proteins in Ustilago maydis: transmission of multiple signals. EMBO J. 16, 19341942.
  • [147]
    Agnan, J., Mills, D. (1994) Cyclic AMP regulates the dimorphic switch in Ustilago hordei. Genes Dev. 8, 28052816.
  • [148]
    Lichter, A., Mills, D. (1997) Fil1, a G-protein α-subunit that acts upstream of cAMP and is essential for dimorphic switching in haploid cells of Ustilago hordei. Mol. Gen. Genet. 256, 426435.
  • [149]
    Lichter, A., Mills, D. (1998) Control of pigmentation of Ustilago hordei: the effect of pH, thiamine, and involvement of the cAMP cascade. Fungal Genet. Biol. 25, 6374.
  • [150]
    Hartmann, H.A., Kahmann, R., Bölker, M. (1996) The pheromone response factor coordinates filamentous growth and pathogenicity in Ustilago maydis. EMBO J. 15, 16321641.
  • [151]
    Hartmann, H.A., Krüger, J., Lottspeich, F., Kahmann, R. (1999) Environmental signals controlling sexual development of the corn smut fungus Ustilago maydis through the transcriptional regulator Prf1. Plant Cell 11, 12931305.
  • [152]
    Adachi, K., Hamer, J.E. (1998) Divergent cAMP signaling pathways regulate growth and pathogenesis in the rice blast fungus Magnaporthe grisea. Plant Cell 10, 13611374.