• [1]
    Raetz, C.R (1990) Biochemistry of endotoxins. Annu. Rev. Biochem. 59, 129170.
  • [2]
    Que, N.L., Ribeiro, A.A., Raetz, C.R (2000) Two-dimensional NMR spectroscopy and structures of six lipid A species from Rhizobium etli CE3. Detection of an acyloxyacyl residue in each component and origin of the aminogluconate moiety. J. Biol. Chem. 275, 2801728027.
  • [3]
    Que, N.L., Lin, S, Cotter, R.J., Raetz, C.R (2000) Purification and mass spectrometry of six lipid A species from the bacterial endosymbiont Rhizobium etli. Demonstration of a conserved distal unit and a variable proximal portion. J. Biol. Chem. 275, 2800628016.
  • [4]
    Osborn, M.J., Wu, H.C (1980) Proteins of the outer membrane of gram-negative bacteria. Annu. Rev. Microbiol. 34, 369422.
  • [5]
    Rivera, M, McGroarty, E.J (1989) Analysis of a common-antigen lipopolysaccharide from Pseudomonas aeruginosa. J. Bacteriol. 171, 22442248.
  • [6]
    Wilkinson, S.G (1983) Composition and structure of lipopolysaccharides from Pseudomonas aeruginosa. Rev. Infect. Dis. 5, 941949.
  • [7]
    Reuhs, B.L., Stephens, S.B., Geller, D.P., Kim, J.S., Glenn, J, Przytycki, J, Ojanen-Reuhs, T (1999) Epitope identification for a panel of anti-Sinorhizobium meliloti monoclonal antibodies and application to the analysis of K antigens and lipopolysaccharides from bacteroids. Appl. Environ. Microbiol. 65, 51865191.
  • [8]
    Forsberg, L.S., Reuhs, B.L (1997) Structural characterization of the K antigens from Rhizobium fredii USDA257: evidence for a common structural motif, with strain-specific variation, in the capsular polysaccharides of Rhizobium spp. J. Bacteriol. 179, 53665371.
  • [9]
    Stevenson, G, Neal, B, Liu, D, Hobbs, M, Packer, N.H., Batley, M, Redmond, J.W., Lindquist, L, Reeves, P (1994) Structure of the O antigen of Escherichia coli K-12 and the sequence of its rfb gene cluster. J. Bacteriol. 176, 41444156.
  • [10]
    Flesher, A.R., Insel, R.A (1978) Characterization of lipopolysaccharide of Haemophilus influenzae. J. Infect. Dis. 138, 719730.
  • [11]
    Rietschel, E.T., Brade, H, Holst, O, Brade, L, Muller-Loennies, S, Mamat, U, Zahringer, U, Beckmann, F, Seydel, U, Brandenburg, K, Ulmer, A.J., Mattern, T, Heine, H, Schletter, J, Loppnow, H, Schonbeck, U, Flad, H.D., Hauschildt, S, Schade, U.F., Di Padova, F, Kusumoto, S, Schumann, R.R (1996) Bacterial endotoxin: Chemical constitution, biological recognition, host response, and immunological detoxification. Curr. Top. Microbiol. Immunol. 216, 3981.
  • [12]
    Kannenberg, E.L., Reuhs, B.L., Forsberg, L.S. and Carlson, R.W. (1998) Lipopolysaccharides and K-antigens: their structures, biosynthesis and functions. In: The Rhizobiaceae (Spaink, H.P., Kondorosi, A. and Hooykaas, P.J.J., Eds.), pp. 119–154. Kluwer Academic, Dordrecht.
  • [13]
    Levin, J., Alving, C.R., Munford, R.S. and Stütz, P.L. (1993) Bacterial Endotoxin: Recognition and Effector Mechanisms. Excerpta Medica, Amsterdam.
  • [14]
    Poltorak, A, He, X, Smirnova, I, Liu, M.Y., Huffel, C.V., Du, X, Birdwell, D, Alejos, E, Silva, M, Galanos, C, Freudenberg, M, Ricciardi-Castagnoli, P, Layton, B, Beutler, B (1998) Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282, 20852088.
  • [15]
    Qureshi, S.T., Lariviere, L, Leveque, G, Clermont, S, Moore, K.J., Gros, P, Malo, D (1999) Endotoxin-tolerant mice have mutations in Toll-like receptor (Tlr4). J. Exp. Med. 189, 615625.
  • [16]
    Jimenez-Lucho, V.E., Joiner, K.A., Foulds, J, Frank, M.M., Leive, L (1987) C3b generation is affected by the structure of the O-antigen polysaccharide in lipopolysaccharide from salmonellae. J. Immunol. 139, 12531259.
  • [17]
    Liang-Takasaki, C.J., Grossman, N, Leive, L (1983) Salmonellae activate complement differentially via the alternative pathway depending on the structure of their lipopolysaccharide O-antigen. J. Immunol. 130, 18671870.
  • [18]
    Liang-Takasaki, C.J., Makela, P.H., Leive, L (1982) Phagocytosis of bacteria by macrophages: changing the carbohydrate of lipopolysaccharide alters interaction with complement and macrophages. J. Immunol. 128, 12291235.
  • [19]
    Liang-Takasaki, C.J., Saxen, H, Makela, P.H., Leive, L (1983) Complement activation by polysaccharide of lipopolysaccharide: an important virulence determinant of salmonellae. Infect. Immun. 41, 563569.
  • [20]
    Appelmelk, B.J., Monteiro, M.A., Martin, S.L., Moran, A.P., Vandenbroucke-Grauls, C.M (2000) Why Helicobacter pylori has Lewis antigens. Trends Microbiol. 8, 565570.
  • [21]
    Hakomori, S (1992) Le (X) and related structures as adhesin molecules. Histochem. J. 24, 771776.
  • [22]
    Moran, A.P., Prendergast, M.M., Appelmelk, B.J (1996) Molecular mimicry of host structures by bacterial lipopolysaccharides and its contribution to disease. FEMS Immunol. Med. Microbiol. 16, 105115.
  • [23]
    Appelmelk, B.J., Negrini, R, Moran, A.P., Kuipers, E.J (1997) Molecular mimicry between Helicobacter pylori and the host. Trends Microbiol. 5, 7073.
  • [24]
    Appelmelk, B.J., Simoons-Smit, I, Negrini, R, Moran, A.P., Aspinall, G.O., Forte, J.G., De Vries, T, Quan, H, Verboom, T, Maaskant, J.J., Ghiara, P, Kuipers, E.J., Bloemena, E, Tadema, T.M., Townsend, R.R., Tyagarajan, K J.M. Crothers Jr., Monteiro, M.A., Savio, A, De Graaff, J (1996) Potential role of molecular mimicry between Helicobacter pylori lipopolysaccharide and host Lewis blood group antigens in autoimmunity. Infect. Immun. 64, 20312040.
  • [25]
    Negrini, R, Savio, A, Poiesi, C, Appelmelk, B.J., Buffoli, F, Paterlini, A, Cesari, P, Graffeo, M, Vaira, D, Franzin, G (1996) Antigenic mimicry between Helicobacter pylori and gastric mucosa in the pathogenesis of body atrophic gastritis. Gastroenterology 111, 655665.
  • [26]
    Gleeson, P.A (1994) Glycoconjugates in autoimmunity. Biochim. Biophys. Acta 1197, 237255.
  • [27]
    Aspinall, G.O., McDonald, A.G., Pang, H, Kurjanczyk, L.A., Penner, J.L (1994) Lipopolysaccharides of Campylobacter jejuni serotype O:19: structures of core oligosaccharide regions from the serostrain and two bacterial isolates from patients with the Guillain-Barre syndrome. Biochemistry 33, 241249.
  • [28]
    Preston, A, Mandrell, R.E., Gibson, B.W., Apicella, M.A (1996) The lipooligosaccharides of pathogenic gram-negative bacteria. Crit. Rev. Microbiol. 22, 139180.
  • [29]
    van Putten, J.P (1993) Phase variation of lipopolysaccharide directs interconversion of invasive and immuno-resistant phenotypes of Neisseria gonorrhoeae. EMBO J. 12, 40434051.
  • [30]
    Jacques, M (1996) Role of lipo-oligosaccharides and lipopolysaccharides in bacterial adherence. Trends Microbiol. 4, 408409.
  • [31]
    Edwards, N.J., Monteiro, M.A., Faller, G, Walsh, E.J., Moran, A.P., Roberts, I.S., High, N.J (2000) Lewis X structures in the O antigen side-chain promote adhesion of Helicobacter pylori to the gastric epithelium. Mol. Microbiol. 35, 15301539.
  • [32]
    Sakamoto, S, Watanabe, T, Tokumaru, T, Takagi, H, Nakazato, H, Lloyd, K.O (1989) Expression of Lewisa, Lewisb, Lewisx, Lewisy, siayl-Lewisa, and sialyl-Lewisx blood group antigens in human gastric carcinoma and in normal gastric tissue. Cancer Res. 49, 745752.
  • [33]
    Larsen, E, Palabrica, T, Sajer, S, Gilbert, G.E., Wagner, D.D., Furie, B.C., Furie, B (1990) PADGEM-dependent adhesion of platelets to monocytes and neutrophils is mediated by a lineage-specific carbohydrate, LNF III (CD15). Cell 63, 467474.
  • [34]
    Stoolman, L.M (1989) Adhesion molecules controlling lymphocyte migration. Cell 56, 907910.
  • [35]
    Larsen, G.R., Sako, D, Ahern, T.J., Shaffer, M, Erban, J, Sajer, S.A., Gibson, R.M., Wagner, D.D., Furie, B.C., Furie, B (1992) P-selectin and E-selectin. Distinct but overlapping leukocyte ligand specificities. J. Biol. Chem. 267, 1110411110.
  • [36]
    Ilver, D, Arnqvist, A, Ogren, J, Frick, I.M., Kersulyte, D, Incecik, E.T., Berg, D.E., Covacci, A, Engstrand, L, Boren, T (1998) Helicobacter pylori adhesin binding fucosylated histo-blood group antigens revealed by retagging. Science 279, 373377.
  • [37]
    Jacques, M, Paradis, S.E (1998) Adhesin-receptor interactions in Pasteurellaceae. FEMS Microbiol. Rev. 22, 4559.
  • [38]
    Sandlin, R.C., Lampel, K.A., Keasler, S.P., Goldberg, M.B., Stolzer, A.L., Maurelli, A.T (1995) Avirulence of rough mutants of Shigella flexneri: requirement of O antigen for correct unipolar localization of IcsA in the bacterial outer membrane. Infect. Immun. 63, 229237.
  • [39]
    Garcia-del Portillo, F, Stein, M.A., Finlay, B.B (1997) Release of lipopolysaccharide from intracellular compartments containing Salmonella typhimurium to vesicles of the host epithelial cell. Infect. Immun. 65, 2434.
  • [40]
    Medzhitov, R C.A. Janeway Jr. (1998) An ancient system of host defense. Curr. Opin. Immunol. 10, 1215.
  • [41]
    Medzhitov, R C Janeway Jr. (2000) The Toll receptor family and microbial recognition. Trends Microbiol. 8, 452456.
  • [42]
    Borregaard, N, Elsbach, P, Ganz, T, Garred, P, Svejgaard, A (2000) Innate immunity: from plants to humans. Immunol. Today 21, 6870.
  • [43]
    Hammond-Kosack, K.E., Jones, J.D.G (1997) Plant disease resistance genes. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48, 575607.
  • [44]
    Dixon, M.S., Golstein, C, Thomas, C.M., Der Biezen, E.A., Jones, J.D (2000) Genetic complexity of pathogen perception by plants: the example of Rcr3, a tomato gene required specifically by Cf-2. Proc. Natl. Acad. Sci. USA 97, 88078814.
  • [45]
    Inohara, N, Ogura, Y, Chen, F.F., Muto, A, Nunez, G (2001) Human Nod1 confers responsiveness to bacterial lipopolysaccharides. J. Biol. Chem. 276, 25512554.
  • [46]
    Newman, M.A., Van Roepenack, E, Daniels, M, Dow, M (2000) Lipopolysaccharides and plant responses to phytopathogenic bacteria. Plant Pathol. 1, 2531.
  • [47]
    Graham, T.L., Sequeira, L, Huang, T.S (1977) Bacterial lipopolysaccharides as inducers of disease resistance in tobacco. Appl. Environ. Microbiol. 34, 424432.
  • [48]
    Sequeira, L (1983) Mechanisms of induced resistance in plants. Annu. Rev. Microbiol. 37, 5179.
  • [49]
    Newman, M.A., Dow, J.M., Daniels, M.J (2001) Bacterial lipopolysaccharides and plant-pathogen interactions. Eur. J. Plant Pathol. 107, 95102.
  • [50]
    Leeman, M, Vanpelt, J.A., Denouden, F.M., Heinsbroek, M, Bakker, P.A.H.M., Schippers, B (1995) Induction of systemic resistance against Fusarium wilt of radish by lipopolysaccharides of Pseudomonas fluorescens. Phytopathology 85, 10211027.
  • [51]
    Reitz, M, Rudolph, K, Schroder, I, Hoffmann-Hergarten, S, Hallmann, J, Sikora, R.A (2000) Lipopolysaccharides of Rhizobium etli strain G12 act in potato roots as an inducing agent of systemic resistance to infection by the cyst nematode Globodera pallida. Appl. Environ. Microbiol. 66, 35153518.
  • [52]
    Van Loon, L.C., Bakker, P.A.H.M., Pieterse, C.M.J (1998) Systemic resistance induced by rhizosphere bacteria. Annu. Rev. Phytopathol. 36, 453483.
  • [53]
    Kijne, J.W. (1992) The Rhizobium infection process. In: Biological Nitrogen Fixation (Stacey, G., Burris, R.H. and Evans, H.J., Eds.), pp. 349–398. Chapman and Hall, New York.
  • [54]
    Noel, K.D., VandenBosch, K.A., Kulpaca, B (1986) Mutations in Rhizobium phaseoli that lead to arrested development of infection threads. J. Bacteriol. 168, 13921401.
  • [55]
    Dazzo, F.B., Brill, W.J (1979) Bacterial polysaccharide which binds Rhizobium trifolii to clover root hairs. J. Bacteriol. 137, 13621373.
  • [56]
    Kato, G, Maruyama, Y, Nakamura, M (1980) Role of bacterial polysaccharides in the adsorption process of the Rhizobium-pea symbiosis. Agric. Biol. Chem. 44, 28432855.
  • [57]
    Dazzo, F.B., Truchet, G.L., Hollingsworth, R.I., Hrabak, E.M., Pankratz, H.S., Philip-Hollingsworth, S, Salzwedel, J.L., Chapman, K, Appenzeller, L, Squartini, A (1991) Rhizobium lipopolysaccharide modulates infection thread development in white clover root hairs. J. Bacteriol. 173, 53715384.
  • [58]
    Noel, K.D., Forsberg, L.S., Carlson, R.W (2000) Varying the abundance of O antigen in Rhizobium etli and its effect on symbiosis with phaseolus vulgaris. J. Bacteriol. 182, 53175324.
  • [59]
    Hrabak, E.M., Urbano, M.R., Dazzo, F.B (1981) Growth-phase-dependent immunodeterminants of Rhizobium trifolii lipopolysaccharide which bind trifoliin A, a white clover lectin. J. Bacteriol. 148, 697711.
  • [60]
    Dazzo, F.B. and Wopereis, J.L. (2000) Unraveling the infection process in the Rhizobium-legume symbiosis by microscopy. In: Prokaryotic Nitrogen Fixation: A Model System for Analysis of a Biological Process (Triplett, E.W., Ed.), pp. 295–347. Horizon Scientific Press, Wymondham.
  • [61]
    Brewin, N.J., Rae, A.L., Perotto, S, Kannenberg, E.L., Rathbun, E.A., Lucas, M.M., Gunder, A, Bolanos, L, Kardailsky, I.V., Wilson, K.E., et a. (1994) Bacterial and plant glycoconjugates at the Rhizobium-legume interface. Biochem. Soc. Symp. 60, 6173.
  • [62]
    Perotto, S, Brewin, N.J., Kannenberg, E.L (1994) Cytological evidence for a host defense response that reduces cell and tissue invasion in pea nodules by lipopolysaccharde-defective mutants of Rhizobium leguminosarum strain 3841. Mol. Plant Microbe Interact. 7, 99112.
  • [63]
    Eisenschenk, L, Diebold, R, Perez-Lesher, J, Peterson, A.C., Peters, N.K., Noel, K.D (1994) Inhibition of Rhizobium etli polysaccharide mutants by Phaseolus vulgaris root compounds. Appl. Environ. Microbiol. 60, 33153322.
  • [64]
    Niehaus, K, Becker, A (1998) The role of microbial surface polysaccharides in the Rhizobium-legume interaction. Subcell. Biochem. 29, 73116.
  • [65]
    Gonzalez, J.E., Reuhs, B.L., Walker, G.C (1996) Low molecular weight EPS II of Rhizobium meliloti allows nodule invasion in Medicago sativa. Proc. Natl. Acad. Sci. USA 93, 86368641.
  • [66]
    de Maagd, R.A., Wijfjes, A.H., Spaink, H.P., Ruiz-Sainz, J.E., Wijffelman, C.A., Okker, R.J., Lugtenberg, B.J (1989) nodO, a new nod gene of the Rhizobium leguminosarum biovar viciae sym plasmid pRL1JI, encodes a secreted protein. J. Bacteriol. 171, 67646770.
  • [67]
    Priefer, U.B (1989) Genes involved in lipopolysaccharide production and symbiosis are clustered on the chromosome of Rhizobium leguminosarum biovar viciae VF39. J. Bacteriol. 171, 61616168.
  • [68]
    Clover, R.H., Kieber, J, Signer, E.R (1989) Lipopolysaccharide mutants of Rhizobium meliloti are not defective in symbiosis. J. Bacteriol. 171, 39613967.
  • [69]
    Lagares, A, Caetano-Anolles, G, Niehaus, K, Lorenzen, J, Ljunggren, H.D., Puhler, A, Favelukes, G (1992) A Rhizobium meliloti lipopolysaccharide mutant altered in competitiveness for nodulation of alfalfa. J. Bacteriol. 174, 59415952.
  • [70]
    Niehaus, K, Lagares, A, Puhler, A (1998) A Sinorhizobium meliloti lipopolysaccharide mutant induces effective nodules on the host plant Medicago sativa (alfalfa) but fails to establish a symbiosis with Medicago trunculata. Mol. Plant Microbe Interact. 11, 906914.
  • [71]
    Niehaus, K, Kapp, D, Puhler, A (1993) Plant defense and delayed infection of alfalfa pseudonodules induced by an exopolysaccharide (EPSI)-deficient Rhizobium meliloti mutant. Planta 190, 415425.
  • [72]
    Niehaus, K., Baier, R., Kohring, B., Flaschel, E. and Pühler, A. (1997) Symbiotic suppression of the Medicago sativa plant defence system by Rhizobium meliloti oligosaccharides. In: Biological Fixation of Nitrogen for Ecology and Sustainable Agriculture (Legocki, A., Bothe, H. and Pühler, A., Eds.), pp. 111–114. Springer, Heidelberg.
  • [73]
    Niehaus, K., Albus, U., Baier, R., Becker, A., Schiene, K. and Puhler, A. (2000) Suppression of plant defence reactins in alfalfa cell cultures by Sinorhizobium meliloti surface carbohydrates. In: Nitrogen Fixation: From Molecules to Crop Productivity (Pedrosa, F.O., Hungria, M., Yates, M.G. and Newton, W.E., Eds.), p. 233. Kluwer Academic, Dordrecht.
  • [74]
    Urbanik-Sypniewska, T, Choma, A, Kutkowska, J, Kaminska, T, Kandefer-Szerszen, M, Russa, R, Dolecka, J (2000) Cytokine inducing activities of rhizobial and mesorhizobial lipopolysaccharides of different lethal toxicity. Immunobiology 202, 408420.
  • [75]
    Bhat, U.R., Mayer, H, Yokota, A, Hollingsworth, R.I., Carlson, R.W (1991) Occurrence of lipid A variants with 27-hydroxyoctacosanoic acid in lipopolysaccharides from members of the family Rhizobiaceae. J. Bacteriol. 173, 21552159.
  • [76]
    Brewin, N.J. (1998) Tissue and cell invasion by Rhizobium: the structure and development of infection threads and symbiosomes. In: The Rhizobiaceae (Spaink, H.P., Kondorosi, A. and Hooykaas, P.J.J., Eds.), pp. 417–429. Kluwer Academic, Dordrecht.
  • [77]
    Orskov, F, Orskov, I (1992) Escherichia coli serotyping and disease in man and animals. Can. J. Microbiol. 38, 699704.
  • [78]
    Forsberg, L.S., Carlson, R.W (1998) The structures of the lipopolysaccharides from Rhizobium etli strains CE358 and CE359. The complete structure of the core region of R. etli lipopolysaccharides. J. Biol. Chem. 273, 27472757.
  • [79]
    Carlson, R.W (1984) Heterogeneity of Rhizobium lipopolysaccharides. J. Bacteriol. 158, 10121017.
  • [80]
    Rivera, M, Bryan, L.E., Hancock, R.E., McGroarty, E.J (1988) Heterogeneity of lipopolysaccharides from Pseudomonas aeruginosa: analysis of lipopolysaccharide chain length. J. Bacteriol. 170, 512521.
  • [81]
    Rocchetta, H.L., Burrows, L.L., Lam, J.S (1999) Genetics of O-antigen biosynthesis in Pseudomonas aeruginosa. Microbiol. Mol. Biol. Rev. 63, 523553.
  • [82]
    Rahman, M.M., Guard-Petter, J, Carlson, R.W (1997) A virulent isolate of Salmonella enteritidis produces a Salmonella typhi-like lipopolysaccharide. J. Bacteriol. 179, 21262131.
  • [83]
    Wang, L, Reeves, P.R (2000) The Escherichia coli O111 and Salmonella enterica O35 gene clusters: gene clusters encoding the same colitose-containing O antigen are highly conserved. J. Bacteriol. 182, 52565261.
  • [84]
    Popoff, M.Y., Le Minor, L (1985) Expression of antigenic factor O:54 is associated with the presence of a plasmid in Salmonella. Ann. Inst. Pasteur Microbiol. 136B, 169179.
  • [85]
    Viret, J.F S.J. Cryz Jr., Lang, A.B., Favre, D (1993) Molecular cloning and characterization of the genetic determinants that express the complete Shigella serotype D (Shigella sonnei) lipopolysaccharide in heterologous live attenuated vaccine strains. Mol. Microbiol. 7, 239252.
  • [86]
    Shepherd, J.G., Wang, L, Reeves, P.R (2000) Comparison of O-antigen gene clusters of Escherichia coli (Shigella) sonnei and Plesiomonas shigelloides O17: sonnei gained its current plasmid-borne O-antigen genes from P. shigelloides in a recent event. Infect. Immun. 68, 60566061.
  • [87]
    Mooi, F.R., Bik, E.M (1997) The evolution of epidemic Vibrio cholerae strains. Trends Microbiol. 5, 161165.
  • [88]
    Reeves, P. (1997) Specialized clones and lateral transfer in pathogens. In: Ecology of Pathogenic Bacteria: Molecular and Evolutionary Aspects (van der Zeijst, B.A.M. et al., Eds.), pp. 237–254. Elsevier, Amsterdam.
  • [89]
    Wang, G, Ge, Z, Rasko, D.A., Taylor, D.E (2000) Lewis antigens in Helicobacter pylori: biosynthesis and phase variation. Mol. Microbiol. 36, 11871196.
  • [90]
    Berg, D.E., Hoffman, P.S., Appelmelk, B.J., Kusters, J.G (1997) The Helicobacter pylori genome sequence: genetic factors for long life in the gastric mucosa. Trends Microbiol. 5, 468474.
  • [91]
    Barondess, J.J., Beckwith, J (1990) A bacterial virulence determinant encoded by lysogenic coliphage lambda. Nature 346, 871874.
  • [92]
    Vaca, P.S, Garcia, G.O, Paniagua-Contreras, G.L. The lom gene of bacteriophage lambda is involved in Escherichia coli K12 adhesion to human buccal epithelial cells,. FEMS Microbiol. Lett. 156, 1997. 132
  • [93]
    Allison, G.E., Verma, N.K (2000) Serotype-converting bacteriophages and O-antigen modification in Shigella flexneri. Trends Microbiol. 8, 1723.
  • [94]
    Guan, S, Bastin, D.A., Verma, N.K (1999) Functional analysis of the O antigen glucosylation gene cluster of Shigella flexneri bacteriophage SfX. Microbiology 145, 12631273.
  • [95]
    Helander, I.M., Moran, A.P., Makela, P.H (1992) Separation of two lipopolysaccharide populations with different contents of O-antigen factor 122 in Salmonella enterica serovar typhimurium. Mol. Microbiol. 6, 28572862.
  • [96]
    Takeshita, M, Makela, P.H (1971) Glucosylation of lipopolysaccharide in Salmonella: biosynthesis of O antigen factor 12 2. 3. The presence of 12 2 determinants in haptenic polysaccharides. J. Biol. Chem. 246, 39203927.
  • [97]
    Robbins, P.W., Bray, D, Dankert, M, Wright, A (1967) Direction of chain growth in polysaccharide synthesis. Science 158, 15361542.
  • [98]
    Helander, I.M., Hurme, R, Haikara, A, Moran, A.P (1992) Separation and characterization of two chemically distinct lipopolysaccharides in two Pectinatus species. J. Bacteriol. 174, 33483354.
  • [99]
    Mavris, M, Manning, P.A., Morona, R (1997) Mechanism of bacteriophage SfII-mediated serotype conversion in Shigella flexneri. Mol. Microbiol. 26, 939950.
  • [100]
    Vander Byl, C, Kropinski, A.M (2000) Sequence of the genome of Salmonella bacteriophage P22. J. Bacteriol. 182, 64726481.
  • [101]
    Franko, M.E. (1993) Characterization of Bacteriophage P22 Antigen Conversion and Associated Phase Variation. Ph.D. Thesis, University of Southern California, Los Angeles, CA.
  • [102]
    Clark, C.A., Beltrame, J, Manning, P.A (1991) The oac gene encoding a lipopolysaccharide O-antigen acetylase maps adjacent to the integrase-encoding gene on the genome of Shigella flexneri bacteriophage Sf6. Gene 107, 4352.
  • [103]
    Verma, N.K., Brandt, J.M., Verma, D.J., Lindberg, A.A (1991) Molecular characterization of the O-acetyl transferase gene of converting bacteriophage SF6 that adds group antigen 6 to Shigella flexneri. Mol. Microbiol. 5, 7175.
  • [104]
    Slauch, J.M., Lee, A.A., Mahan, M.J., Mekalanos, J.J (1996) Molecular characterization of the oafA locus responsible for acetylation of Salmonella typhimurium O-antigen: oafA is a member of a family of integral membrane trans-acylases. J. Bacteriol. 178, 59045909.
  • [105]
    Adhikari, P, Allison, G, Whittle, B, Verma, N.K (1999) Serotype 1a O-antigen modification: molecular characterization of the genes involved and their novel organization in the Shigella flexneri chromosome. J. Bacteriol. 181, 47114718.
  • [106]
    Bastin, D.A., Lord, A, Verma, N.K (1997) Cloning and analysis of the glucosyl transferase gene encoding type I antigen in Shigella flexneri. FEMS Microbiol. Lett. 156, 133139.
  • [107]
    Kenne, L, Lindberg, B, Petersson, K, Katzenellenbogen, E, Romanowska, E (1978) Structural studies of Shigella flexneri O-antigens. Eur. J. Biochem. 91, 279284.
  • [108]
    Kuzio, J, Kropinski, A.M (1983) O-antigen conversion in Pseudomonas aeruginosa PAO1 by bacteriophage D3. J. Bacteriol. 155, 203212.
  • [109]
    Newton, G.J., Daniels, C, Burrows, L.L., Kropinski, A.M., Clarke, A.J., Lam, J.S (2001) Three-component-mediated serotype conversion in Pseudomonas aeruginosa by bacteriophage D3. Mol. Microbiol. 39, 12371247.
  • [110]
    Kropinski, A.M (2000) Sequence of the genome of the temperate, serotype-converting, Pseudomonas aeruginosa bacteriophage D3. J. Bacteriol. 182, 60666074.
  • [111]
    Tilley, D.R. (1996) P22-mediated O-antigen Conversion and Phase Variation. Ph.D. Thesis, University of Southern California, Los Angeles, CA.
  • [112]
    Deitsch, K.W., Moxon, E.R., Wellems, T.E (1997) Shared themes of antigenic variation and virulence in bacterial, protozoal, and fungal infections. Microbiol. Mol. Biol. Rev. 61, 281293.
  • [113]
    Miller, J.F., Mekalanos, J.J., Falkow, S (1989) Coordinate regulation and sensory transduction in the control of bacterial virulence. Science 243, 916922.
  • [114]
    Morschhauser, J, Kohler, G, Ziebuhr, W, Blum-Oehler, G, Dobrindt, U, Hacker, J (2000) Evolution of microbial pathogens. Phil. Trans. R. Soc. Lond. B Biol. Sci. 355, 695704.
  • [115]
    Moxon, R, Tang, C (2000) Challenge of investigating biologically relevant functions of virulence factors in bacterial pathogens. Phil. Trans. R. Soc. Lond. B Biol. Sci. 355, 643656.
  • [116]
    Harshey, R.M., Toguchi, A (1996) Spinning tails: homologies among bacterial flagellar systems. Trends Microbiol. 4, 226231.
  • [117]
    Simon, M, Zieg, J, Silverman, M, Mandel, G, Doolittle, R (1980) Phase variation: evolution of a controlling element. Science 209, 13701374.
  • [118]
    Silverman, M, Simon, M (1980) Phase variation: genetic analysis of switching mutants. Cell 19, 845854.
  • [119]
    Abraham, J.M., Freitag, C.S., Clements, J.R., Eisenstein, B.I (1985) An invertible element of DNA controls phase variation of type 1 fimbriae of Escherichia coli. Proc. Natl. Acad. Sci. USA 82, 57245727.
  • [120]
    Clegg, S, Hancox, L.S., Yeh, K.S (1996) Salmonella typhimurium fimbrial phase variation and FimA expression. J. Bacteriol. 178, 542545.
  • [121]
    Eisenstein, B.I (1981) Phase variation of type 1 fimbriae in Escherichia coli is under transcriptional control. Science 214, 337339.
  • [122]
    McClain, M.S., Blomfield, I.C., Eberhardt, K.J., Eisenstein, B.I (1993) Inversion-independent phase variation of type 1 fimbriae in Escherichia coli. J. Bacteriol. 175, 43354344.
  • [123]
    Blyn, L.B., Braaten, B.A., White-Ziegler, C.A., Rolfson, D.H., Low, D.A (1989) Phase-variation of pyelonephritis-associated pili in Escherichia coli: evidence for transcriptional regulation. EMBO J. 8, 613620.
  • [124]
    van der Woude, M.W., Braaten, B.A., Low, D.A (1992) Evidence for global regulatory control of pilus expression in Escherichia coli by Lrp and DNA methylation: model building based on analysis of pap. Mol. Microbiol. 6, 24292435.
  • [125]
    Roche, R.J., High, N.J., Moxon, E.R (1994) Phase variation of Haemophilus influenzae lipopolysaccharide: characterization of lipopolysaccharide from individual colonies. FEMS Microbiol. Lett. 120, 279283.
  • [126]
    Weiser, J.N (1993) Relationship between colony morphology and the life cycle of Haemophilus influenzae: the contribution of lipopolysaccharide phase variation to pathogenesis. J. Infect. Dis. 168, 672680.
  • [127]
    Weiser, J.N., Chong, S.T., Greenberg, D, Fong, W (1995) Identification and characterization of a cell envelope protein of Haemophilus influenzae contributing to phase variation in colony opacity and nasopharyngeal colonization. Mol. Microbiol. 17, 555564.
  • [128]
    Lukacova, M, Kazar, J, Gajdosova, E, Vavrekova, M (1993) Phase variation of lipopolysaccharide of Coxiella burnetii, strain Priscilla during chick embryo yolk sac passaging. FEMS Microbiol. Lett. 113, 285289.
  • [129]
    Aho, E.L., Dempsey, J.A., Hobbs, M.M., Klapper, D.G., Cannon, J.G (1991) Characterization of the opa (class 5) gene family of Neisseria meningitidis. Mol. Microbiol. 5, 14291437.
  • [130]
    Sarkari, J, Pandit, N, Moxon, E.R., Achtman, M (1994) Variable expression of the Opc outer membrane protein in Neisseria meningitidis is caused by size variation of a promoter containing poly-cytidine. Mol. Microbiol. 13, 207217.
  • [131]
    Stern, A, Brown, M, Nickel, P, Meyer, T.F (1986) Opacity genes in Neisseria gonorrhoeae: control of phase and antigenic variation. Cell 47, 6171.
  • [132]
    Caffrey, P, Owen, P (1989) Purification and N-terminal sequence of the alpha subunit of antigen 43, a unique protein complex associated with the outer membrane of Escherichia coli. J. Bacteriol. 171, 36343640.
  • [133]
    Weiser, J.N., Love, J.M., Moxon, E.R (1989) The molecular mechanism of phase variation of H. influenzae lipopolysaccharide. Cell 59, 657665.
  • [134]
    Streisinger, G, Okada, Y, Emrich, J, Newton, J, Tsugita, A, Terzaghi, E, Inouye, M (1966) Frameshift mutations and the genetic code. Cold Spring Harb. Symp. Quant. Biol. 31, 7784.
  • [135]
    Levinson, G, Gutman, G.A (1987) Slipped-strand mispairing: a major mechanism for DNA sequence evolution. Mol. Biol. Evol. 4, 203221.
  • [136]
    Moxon, E.R., Wills, C (1999) DNA microsatellites: agents of evolution. Sci. Am. 280, 7277.
  • [137]
    Moxon, E.R., Rainey, P.B., Nowak, M.A., Lenski, R.E (1994) Adaptive evolution of highly mutable loci in pathogenic bacteria. Curr. Biol. 4, 2433.
  • [138]
    Chan, N.W., Stangier, K, Sherburne, R, Taylor, D.E., Zhang, Y, Dovichi, N.J., Palcic, M.M (1995) The biosynthesis of Lewis X in Helicobacter pylori. Glycobiology 5, 683688.
  • [139]
    Appelmelk, B.J., Martin, S.L., Monteiro, M.A., Clayton, C.A., McColm, A.A., Zheng, P, Verboom, T, Maaskant, J.J., van den Eijnden, D.H., Hokke, C.H., Perry, M.B., Vandenbroucke-Grauls, C.M., Kusters, J.G (1999) Phase variation in Helicobacter pylori lipopolysaccharide due to changes in the lengths of poly(C) tracts in alpha3-fucosyltransferase genes. Infect. Immun. 67, 53615366.
  • [140]
    Tomb, J.F., White, O, Kerlavage, A.R., Clayton, R.A., Sutton, G.G., Fleischmann, R.D., Ketchum, K.A., Klenk, H.P., Gill, S, Dougherty, B.A., Nelson, K, Quackenbush, J, Zhou, L, Kirkness, E.F., Peterson, S, Loftus, B, Richardson, D, Dodson, R, Khalak, H.G., Glodek, A, McKenney, K, Fitzegerald, L.M., Lee, N, Adams, M.D., Venter, J.C (1997) The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature 388, 539547.
  • [141]
    Wang, G, Rasko, D.A., Sherburne, R, Taylor, D.E (1999) Molecular genetic basis for the variable expression of Lewis Y antigen in Helicobacter pylori: analysis of the alpha (1,2) fucosyltransferase gene. Mol. Microbiol. 31, 12651274.
  • [142]
    Wang, G, Boulton, P.G., Chan, N.W., Palcic, M.M., Taylor, D.E (1999) Novel Helicobacter pylori alpha1,2-fucosyltransferase, a key enzyme in the synthesis of Lewis antigens. Microbiology 145, 32453253.
  • [143]
    Peak, I.R., Jennings, M.P., Hood, D.W., Bisercic, M, Moxon, E.R (1996) Tetrameric repeat units associated with virulence factor phase variation in Haemophilus also occur in Neisseria spp. and Moraxella catarrhalis. FEMS Microbiol. Lett. 137, 109114.
  • [144]
    Saunders, N.J., Peden, J.F., Hood, D.W., Moxon, E.R (1998) Simple sequence repeats in the Helicobacter pylori genome. Mol. Microbiol. 27, 10911098.
  • [145]
    Deretic, V, Schurr, M.J., Yu, H (1995) Pseudomonas aeruginosa, mucoidy and the chronic infection phenotype in cystic fibrosis. Trends Microbiol. 3, 351356.
  • [146]
    Skjak-Braek, G, Zanetti, F, Paoletti, S (1989) Effect of acetylation on some solution and gelling properties of alginates. Carbohydr. Res. 185, 131138.
  • [147]
    Orskov, F, Orskov, I, Sutton, A, Schneerson, R, Lin, W, Egan, W, Hoff, G.E., Robbins, J.B (1979) Form variation in Escherichia coli K1: determined by O-acetylation of the capsular polysaccharide. J. Exp. Med. 149, 669685.
  • [148]
    Higa, H.H., Varki, A (1988) Acetyl-coenzyme A:polysialic acid O-acetyltransferase from K1-positive Escherichia coli. The enzyme responsible for the O-acetyl plus phenotype and for O-acetyl form variation. J. Biol. Chem. 263, 88728878.
  • [149]
    Nikaido, H, Nikaido, K, Nakae, T, Makela, P.H (1971) Glucosylation of lipopolysaccharide in Salmonella: biosynthesis of O antigen factor 12 2 I. Over-all reaction. J. Biol. Chem. 246, 39023911.
  • [150]
    Mäkelä, P.H., Mäkelä, O (1966) Salmonella antigen 122: genetics of form variation. Ann. Med. Exp. Biol. Fenn. 44, 310317.
  • [151]
    Mäkelä, P.H (1973) Glucosylation of lipopolysaccharide in Salmonella: mutants negative for O antigen factor 1221. J. Bacteriol. 116, 847856.
  • [152]
    Guard-Petter, J, Parker, C.T., Asokan, K, Carlson, R.W (1999) Clinical and veterinary isolates of Salmonella enterica serovar enteritidis defective in lipopolysaccharide O-chain polymerization. Appl. Environ. Microbiol. 65, 21952201.
  • [153]
    Weyand, N.J., Low, D.A (2000) Regulation of Pap phase variation. Lrp is sufficient for the establishment of the phase off pap DNA methylation pattern and repression of pap transcription in vitro. J. Biol. Chem. 275, 31923200.
  • [154]
    van der Woude, M.W., Low, D.A (1994) Leucine-responsive regulatory protein and deoxyadenosine methylase control the phase variation and expression of the sfa and daa pili operons in Escherichia coli. Mol. Microbiol. 11, 605618.
  • [155]
    van der Woude, M.W., Braaten, B, Low, D (1996) Epigenetic phase variation of the pap operon in Escherichia coli. Trends Microbiol. 4, 59.
  • [156]
    Nicholson, B, Low, D (2000) DNA methylation-dependent regulation of pef expression in Salmonella typhimurium. Mol. Microbiol. 35, 728742.
  • [157]
    Zieg, J, Silverman, M, Hilmen, M, Simon, M (1977) Recombinational switch for gene expression. Science 196, 170172.
  • [158]
    Klena, J.D., Ashford, R.S., Schnaitman, C.A (1992) Role of Escherichia coli K-12 rfa genes and the rfp gene of Shigella dysenteriae 1 in generation of lipopolysaccharide core heterogeneity and attachment of O antigen. J. Bacteriol. 174, 72977307.
  • [159]
    MacLachlan, P.R., Kadam, S.K., Sanderson, K.E (1991) Cloning, characterization, and DNA sequence of the rfaLK region for lipopolysaccharide synthesis in Salmonella typhimurium LT2. J. Bacteriol. 173, 71517163.
  • [160]
    Kwan, L.Y., Isaacson, R.E (1998) Identification and characterization of a phase-variable nonfimbrial Salmonella typhimurium gene that alters O-antigen production. Infect. Immun. 66, 57255730.
  • [161]
    Braun, W (1946) Dissociation in Brucella abortus: a demonstration of the role in inherent and environmental factors in bacterial variation. J. Bacteriol. 51, 327349.
  • [162]
    Henry, B.S (1933) Dissociation in the genus Brucella. J. Infect. Dis. 52, 374402.
  • [163]
    McGowan, C.C., Necheva, A, Thompson, S.A., Cover, T.L., Blaser, M.J (1998) Acid-induced expression of an LPS-associated gene in Helicobacter pylori. Mol. Microbiol. 30, 1931.
  • [164]
    Aspinall, G.O., Monteiro, M.A., Pang, H, Walsh, E.J., Moran, A.P (1996) Lipopolysaccharide of the Helicobacter pylori type strain NCTC 11637 (ATCC 43504): structure of the O antigen chain and core oligosaccharide regions. Biochemistry 35, 24892497.
  • [165]
    Guo, L, Lim, K.B., Gunn, J.S., Bainbridge, B, Darveau, R.P., Hackett, M, Miller, S.I (1997) Regulation of lipid A modifications by Salmonella typhimurium virulence genes phoP-phoQ. Science 276, 250253.
  • [166]
    Baker, S.J., Gunn, J.S., Morona, R (1999) The Salmonella typhi melittin resistance gene pqaB affects intracellular growth in PMA-differentiated U937 cells, polymyxin B resistance and lipopolysaccharide. Microbiology 145, 367378.
  • [167]
    van den Akker, W.M (1998) Lipopolysaccharide expression within the genus Bordetella: influence of temperature and phase variation. Microbiology 144, 15271535.
  • [168]
    Vaca-Pacheco, S, Paniagua-Contreras, G.L., Garcia-Gonzalez, O, de la Garca, M (1999) The clinically isolated FIZ15 bacteriophage causes lysogenic conversion in Pseudomonas aeruginosa PAO1. Curr. Microbiol. 38, 239243.
  • [169]
    Baume, P.E., Nicholls, A, Baxter, C.H (1967) Inhibition of gastric acid secretion by a purified bacterial lipopolysaccharide. Nature 215, 5960.
  • [170]
    Wirth, H.P, Yang, M, Dubois, D.E, Berg, D.E, Blaser, M.J. Host Lewis phenotype-dependent selection of H. pylori Lewis expression in Rhesus monkeys,. Gut. 43, 1998. A26
  • [171]
    Wirth, H.P., Yang, M R.M. Peek Jr., Tham, K.T., Blaser, M.J (1997) Helicobacter pylori Lewis expression is related to the host Lewis phenotype. Gastroenterology 113, 10911098.
  • [172]
    Taylor, D.E., Rasko, D.A., Sherburne, R, Ho, C, Jewell, L.D (1998) Lack of correlation between Lewis antigen expression by Helicobacter pylori and gastric epithelial cells in infected patients. Gastroenterology 115, 11131122.
  • [173]
    Frank, M.M., Joiner, K, Hammer, C (1987) The function of antibody and complement in the lysis of bacteria. Rev. Infect. Dis. 9, 537545.
  • [174]
    Joiner, K.A., Hammer, C.H., Brown, E.J., Frank, M.M (1982) Studies on the mechanism of bacterial resistance to complement-mediated killing II. C8 and C9 release C5b67 from the surface of Salmonella minnesota S218 because the terminal complex does not insert into the bacterial outer membrane. J. Exp. Med. 155, 809819.
  • [175]
    Joiner, K.A., Hammer, C.H., Brown, E.J., Cole, R.J., Frank, M.M (1982) Studies on the mechanism of bacterial resistance to complement-mediated killing I. Terminal complement components are deposited and released from Salmonella minnesota S218 without causing bacterial death. J. Exp. Med. 155, 797808.
  • [176]
    Joiner, K.A., Grossman, N, Schmetz, M, Leive, L (1986) C3 binds preferentially to long-chain lipopolysaccharide during alternative pathway activation by Salmonella montevideo. J. Immunol. 136, 710715.
  • [177]
    Joiner, K.A (1985) Studies on the mechanism of bacterial resistance to complement-mediated killing and on the mechanism of action of bactericidal antibody. Curr. Top. Microbiol. Immunol. 121, 99133.
  • [178]
    Weiser, J.N., Pan, N (1998) Adaptation of Haemophilus influenzae to acquired and innate humoral immunity based on phase variation of lipopolysaccharide. Mol. Microbiol. 30, 767775.
  • [179]
    Weiser, J.N., Shchepetov, M, Chong, S.T (1997) Decoration of lipopolysaccharide with phosphorylcholine: a phase-variable characteristic of Haemophilus influenzae. Infect. Immun. 65, 943950.
  • [180]
    de Cock, H, Hendriks, R, de Vrije, T, Tommassen, J (1990) Assembly of an in vitro synthesized Escherichia coli outer membrane porin into its stable trimeric configuration. J. Biol. Chem. 265, 46464651.
  • [181]
    de Cock, H, Brandenburg, K, Wiese, A, Holst, O, Seydel, U (1999) Non-lamellar structure and negative charges of lipopolysaccharides required for efficient folding of outer membrane protein PhoE of Escherichia coli. J. Biol. Chem. 274, 51145119.
  • [182]
    Sen, K, Nikaido, H (1991) Trimerization of an in vitro synthesized OmpF porin of Escherichia coli outer membrane. J. Biol. Chem. 266, 1129511300.
  • [183]
    Van den Bosch, .L, Manning, P.A., Morona, R (1997) Regulation of O-antigen chain length is required for Shigella flexneri virulence. Mol. Microbiol. 23, 765775.
  • [184]
    Helander, I.M., Kilpelainen, I, Vaara, M (1994) Increased substitution of phosphate groups in lipopolysaccharides and lipid A of the polymyxin-resistant pmrA mutants of Salmonella typhimurium: a 31P-NMR study. Mol. Microbiol. 11, 481487.
  • [185]
    Forsberg, L.S., Bhat, U.R., Carlson, R.W (2000) Structural characterization of the O-antigenic polysaccharide of the lipopolysaccharide from Rhizobium etli strain CE3. A unique O-acetylated glycan of discrete size, containing 3-O-methyl-6-deoxy-l-talose and 2,3,4-tri-O-methyl-l fucose. J. Biol. Chem. 275, 1885118863.
  • [186]
    Noel, K.D., Duelli, D.M., Tao, H, Brewin, N.J (1996) Antigenic change in the lipopolysaccharide of Rhizobium etli CFN42 induced by exudates of Phaseolus vulgaris. Mol. Plant Microbe Interact. 9, 180186.
  • [187]
    Duelli, D.M., Noel, K.D (1997) Compounds exuded by Phaseolus vulgaris that induce a modification of Rhizobium etli lipopolysaccharide. Mol. Plant Microbe Interact. 10, 903910.
  • [188]
    Reuhs, B.L., Kim, J.S., Badgett, A, Carlson, R.W (1994) Production of cell-associated polysaccharides of Rhizobium fredii USDA205 is modulated by apigenin and host root extract. Mol. Plant Microbe Interact. 7, 240247.
  • [189]
    Reuhs, B.L., Geller, D.P., Kim, J.S., Fox, J.E., Kolli, V.S., Pueppke, S.G (1998) Sinorhizobium fredii and Sinorhizobium meliloti produce structurally conserved lipopolysaccharides and strain-specific K antigens. Appl. Environ. Microbiol. 64, 49304938.
  • [190]
    Lloret, J, Wulff, B.B., Rubio, J.M., Downie, J.A., Bonilla, I, Rivilla, R (1998) Exopolysaccharide II production is regulated by salt in the halotolerant strain Rhizobium meliloti EFB1. Appl. Environ. Microbiol. 64, 10241028.
  • [191]
    Kannenberg, E.L., Rathbun, E.A., Brewin, N.J (1992) Molecular dissection of structure and function in the lipopolysaccharide of Rhizobium leguminosarum strain 3841 using monoclonal antibodies and genetic analysis. Mol. Microbiol. 6, 24772487.
  • [192]
    Tao, H, Brewin, N.J., Noel, K.D (1992) Rhizobium leguminosarum CFN42 lipopolysaccharide antigenic changes induced by environmental conditions. J. Bacteriol. 174, 22222229.
  • [193]
    Kannenberg, E.L., Perotto, S, Bianciotto, V, Rathbun, E.A., Brewin, N.J (1994) Lipopolysaccharide epitope expression of Rhizobium bacteroids as revealed by in situ immunolabelling of pea root nodule sections. J. Bacteriol. 176, 20212032.
  • [194]
    Sindhu, S.S., Brewin, N.J., Kannenberg, E.L (1990) Immunochemical analysis of lipopolysaccharides from free-living and endosymbiotic forms of Rhizobium leguminosarum. J. Bacteriol. 172, 18041813.
  • [195]
    Bhat, U.R., Carlson, R.W (1992) Chemical characterization of pH-dependent structural epitopes of lipopolysaccharides from Rhizobium leguminosarum biovar phaseoli. J. Bacteriol. 174, 22302235.
  • [196]
    Brink, B.A., Miller, J, Carlson, R.W., Noel, K.D (1990) Expression of Rhizobium leguminosarum CFN42 genes for lipopolysaccharide in strains derived from different R. leguminosarum soil isolates. J. Bacteriol. 172, 548555.
  • [197]
    Noel, K.D. and Duelli, D.M. (2000) Rhizobium lipopolysaccharide and its role in symbiosis. In: Prokaryotic Nitrogen Fixation: A Model System for Analysis of a Biological Process (Triplett, E.W., Ed.), pp. 415–431. Horizon Scientific Press, Wymondham.
  • [198]
    Kannenberg, E.L. and Carlson, R.W. (2000) Rhizobium bacteroids express hydrophobic lipopolysaccharides. In: Nitrogen Fixation: From Molecules to Crop Productivity (Pedrosa, F.O., Hungria, M., Yates, G. and Newton, W.E., Eds.), p. 245. Kluwer Academic, Dordrecht.
  • [199]
    Kannenberg, E.L., Carlson, R.W (2001) Lipid A and O-chain modifications cause Rhizobium lipopolysaccharides to become hydrophobic during bacteroid development. Mol. Microbiol. 39, 379392.
  • [200]
    Kannenberg, E.L. and Carlson, R.W. (2000) Rhizobium bacteroids express hydrophobic lipopolysaccharides. In: Nitrogen Fixation: From Molecules to Crop Productivity (Pedrosa, F.O., Hungria, M., Yates, M.G. and Newton, W.E., Eds.), p. 245. Kluwer Academic, Dordrecht.
  • [201]
    Goosen-de Roo, L, de Maagd, R.A., Lugtenberg, B.J (1991) Antigenic changes in lipopolysaccharide I of Rhizobium leguminosarum bv. viciae in root nodules of Vicia sativa subsp. nigra occur during release from infection threads. J. Bacteriol. 173, 31773183.
  • [202]
    VandenBosch, K.A., Brewin, N.J., Kannenberg, E.L (1989) Developmental regulation of a Rhizobium cell surface antigen during growth of pea root nodules. J. Bacteriol. 171, 45374542.
  • [203]
    Spaink, H.P., Kondorosi, A. and Hooykaas, P.J.J. (1998) The Rhizobiaceae. Kluwer Academic, Dordrecht.
  • [204]
    Varki, A (1993) Biological roles of oligosaccharides: All of the theories are correct. Glycobiology 3, 97130.
  • [205]
    Parniske, M, Ahlborn, B, Werner, D (1991) Isoflavonoid-inducible resistance to the phytoalexin glyceollin in soybean rhizobia. J. Bacteriol. 173, 34323439.
  • [206]
    Raetz, C.R (1993) Bacterial endotoxins: extraordinary lipids that activate eucaryotic signal transduction. J. Bacteriol. 175, 57455753.
  • [207]
    Medzhitov, R, Preston-Hurlburt, P, Janeway, C.A (1997) A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388, 394397.
  • [208]
    Hoshino, K, Takeuchi, O, Kawai, T, Sanjo, H, Ogawa, T, Takeda, Y, Takeda, K, Akira, S (1999) Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J. Immunol. 162, 37493752.
  • [209]
    Chow, J.C., Young, D.W., Golenbock, D.T., Christ, W.J., Gusovsky, F (1999) Toll-like receptor-4 mediates lipopolysaccharide-induced signal transduction. J. Biol. Chem. 274, 1068910692.
  • [210]
    Golenbock, D.T., Hampton, R.Y., Qureshi, N, Takayama, K, Raetz, C.R (1991) Lipid A-like molecules that antagonize the effects of endotoxins on human monocytes. J. Biol. Chem. 266, 1949019498.
  • [211]
    Lien, E, Means, T.K., Heine, H, Yoshimura, A, Kusumoto, S, Fukase, K, Fenton, M.J., Oikawa, M, Qureshi, N, Monks, B, Finberg, R.W., Ingalls, R.R., Golenbock, D.T (2000) Toll-like receptor 4 imparts ligand-specific recognition of bacterial lipopolysaccharide. J. Clin. Invest. 105, 497504.
  • [212]
    Poltorak, A, Ricciardi-Castagnoli, P, Citterio, S, Beutler, B (2000) Physical contact between lipopolysaccharide and Toll-like receptor 4 revealed by genetic complementation. Proc. Natl. Acad. Sci. USA 97, 21632167.
  • [213]
    Whitehead, L.F., Day, D.A (1997) The peribacteroid membrane. Physiol. Plant. 100, 3044.
  • [214]
    Hellerqvist, C.G., Lindberg, B, Svensson, S, Holme, T, Lindberg, A.A (1969) Structural studies on the O-specific side-chains of the cell-wall lipopolysaccharide from Salmonella typhimurium LT2. Carbohydr. Res. 9, 237241.