• [1]
    Hoffman-Bang, J. (1999) Nitrogen catabolite repression in Saccharomyces cerevisiae. Mol. Biotechnol. 12, 3573.
  • [2]
    ter Schure, E.G., van Riel, N.A., Verrips, C.T. (2000) The role of ammonia metabolism in nitrogen catabolite repression in Saccharomyces cerevisiae. FEMS Microbiol. Rev. 24, 6783.
  • [3]
    Cooper, T.G. (1996) Allantoin degradative system – an integrated transcriptional response to multiple signals. In: Mycota III (Marzluf, G. and Bambrl, R., Eds.), pp. 139–169. Springer Verlag, Berlin.
  • [4]
    Omichinski, J.G., Close, G.M., Schaad, O., Felsenfeld, G., Trainor, C., Appella, E., Stahl, S.J., Gronenborn, A.M. (1993) NMR structure of a specific DNA complex of Zn-containing DNA binding domain of GATA-1. Science 261, 438446.
  • [5]
    Bysani, N., Daugherty, J.R., Cooper, T.G. (1991) Saturation mutagenesis of the UASNTR (GATAA) responsible for nitrogen catabolite repression-sensitive transcriptional activation of the allantoin pathway genes in Saccharomyces cerevisiae. J. Bacteriol. 173, 49774982.
  • [6]
    van Vuuren, H.J.J., Daugherty, J.R., Rai, R., Cooper, T.G. (1991) Upstream induction sequence, the cis-acting element required for response to the allantoin pathway inducer and enhancement of operation of the nitrogen-regulated upstream activation sequence in Saccharomyces cerevisiae. J. Bacteriol. 173, 71867195.
  • [7]
    Cunningham, T.S., Dorrington, R.A., Cooper, T.G. (1994) The UGA4 UASNTR site required for GLN3-dependent transcriptional activation also mediates DAL80-responsive regulation and DAL80 protein binding in Saccharomyces cerevisiae. J. Bacteriol. 176, 47184725.
  • [8]
    Svetlov, V.V., Cooper, T.G. (1998) The Saccharomyces cerevisiae GATA factors Dal80 and Deh1 can form homo- and heterodimeric complexes. J. Bacteriol. 180, 56825688.
  • [9]
    Cunningham, T.S., Cooper, T.G. (1993) The Saccharomyces cerevisiae DAL80 repressor protein binds to multiple copies of GATAA-containing sequences. J. Bacteriol. 175, 58515861.
  • [10]
    Daugherty, J.R., Rai, R., ElBerry, H.M., Cooper, T.G. (1993) Regulatory circuit for responses of nitrogen catabolic gene expression to the GLN3 and DAL80 proteins and nitrogen catabolite repression in Saccharomyces cerevisiae. J. Bacteriol. 175, 6473.
  • [11]
    Coffman, J.A., Rai, R., Loprete, D., Cunningham, T., Svetlov, V., Cooper, T.G. (1997) Cross regulation of four GATA factors that control nitrogen catabolic gene expression in Saccharomyces cerevisiae. J. Bacteriol. 179, 34163429.
  • [12]
    Cunningham, T.S., Andhare, R., Cooper, T.G. (2000) Nitrogen catabolite repression of DAL80 expression depends on the relative levels of Gat1 and Ure2 production in Saccharomyces cerevisiae. J. Biol. Chem. 275, 1440814414.
  • [13]
    Cunningham, T.S., Rai, R., Cooper, T.G. (2000) The level of DAL80 expression down-regulates GATA factor-mediated transcription in Saccharomyces cerevisiae. J. Bacteriol. 182, 65846591.
  • [14]
    Coffman, J.A., Cooper, T.G. (1997) Nitrogen GATA-factors participate in transcriptional regulation of vacuolar protease genes in Saccharomyces cerevisiae. J. Bacteriol. 179, 56095613.
  • [15]
    Cox, K., Pinchak, A.B., Cooper, T.G. (1999) Genome-wide transcriptional analysis in S. cerevisiae by Mini-array membrane hybridization. Yeast 15, 703713.
  • [16]
    Cardenas, M.E., Cutler, N.S., Lorenz, M.C., Di Como, C.J., Heitman, J. (1999) The TOR signaling cascade regulates gene expression in response to nutrients. Genes Dev. 13, 32713279.
  • [17]
    Hardwick, J.S., Kuruvilla, F.G., Tong, J.F., Shamji, A.F., Schreiber, S.L. (1999) Rapamycin-modulated transcription defines the subset of nutrient-sensitive signaling pathways directly controlled by the Tor proteins. Proc. Natl. Acad. Sci. USA 96, 1486614870.
  • [18]
    Bertram, P.G., Choi, J.H., Carvalho, J., Ai, W., Zeng, C., Chan, T.-F., Zheng, X.F.S. (2000) Tripartite regulation of Gln3 by TOR, Ure2, and phosphatases. J. Biol. Chem. 275, 3572735733.
  • [19]
    Lacroute, F. (1968) Regulation of pyrimidine biosynthesis in Saccharomyces cerevisiae. J. Bacteriol. 95, 824832.
  • [20]
    Drillien, R., Lacroute, F. (1972) Ureidosuccinic acid uptake in yeast and some aspects of its regulation. J. Bacteriol. 109, 203208.
  • [21]
    Drillen, R.M., Aigle, M., Lacroute, F. (1973) Yeast mutants pleiotropically impaired in the regulation of two glutamate dehydrogenases. Biochem. Biophys. Res. Commun. 53, 367372.
  • [22]
    Grenson, M., Dubois, E., Piotrowska, M. (1974) Ammonia assimilation in Saccharomyces cerevisiae as mediated by the two glutamate dehydrogenases. Mol. Gen. Genet. 128, 7385.
  • [23]
    Turoscy, V., Cooper, T.G. (1987) Ureidosuccinate is transported by the allantoate transport system in Saccharomyces cerevisiae. J. Bacteriol. 169, 25982600.
  • [24]
    Courchesne, W.E., Magasanik, B. (1988) Regulation of nitrogen assimilation in Saccharomyces cerevisiae: roles of the URE2 and GLN3 genes. J. Bacteriol. 170, 708713.
  • [25]
    Coshigano, P.W., Magasanik, B. (1991) The URE2 gene product of Saccharomyces cerevisiae plays an important role in the cellular response to the nitrogen source and has homology to glutathione S-transferases. Mol. Cell. Biol. 11, 822832.
  • [26]
    Blinder, D., Coschigano, P.W., Magasanik, B. (1996) Interaction of the GATA factor Gln3 with the nitrogen regulator Ure2 in Saccharomyces cerevisiae. J. Bacteriol. 178, 47344736.
  • [27]
    Beck, T., Hall, M.N. (1999) The TOR signaling pathway controls nuclear localization of nutrient-regulated transcription factors. Nature 402, 689692.
  • [28]
    Coffman, J.A., Rai, R., Cooper, T.G. (1995) Genetic evidence for Gln3-independent, nitrogen catabolite repression-sensitive gene expression in Saccharomyces cerevisiae. J. Bacteriol. 177, 69106918.
  • [29]
    Cox, K.H., Rai, R., Distler, M., Daugherty, J.R., Coffman, J.A., Cooper, T.G. GATA sequences function as TATA elements during nitrogen catabolite repression and when Gln3 is excluded from the nucleus by overproduction of Ure2,. J. Biol. Chem. 275, 2000. 17611
  • [30]
    Chen, W., Struhl, K. (1988) Saturation mutagenesis of a yeast his3‘TATA element’: genetic evidence for a specific TATA-binding protein. Proc. Natl. Acad. Sci. USA 85, 26912695.
  • [31]
    Fong, T.C., Emerson, B.M. The erythroid-specific protein cGATA-1 mediates distal enhancer activity through a specialized beta-globin TATA box,. Genes Dev. 6, 1992. 521
  • [32]
    Heitman, J., Movva, N.R., Hall, M.N. (1991) Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science 253, 905909.
  • [33]
    Zheng, X.F., Florentino, D., Chen, J., Crabtree, G.R., Schreiber, S.L. (1995) TOR kinase domains are required for two distinct functions, only one of which is inhibited by rapamycin. Cell 82, 121130.
  • [34]
    Barbet, N.C., Schneider, U., Helliwell, S.B., Stansfield, I., Tuite, M.F., Hall, M.N. (1996) TOR controls translation initiation and early G1 progression in yeast. Mol. Biol. Cell 7, 2542.
  • [35]
    Dennis, P.B., Fumagalli, S., Thomas, G. (1999) Target of rapamycin (TOR): balancing the opposing forces of protein synthesis and degradation. Curr. Opin. Genet. Dev. 9, 4954.
  • [36]
    Schmelzle, T., Hall, M.N. (2000) TOR, a central controller of cell growth. Cell 103, 253262.
  • [37]
    Rohde, J., Heitman, J., Cardenas, M.E. (2001) The TOR kinases link nutrient sensing to cell growth. J. Biol. Chem. 276, 95839586.
  • [38]
    Carvalho, J., Bertram, P.G., Wente, S.R., Zheng, X.F.S. (2001) Phosphorylation regulates the interaction between Gln3 and the nuclear import factor Srp1p. J. Biol. Chem. 276, 2535925365.
  • [39]
    Gorlich, D., Kutay, U. (1999) Transport between the cell nucleus and the cytoplasm. Annu. Rev. Cell. Dev. Biol. 15, 607660.
  • [40]
    Corbett, A.H., Silver, P.A. (1997) Nucleocytoplasmic transport of macromolecules. Microbiol. Mol. Biol. Rev. 61, 193211.
  • [41]
    Mattaj, I.W., Englmeier, L. (1998) Nucleocytoplasmic transport: the soluble phase. Annu. Rev. Biochem. 67, 265306.
  • [42]
    Bossinger, J., Cooper, T.G. (1976) Sequence of molecular events involved in induction of allophanate hydrolase. J. Bacteriol. 126, 198204.
  • [43]
    Cunningham, T.S., Svetlov, V.V., Rai, R., Smart, W., Cooper, T.G. (1996) Gln3 is capable of binding to UASNTR elements and activating transcription in Saccharomyces cerevisiae. J. Bacteriol. 178, 34703479.
  • [44]
    Svetlov, V., Cooper, T.G. (1997) The minimal transactivation region of Saccharomyces cerevisiae Gln3 is localized to 13 amino acids. J. Bacteriol. 179, 76447652.
  • [45]
    Kulkarni, A.A., Abul-Hamd, A.T., Rai, R., El Berry, H., Cooper, T.G. (2001) Gln3 nuclear localization and interaction with Ure2 Saccharomyces cerevisiae. J. Biol. Chem. 276, 3213632144.
  • [46]
    Kunz, J., Schneider, U., Howald, I., Schmidt, A., Hall, M.N. (2000) HEAT repeats mediate plasma membrane localization of Tor2 in yeast. J. Biol. Chem. 275, 3701137020.
  • [47]
    Di Como, C.J., Arndt, K.T. (1996) Nutrients, via the Tor proteins, stimulate the association of Tap42 with type 2A phosphatases. Genes Dev. 10, 19041916.
  • [48]
    Jiang, Y., Broach, J.R. (1999) Tor proteins and protein phosphatase 2A reciprocally regulate Tap42 in controlling cell growth in yeast. EMBO J. 18, 27822792.
  • [49]
    Sutton, A., Immanuel, D., Arndt, K.T. (1991) The Sit4 protein phosphatase functions in late G1 for progression into S phase. Mol. Cell. Biol. 11, 21332148.
  • [50]
    Luke, M.M., Seta, F.D., Di Como, C.J., Kobayashi, R., Arndt, K.T. (1996) The SAPs, a new family of proteins, associate and function positively with SIT4 phosphatase. Mol. Cell. Biol. 16, 27442755.
  • [51]
    Ito, T., Chiba, T., Ozawa, R., Yoshida, M., Hottori, M., Sakaki, Y. (2001) A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc. Natl. Acad. Sci. USA 98, 42774278.
  • [52]
    Uetz, P., Giot, L., Cagney, G., Mansfield, T.A., Judson, R.S., Knight, J.R., Lockshon, D., Narayan, V., Srinivasan, M., Pochart, P., Qureshi-Emili, A., Li, Y., Godwin, B., Conover, D., Kalbfleisch, T., Vijayadamodar, G., Yang, M., Johnston, M., Fields, S., Rothberg, J.M. (2000) A comprehensive analysis of protein–protein interactions in Saccharomyces cerevisiae. Nature 403, 623627.
  • [53]
    Shamji, A.F., Kuruvilla, F.G., Schreiber, S.L. (2000) Partitioning the transcriptional program induced by rapamycin among the effectors of the Tor proteins. Curr. Biol. 10, 15741581.
  • [54]
    Coffman, J.A., El Berry, H.M., Cooper, T.G. URE2 protein regulates nitrogen catabolic gene expression through the GATAA-containing UASNTR element in Saccharomyces cerevisiae,. J. Bacteriol. 176, 1994. 7476
  • [55]
    Coffman, J.A., Rai, R., Cunningham, T., Svetlov, V., Cooper, T.G. (1996) Gat1, a GATA family protein whose production is sensitive to nitrogen catabolite repression, participates in transcriptional activation of nitrogen-catabolic genes in Saccharomyces cerevisiae. Mol. Cell. Biol. 16, 847858.
  • [56]
    Stanbrough, M., Rowen, D.W., Magasanik, B. (1995) Role of the GATA factors Gln3 and Nil1p of Saccharomyces cerevisiae in the expression of nitrogen-regulated genes. Proc. Natl. Acad. Sci. USA 92, 94509454.
  • [57]
    Matsuura, A., Anraku, Y. (1993) Characterization of the MKS1 gene, a new negative regulator of the RAS-cyclic AMP pathway in Saccharomyces cerevisiae. Mol. Gen. Genet. 238, 616.
  • [58]
    Feller, A., Ramos, F., Pierard, A., Dujbois, E. (1997) Lys80p of Saccharomyces cerevisiae, previously proposed as a specific repressor of LYS genes, is a pleiotropic regulatory factor identical to Mks1. Yeast 13, 13371346.
  • [59]
    Ramos, F., Wiame, J.-M. (1985) Mutation affecting the specific regulatory control of lysine biosynthetic enzymes in Saccharomyces cerevisiae. Mol. Gen. Genet. 200, 291294.
  • [60]
    Edskes, H.K., Hanover, J.A., Wickner, R.B. (1999) Mkslp is a regulator of nitrogen catabolism upstream of Ure2 in Saccharomyces cerevisiae. Genetics 153, 585594.
  • [61]
    Komeili, A., Wedaman, K.P., O'Shea, E.K., Powers, T. (2000) Mechanism of metabolic control: target of rapamycin signaling links nitrogen quality to the activity of the Rtg1 and Rtg3 transcription factors. J. Cell. Biol. 151, 863878.