• [1]
    Moreno-Vivián, C., Ferguson, S.J. (1998) Definition and distinction between assimilatory, dissimilatory and respiratory pathways. Mol. Microbiol. 29, 661669.
  • [2]
    Lin, J.T., Stewart, V. (1998) Nitrate assimilation by bacteria. Adv. Microb. Phys. 39, 130.
  • [3]
    Campbell, W.H., Kinghorn, J.R. (1990) Functional domains of assimilatory nitrate reductases and nitrite reductases. Trends Biochem. Sci. 15, 315319.
  • [4]
    Cole, J. (1996) Nitrate reduction to ammonia by enteric bacteria: redundancy, or a strategy for survival during oxygen starvation. FEMS Microbiol. Lett. 136, 111.
  • [5]
    Zumft, W.G. (1997) Cell biology and molecular basis of denitrification. Microbiol. Mol. Biol. Rev. 61, 533616.
  • [6]
    Moura, I., Moura, J.J.G. (2001) Structural aspects of denitrifying enzymes. Curr. Opin. Chem. Biol. 5, 168175.
  • [7]
    Cole, J.A., Brown, C.M. (1980) Nitrite reduction to ammonia by fermentative bacteria: a short circuit in the biological nitrogen cycle. FEMS Microbiol. Lett. 7, 6572.
  • [8]
    Fujita, T. (1966) Studies on soluble cytochromes in Enterobacteriaceae. I. Detection, purification, and properties of cytochrome c-552 in anaerobically grown cells. J. Biochem. 60, 204215.
  • [9]
    Liu, M.-C. H.D. Peck Jr., Abou-Jaoudé, A., Chippaux, M., LeGall, J. (1981) A reappraisal of the role of the low potential c-type cytochrome (cytochrome c-552) in NADH-dependent nitrite reduction and its relationship with a co-purified NADH oxidase in Escherichia coli K-12. FEMS Microbiol. Lett. 10, 333337.
  • [10]
    Kajie, S., Anraku, Y. (1986) Purification of a hexaheme cytochrome c552 from Escherichia coli K12 and its properties as a nitrite reductase. Eur. J. Biochem. 154, 457463.
  • [11]
    Liu, M.-C. H.D. Peck Jr. (1981) The isolation of a hexaheme cytochrome from Desulfovibrio desulfuricans and its identification as a new type of nitrite reductase. J. Biol. Chem. 256, 1315913164.
  • [12]
    Liu, M.-C., Liu, M.-Y., Payne, W.J. H.D. Peck Jr., LeGall, J. (1983) Wolinella succinogenes nitrite reductase: purification and properties. FEMS Microbiol. Lett. 19, 201206.
  • [13]
    Schröder, I., Roberton, A.M., Bokranz, M., Unden, G., Böcher, R., Kröger, A. (1985) The membraneous nitrite reductase involved in the electron transport of Wolinella succinogenes. Arch. Microbiol. 140, 380386.
  • [14]
    Schumacher, W., Hole, U., Kroneck, P.M.H. (1994) Ammonia-forming cytochrome c nitrite reductase from Sulfurospirillum deleyianum is a tetraheme protein: new aspects of the molecular composition and spectroscopic properties. Biochem. Biophys. Res. Commun. 205, 911916.
  • [15]
    Prakash, O., Sadana, J.C. (1972) Purification, characterisation and properties of nitrite reductase of Achromobacter fischeri. Arch. Biochem. Biophys. 148, 614632.
  • [16]
    Liu, M.-C., Bakel, B.W., Liu, M.-Y., Dao, T.N. (1988) Purification of Vibrio fischeri nitrite reductase and its characterization as a hexaheme c-type cytochrome. Arch. Biochem. Biophys. 262, 259265.
  • [17]
    Darwin, A., Hussain, H., Griffiths, L., Grove, J., Sambongi, Y., Busby, S., Cole, J. (1993) Regulation and sequence of the structural gene for cytochrome c552 from Escherichia coli: not a hexahaem but a 50 kDa tetrahaem nitrite reductase. Mol. Microbiol. 9, 12551265.
  • [18]
    Eaves, D.J., Grove, J., Staudenmann, W., James, P., Poole, R.K., White, S.A., Griffiths, I., Cole, J.A. (1998) Involvement of products of the nrfEFG genes in the covalent attachment of haem c to a novel cysteine-lysine motif in the cytochrome c552 nitrite reductase from Escherichia coli. Mol. Microbiol. 28, 205216.
  • [19]
    Einsle, O., Messerschmidt, A., Stach, P., Bourenkov, G.P., Bartunik, H.D., Huber, R., Kroneck, P.M.K. (1999) Structure of cytochrome c nitrite reductase. Nature 400, 476480.
  • [20]
    Einsle, O., Stach, P., Messerschmidt, A., Simon, J., Kröger, A., Huber, R., Kroneck, P.M.H. (2000) Cytochrome c nitrite reductase from Wolinella succinogenes: Structure at 1.6 Å resolution, inhibitor binding and heme-packing motifs. J. Biol. Chem. 275, 3960839616.
  • [21]
    Bamford, V.A., Angrove, H.C., Seward, H.E., Thomson, A.J., Cole, J.A., Butt, J.N., Hemmings, A.M., Richardson, D.J. (2002) Structure and spectroscopy of the periplasmic cytochrome c nitrite reductase from Escherichia coli. Biochemistry 41, 29212931.
  • [22]
    Motteram, P.A.S., McCarthy, J.E.G., Ferguson, S.J., Jackson, J.B., Cole, J.A. (1981) Energy conservation during formate-dependent reduction of nitrite by Escherichia coli. FEMS Microbiol. Lett. 12, 317320.
  • [23]
    Pope, N.R., Cole, J.A. (1982) Generation of a membrane potential by one of two independent pathways for nitrite reduction by Escherichia coli. J. Gen. Microbiol. 128, 219222.
  • [24]
    Steenkamp, D.J. H.D. Peck Jr. (1981) Proton translocation associated with nitrite respiration in Desulfovibrio desulfuricans. J. Biol. Chem. 256, 54505458.
  • [25]
    Barton, L.L., LeGall, J., Odom, J.M. H.D. Peck Jr. (1983) Energy coupling to nitrite respiration in the sulfate-reducing bacterium Desulfovibrio gigas. J. Bacteriol. 153, 867871.
  • [26]
    Simon, J., Gross, R., Einsle, O., Kroneck, P.M.H., Kröger, A., Klimmek, O. (2000) A NapC/NirT-type cytochrome c (NrfH) is the mediator between the quinone pool and the cytochrome c nitrite reductase of Wolinella succinogenes. Mol. Microbiol. 35, 686696.
  • [27]
    Tyson, K., Metheringham, R., Griffiths, L., Cole, J. (1997) Characterisation of Escherichia coli K-12 mutants defective in formate-dependent nitrite reduction: essential roles for hemN and the menFDBCE operon. Arch. Microbiol. 168, 403411.
  • [28]
    Simon, J., Pisa, R., Stein, T., Eichler, R., Klimmek, O., Gross, R. (2001) The tetraheme cytochrome c NrfH is required to anchor the cytochrome c nitrite reductase in the membrane of Wolinella succinogenes. Eur. J. Biochem. 268, 57765782.
  • [29]
    Einsle, O., Schumacher, W., Kurun, E., Nath, U., and Kroneck, P.M.H. (1998) Cytochrome c nitrite reductase from Sulfurospirillum deleyianum and Wolinella succinogenes. In: Biological Electron Transfer Chains: Genetics, Composition and Mode of Operation (Canters, G.W. and Vijgenboom, E., Eds), pp. 197–208. Kluwer Academic, Dordrecht.
  • [30]
    Schumacher, W., Neese, F., Hole, U. and Kroneck P.M.H. (1997) Cytochrome c nitrite reductase and nitrous oxide reductase: two metallo enzymes of the nitrogen cycle with novel metal sites. In: Transition Metals in Microbial Metabolism (Winkelmann, G. and Carrano, C.J., Eds.), pp. 329–356. Harwood Academic, London.
  • [31]
    Moura, I., Bursakov, S., Costa, C., Moura, J.J.G. (1997) Nitrate and nitrite utilization in sulfate-reducing bacteria. Anaerobe 3, 279290.
  • [32]
    Unden, G., Bongaerts, J. (1997) Alternative respiratory pathways of Escherichia coli: energetics and transcriptional regulation in response to electron acceptors. Biochim. Biophys. Acta 1320, 217234.
  • [33]
    Berks, B.C., Ferguson, S.J., Moir, J.W.B., Richardson, D.J. (1995) Enzymes and associated electron transport systems that catalyse the respiratory reduction of nitrogen oxides and oxyanions. Biochim. Biophys. Acta 1232, 97173.
  • [34]
    Brittain, T., Blackmore, R., Greenwood, C., Thomson, A.J. (1992) Bacterial nitrite-reducing enzymes. Eur. J. Biochem. 209, 793802.
  • [35]
    Cole, J.A. (1988) Assimilatory and dissimilatory reduction of nitrate to ammonia. In: The Nitrogen and Sulphur Cycles (Cole, J.A. and Ferguson, S.J., Eds.), pp. 281–329. Symposia of the Society for General Microbiology 42, Cambridge University Press, Cambridge.
  • [36]
    Richardson, D.J. (2000) Bacterial respiration: a flexible process for a changing environment. Microbiology 146, 551571.
  • [37]
    Richardson, D.J., Watmough, N.J. (1999) Inorganic nitrogen metabolism in bacteria. Curr. Opin. Chem. Biol. 3, 207219.
  • [38]
    Eisenmann, E., Beuerle, J., Sulger, K., Kroneck, P.M.H., Schumacher, W. (1995) Lithotrophic growth of Sulfurospirillum deleyianum with sulfide as electron donor coupled to respiratory reduction of nitrate to ammonia. Arch. Microbiol. 164, 180185.
  • [39]
    Kröger, A., Biel, S., Simon, J., Gross, R., Unden, G., Lancaster, C.R.D. (2002) Fumarate respiration of Wolinella succinogenes: enzymology, energetics, and coupling mechanism. Biochim. Biophys. Acta 1553, 2338.
  • [40]
    Bokranz, M., Katz, J., Schröder, I., Roberton, A.M., Kröger, A. (1983) Energy metabolism and biosynthesis of Vibrio succinogenes growing with nitrate or nitrite as terminal electron acceptor. Arch. Microbiol. 135, 3641.
  • [41]
    Simon, J., Gross, R., Klimmek, O. and Kröger, A. (2000) The genus Wolinella. In: The Prokaryotes: An Evolving Electronic Resource for the Microbiological Community, 3rd edn. (Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.-H. and Stackebrandt, E., Eds.). Springer-Verlag, New York.
  • [42]
    Yoshinari, T. (1980) N2O reduction by Vibrio succinogenes. Appl. Environ. Microbiol. 39, 8184.
  • [43]
    Lorenzen, J.P., Steinwachs, S., Unden, G. (1994) DMSO respiration by the anaerobic rumen bacterium Wolinella succinogenes. Arch. Microbiol. 162, 277281.
  • [44]
    Schumacher, W., Kroneck, P.M.H. (1992) Anaerobic energy metabolism of the sulfur-reducing bacterium ‘Spirillum’ 5175 during dissimilatory nitrate reduction to ammonia. Arch. Microbiol. 157, 464470.
  • [45]
    Collins, M.D., Widdel, F. (1986) Respiratory quinones of sulphate-reducing and sulphur-reducing bacteria: a systematic investigation. Syst. Appl. Microbiol. 8, 818.
  • [46]
    Zöphel, A., Kennedy, M.C., Beinert, H., Kroneck, P.M.H. (1991) Investigations on microbial sulfur respiration. Isolation, purification, and characterization of cellular components from Spirillum 5175. Eur. J. Biochem. 195, 849856.
  • [47]
    de Vries, W., Niekus, H.G.D., Boellard, M., Stouthamer, A.H. (1980) Growth yields and energy generation by Campylobacter sputorum subspecies bubulus during growth in continuous culture with different hydrogen acceptors. Arch. Microbiol. 124, 221227.
  • [48]
    de Vries, W., Niekus, H.G.D., van Berchum, H., Stouthamer, A.H. (1982) Electron transport-linked proton translocation at nitrite reduction in Campylobacter sputorum subspecies bubulus. Arch. Microbiol. 131, 132139.
  • [49]
    Schumacher, W., Kroneck, P.M.H., Pfennig, N. (1992) Comparative systematic study on ‘Spirillum’ 5175, Campylobacter and Wolinella species. Description of ‘Spirillum’ 5175 as Sulfurospirillum deleyianum gen. nov., spec. nov.. Arch. Microbiol. 158, 287293.
  • [50]
    Steenkamp, D.J. H.D. Peck Jr. (1980) The association of hydrogenase and dithionite reductase activities with the nitrite reductase of Desulfovibrio desulfuricans. Biochem. Biophys. Res. Commun. 94, 4148.
  • [51]
    Seitz, H.-J., Cypionka, H. (1986) Chemolithotrophic growth of Desulfovibrio desulfuricans with hydrogen coupled to ammonification of nitrate or nitrite. Arch. Microbiol. 146, 6367.
  • [52]
    Rabus, R., Hansen, T. and Widdel, F. (2001) Dissimilatory sulfate- and sulfur-reducing prokaryotes. In: The Prokaryotes: An Evolving Electronic Resource for the Microbiological Community, 3rd edn. (Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.-H. and Stackebrandt, E., Eds.). Springer-Verlag, New York.
  • [53]
    Odom, J.M. H.D. Peck Jr. (1981) Localization of dehydrogenases, reductases, and electron transfer components in the sulfate-reducing bacterium Desulfovibrio gigas. J. Bacteriol. 147, 161169.
  • [54]
    Wissenbach, U., Kröger, A., Unden, G. (1990) The specific functions of menaquinone and demethylmenaquinone in anaerobic respiration with fumarate, dimethylsulfoxide, trimethyl N-oxide and nitrate by Escherichia coli. Arch. Microbiol. 154, 6066.
  • [55]
    Wolin, M.J., Wolin, E.A., Jacobs, N.J. (1961) Cytochrome-producing anaerobic vibrio, Vibrio succinogenes sp. n. J. Bacteriol. 81, 911917.
  • [56]
    Hedderich, R., Klimmek, O., Kröger, A., Dirmeier, R., Keller, M., Stetter, K.O. (1999) Anaerobic respiration with sulfur and with organic disulfides. FEMS Microbiol. Rev. 22, 353381.
  • [57]
    Kröger, A., Geisler, V., Lemma, E., Theis, F., Lenger, R. (1992) Bacterial fumarate respiration. Arch. Microbiol. 158, 311314.
  • [58]
    Macy, J.M., Schröder, I., Thauer, R.K., Kröger, A. (1986) Growth of Wolinella succinogenes on H2S plus fumarate and on formate plus sulfur as energy sources. Arch. Microbiol. 144, 147150.
  • [59]
    Widdel, F., Pfennig, N. (1982) Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. II. Incomplete oxidation of propionate by Desulfobulbus propionicus gen. nov., sp. nov. Arch. Microbiol. 131, 360365.
  • [60]
    Mitchell, G.J., Jones, J.G., Cole, J.A. (1986) Distribution and regulation of nitrate and nitrite reduction by Desulfovibrio and Desulfotomaculum species. Arch. Microbiol. 144, 3540.
  • [61]
    Dannenberg, S., Kroder, M., Dilling, W., Cypionka, H. (1992) Oxidation of H2, organic compounds and inorganic sulfur compounds coupled to reduction of O2 or nitrate by sulfate-reducing bacteria. Arch. Microbiol. 158, 9399.
  • [62]
    Lorenzen, J.P., Kröger, A., Unden, G. (1993) Regulation of anaerobic pathways in Wolinella succinogenes by the presence of electron acceptors. Arch. Microbiol. 159, 477483.
  • [63]
    Pisa, R., Stein, T., Eichler, R., Gross, R., Simon, J. (2002) The nrfI gene is essential for the attachment of the active site haem group of Wolinella succinogenes cytochrome c nitrite reductase. Mol. Microbiol. 43, 763770.
  • [64]
    Thöny-Meyer, L. (1997) Biogenesis of respiratory cytochromes in bacteria. Microbiol. Mol. Biol. Rev. 61, 337376.
  • [65]
    Simon, J., Gross, R., Klimmek, O., Ringel, M., Kröger, A. (1998) A periplasmic flavoprotein in Wolinella succinogenes that resembles the fumarate reductase of Shewanella putrefaciens. Arch. Microbiol. 169, 424433.
  • [66]
    Liu, M.-C., Liu, M.-Y., Payne, W.J. H.D. Peck Jr., LeGall, J., DerVartanian, D.V. (1987) Comparative EPR studies on the nitrite reductase from Escherichia coli and Wolinella succinogenes. FEBS Lett. 218, 227230.
  • [67]
    Stach, P., Einsle, O., Schumacher, W., Kurun, E., Kroneck, P.M.H. (2000) Bacterial cytochrome c nitrite reductase: new structural and functional aspects. J. Inorg. Biochem. 79, 381385.
  • [68]
    Einsle, O., Messerschmidt, A., Huber, R., Kroneck, P.M.H. and Neese, F. (2002) Mechanism of the six-electron reduction of nitrite to ammonia by cytochrome c nitrite reductase. J. Am. Chem. Soc., in press.
  • [69]
    Barker, P.D., Ferguson, S.J. (1999) Still a puzzle: why is haem covalently attached in c-type cytochromes. Structure 7, R281R290.
  • [70]
    Igarashi, N., Moriyama, H., Fujiwara, T., Fukumori, Y., Tanaka, N. (1998) The 2.8 Å structure of hydroxylamine oxidoreductase from a nitrifying chemoautotrophic bacterium, Nitrosomonas europaea. Nature Struct. Biol. 4, 276284.
  • [71]
    Liu, M.-C., DerVartanian, D.V. H.D. Peck Jr. (1980) On the nature of the oxidation-reduction properties of nitrite reductase from Desulfovibrio desulfuricans. Biochem. Biophys. Res. Commun. 96, 278285.
  • [72]
    Blackmore, R.S., Brittain, T., Gadsby, P.M., Greenwood, C., Thomson, A.J. (1987) Electron paramagnetic resonance and magnetic circular dichroism studies of a hexa-heme nitrite reductase from Wolinella succinogenes. FEBS Lett. 219, 244248.
  • [73]
    Costa, C., Moura, J.J.G., Moura, I., Liu, M.-Y. H.D. Peck Jr., LeGall, J., Wang, Y.N., Huynh, B.H. (1990) Hexaheme nitrite reductase from Desulfovibrio desulfuricans. Mössbauer and EPR characterization of the heme groups. J. Biol. Chem. 265, 1438214388.
  • [74]
    Costa, C., Moura, J.J.G., Moura, I., Wang, Y., Huynh, B.H. (1996) Redox properties of cytochrome c nitrite reductase from Desulfovibrio desulfuricans ATCC 27774. J. Biol. Chem. 271, 2319123196.
  • [75]
    Pereira, I.C., Abreu, I.A., Xavier, A.V., LeGall, J., Teixeira, M. (1996) Nitrite reductase from Desulfovibrio desulfuricans (ATCC 27774) – a heterooligomer heme protein with sulfite reductase activity. Biochem. Biophys. Res. Commun. 224, 611618.
  • [76]
    Pereira, I.A.C., LeGall, J., Xavier, A.V., Teixeira, M. (2000) Characterization of a heme c nitrite reductase from a non-ammonifying microorganism, Desulfovibrio vulgaris Hildenborough. Biochim. Biophys. Acta 1481, 119130.
  • [77]
    Blackmore, R.S., Gadsby, P.M., Greenwood, C., Thomson, A.J. (1990) Spectroscopic studies of partially reduced forms of Wolinella succinogenes nitrite reductase. FEBS Lett. 264, 257262.
  • [78]
    Einsle, O., Stach, P., Messerschmidt, A., Klimmek, O., Simon, J., Kröger, A., Kroneck, P.M.H. (2002) Crystallization and preliminary X-ray analysis of the membrane-bound cytochrome c nitrite reductase complex (NrfHA) from Wolinella succinogenes. Acta Crystallogr. D58, 341342.
  • [79]
    Roldán, M.D., Sears, H.J., Cheesman, M.R., Ferguson, S.J., Thomson, A.J., Berks, B.C., Richardson, D.J. (1998) Spectroscopic characterization of a novel multiheme c-type cytochrome widely implicated in bacterial electron transport. J. Biol. Chem. 273, 2878528790.
  • [80]
    Jüngst, A., Wakabayashi, S., Matsubara, H., Zumft, W.G. (1991) The nirSTBM region coding for cytochrome cd1-dependent nitrite respiration of Pseudomonas stutzeri consists of a cluster of mono-, di-, and tetraheme proteins. FEBS Lett. 279, 205209.
  • [81]
    Ferguson, S.J. (2001) Keilin's cytochromes: how bacteria use them, vary them and make them. Biochem. Soc. Trans. 29, 629640.
  • [82]
    Richardson, D.J., Berks, B.C., Russell, D.A., Spiro, S., Taylor, C.J. (2001) Functional, biochemical and genetic diversity of prokaryotic nitrate reductases. Cell. Mol. Life Sci. 58, 165178.
  • [83]
    Potter, L., Angove, H., Richardson, D., Cole, J. (2001) Nitrate reduction in the periplasm of gram-negative bacteria. Adv. Microb. Phys. 45, 51112.
  • [84]
    Gon, S., Giudici-Orticoni, M.-T., Méjean, V., Iobbi-Nivol, C. (2001) Electron transfer and binding of the c-type cytochrome TorC to the trimethylamine N-oxide reductase in Escherichia coli. J. Biol. Chem. 276, 1154511551.
  • [85]
    Field, S.J., Dobbin, P.S., Cheesman, M.R., Watmough, N.J., Thomson, A.J., Richardson, D.J. (2000) Purification and magneto-optical spectroscopic characterization of cytoplasmic membrane and outer membrane multiheme c-type cytochromes from Shewanella frigidimarina NCIMB400. J. Biol. Chem. 275, 85158522.
  • [86]
    Shaw, A.L., Hochkoeppler, A., Bonora, P., Zannoni, D., Hanson, G.R., McEwan, A.G. (1999) Characterization of DorC from Rhodobacter capsulatus, a c-type cytochrome involved in electron transfer to dimethyl sulfoxide reductase. J. Biol. Chem. 274, 99119914.
  • [87]
    Bokranz, M., Gutmann, M., Körtner, C., Kojro, E., Fahrenholz, F., Lauterbach, F., Kröger, A. (1991) Cloning and nucleotide sequence of the structural genes encoding formate dehydrogenase of Wolinella succinogenes. Arch. Microbiol. 156, 119128.
  • [88]
    Lenger, R., Herrmann, U., Gross, R., Simon, J., Kröger, A. (1997) Structure and function of a second gene cluster encoding the formate dehydrogenase of Wolinella succinogenes. Eur. J. Biochem. 246, 646651.
  • [89]
    Jankielewicz, A., Schmitz, R.A., Klimmek, O., Kröger, A. (1994) Polysulphide reductase and formate dehydrogenase from Wolinella succinogenes contain molybdopterin guanine dinucleotide. Arch. Microbiol. 162, 238242.
  • [90]
    Unden, G., Kröger, A. (1982) Reconstitution in liposomes of the electron transport chain catalyzing fumarate reduction by formate. Biochim. Biophys. Acta 682, 258263.
  • [91]
    Unden, G., Kröger, A. (1983) Low-potential cytochrome b as an essential electron-transport component of menaquinone reduction by formate in Vibrio succinogenes. Biochim. Biophys. Acta 725, 325331.
  • [92]
    Kröger, A., Dorrer, E., Winkler, E. (1980) The orientation of the substrate sites of formate dehydrogenase and fumarate reductase in the membrane of Vibrio succinogenes. Biochim. Biophys. Acta 589, 118136.
  • [93]
    Berks, B.C. (1996) A common export pathway for proteins binding complex redox cofactors. Mol. Microbiol. 22, 393404.
  • [94]
    Jormakka, M., Tornroth, S., Byrne, B., Iwata, S. (2002) Molecular basis of proton motive force generation: Structure of formate dehydrogenase-N. Science 295, 18631868.
  • [95]
    Schindelin, H., Kisker, C., Hilton, J., Rajagopalan, K.V., Rees, D.C. (1996) Crystal structure of DMSO reductase: redox-linked changes in molybdopterin coordination. Science 272, 16151621.
  • [96]
    Dias, J.M., Than, M.E., Humm, A., Huber, R., Bourenkov, G.P., Bartunik, H.D., Bursakov, S., Calvete, J., Caldeira, J., Carneiro, C., Moura, J.J.G., Moura, I., Romão, M.J. (1999) Crystal structure of the first dissimilatory nitrate reductase at 1.9 Å solved by MAD methods. Structure 7, 6579.
  • [97]
    Boyington, J.C., Gladyshev, V.N., Khangulov, S.V., Stadtman, T.C., Sun, P.D. (1997) Crystal structure of formate dehydrogenase H: catalysis involving Mo, molybdopterin, selenocysteine, and an Fe4S4 cluster. Science 275, 13051308.
  • [98]
    Berks, B.C., Page, M.D., Richardson, D.J., Reilly, A., Cavill, A., Outen, F., Ferguson, S.J. (1995) Sequence analysis of subunits of the membrane-bound nitrate reductase from a denitrifying bacterium: the integral membrane subunit provides a prototype for the dihaem electron-carrying arm of a redox loop. Mol. Microbiol. 15, 319331.
  • [99]
    Lancaster, C.R.D., Kröger, A., Auer, M., Michel, H. (1999) Structure at 2.2 Å resolution of the complex II-like fumarate reductase from Wolinella succinogenes. Nature 402, 377385.
  • [100]
    Dross, F., Geisler, V., Lenger, R., Theis, F., Krafft, T., Fahrenholz, F., Kojro, E., Duchêne, A., Tripier, D., Juvenal, K. and Kröger, A. (1992) The quinone-reactive Ni/Fe-hydrogenase of Wolinella succinogenes. Eur. J. Biochem. 206, 93–102, erratum Eur. J. Biochem. 214, 949950.
  • [101]
    Gross, R., Simon, J., Theis, F., Kröger, A. (1998) Two membrane anchors of Wolinella succinogenes hydrogenase and their function in fumarate and polysulfide respiration. Arch. Microbiol. 170, 5058.
  • [102]
    Rossmann, R., Maier, T., Lottspeich, F., Böck, A. (1995) Characterisation of a protease from Escherichia coli involved in hydrogenase maturation. Eur. J. Biochem. 227, 545550.
  • [103]
    Parkhill, J., Wren, B.W., Mungall, K., Ketley, J.M., Churcher, C., Basham, D., Chillingworth, T., Davies, R.M., Feltwell, T., Holroyd, S., Jagels, K., Karlyshev, A.V., Moule, S., Pallen, M.J., Penn, C.W., Quail, M.A., Rajandream, M.A., Rutherford, K.M., van Vliet, A.H., Whitehead, S., Barrell, B.G. (2000) The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature 403, 665668.
  • [104]
    Tomb, J.F., White, O., Kerlavage, A.R., Clayton, R.A., Sutton, G.G., Fleischmann, R.D., Ketchum, K.A., Klenk, H.P., Gill, S., Dougherty, B.A., Nelson, K., Quackenbush, J., Zhou, L., Kirkness, E.F., Peterson, S., Loftus, B., Richardson, D., Dodson, R., Khalak, H.G., Glodek, A., McKenney, K., Fitzegerald, L.M., Lee, N., Adams, M.D., Hickey, E.K., Berg, D.E., Gocayne, J.D., Utterback, T.R., Peterson, J.D., Kelley, J.M., Cotton, M.D., Weidman, J.M., Fujii, C., Bowman, C., Watthey, L., Wallin, E., Hayes, W.S., Borodovsky, M., Karp, P.D., Smith, O., Fraser, C.M., Venter, J.C. (1997) The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature 388, 539547.
  • [105]
    Gross, R., Simon, J., Lancaster, C.R.D., Kröger, A. (1998) Identification of histidine residues in Wolinella succinogenes hydrogenase that are essential for menaquinone reduction by H2. Mol. Microbiol. 30, 639646.
  • [106]
    Gross, R., Simon, J., Kröger, A. (1999) The role of the twin-arginine motif in the signal peptide encoded by the hydA gene of the hydrogenase from Wolinella succinogenes. Arch. Microbiol. 172, 227232.
  • [107]
    Wu, L.-F., Chanal, A., Rodrigue, A. (2000) Membrane targeting and translocation of bacterial hydrogenases. Arch. Microbiol. 173, 319324.
  • [108]
    Rodrigue, A., Chanal, A., Beck, K., Müller, M., Wu, L.-F. (1999) Co-translocation of a periplasmic enzyme complex by a hitchhiker mechanism through the bacterial tat pathway. J. Biol. Chem. 274, 1322313228.
  • [109]
    Berks, B.C., Sargent, F., Palmer, T. (2000) The Tat protein export pathway. Mol. Microbiol. 35, 260274.
  • [110]
    Volbeda, A., Charon, M.-H., Piras, C., Hatchikian, E.C., Frey, M., Fontecilla-Camps, J.C. (1995) Crystal structure of the nickel-iron hydrogenase from Desulfovibrio gigas. Nature 373, 580587.
  • [111]
    Higuchi, Y., Yagi, T., Yasuoka, N. (1997) Unusual ligand structure in Ni-Fe active center and an additional Mg site in hydrogenase revealed by high-resolution X-ray structure analysis. Structure 5, 16711680.
  • [112]
    Matias, P.M., Soares, C.M., Saraiva, L.M., Coelho, R., Morais, J., LeGall, J., Carrondo, M.A. (2001) [NiFe] hydrogenase from Desulfovibrio desulfuricans ATCC 27774: gene sequencing, three-dimensional structure determination and refinement at 1.8 Å and modelling studies of its interaction with the tetrahaem cytochrome c3. J. Biol. Inorg. Chem. 6, 6381.
  • [113]
    Mell, H., Wellnitz, C., Kröger, A. (1986) The electrochemical proton potential and the proton/electron ratio of the electron transport with fumarate in Wolinella succinogenes. Biochim. Biophys. Acta 852, 212221.
  • [114]
    Geisler, V., Ullmann, R., Kröger, A. (1994) The direction of the proton exchange associated with the redox reactions of menaquinone during the electron transport in Wolinella succinogenes. Biochim. Biophys. Acta 1184, 219226.
  • [115]
    Biel, S., Simon, J., Gross, R., Ruiz, T., Ruitenberg, M., Kröger, A. (2002) Reconstitution of coupled fumarate respiration in liposomes by incorporating the electron transport enzymes isolated from Wolinella succinogenes. Eur. J. Biochem. 269, 19741983.
  • [116]
    Lancaster, C.R.D., Gross, R., Simon, J. (2001) A third crystal form of Wolinella succinogenes quinol: fumarate reductase reveals domain closure at the site of fumarate reduction. Eur. J. Biochem. 268, 18201827.
  • [117]
    Lancaster, C.R.D., Simon, J. (2002) Succinate: quinone oxidoreductases from ?-proteobacteria. Biochim. Biophys. Acta 1553, 84101.
  • [118]
    Fleischmann, R.D., Adams, M.D., White, O., Clayton, R.A., Kirkness, E.F., Kerlavage, A.R., Bult, C.J., Tomb, J.F., Dougherty, B.A., Merrick, J.M., McKenney, K., Sutton, G., FitzHugh, W., Fields, C., Gocyne, J.D., Scott, J., Shirley, R., Liu, L.-I., Glodek, A., Kelley, J.M., Weidman, J.F., Phillips, C.A., Spriggs, T., Hedblom, E., Cotton, M.D., Utterback, T.R., Hanna, M.C., Nguyen, D.T., Saudek, D.M., Brandon, R.C., Fine, L.D., Fritchman, J.L., Fuhrmann, J.L., Geoghagen, N.S.M., Gnehm, C.L., McDonald, L.A., Small, K.V., Fraser, C.M., Smith, H.A., Venter, J.C. (1995) Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269, 496512.
  • [119]
    Parkhill, J., Dougan, G., James, K.D., Thomson, N.R., Pickard, D., Wain, J., Churcher, C., Mungall, K.L., Bentley, S.D., Holden, M.T., Sebaihia, M., Baker, S., Basham, D., Brooks, K., Chillingworth, T., Connerton, P., Cronin, A., Davis, P., Davies, R.M., Dowd, L., White, N., Farrar, J., Feltwell, T., Hamlin, N., Haque, A., Hien, T.T., Holroyd, S., Jagels, K., Krogh, A., Larsen, T.S., Leather, S., Moule, S., O'Gaora, P., Parry, C., Quail, M., Rutherford, K., Simmonds, M., Skelton, J., Stevens, K., Whitehead, S., Barrell, B.G. (2001) Complete genome sequence of a multiple drug resistant Salmonella enterica serovar Typhi CT18. Nature 413, 848852.
  • [120]
    McClelland, M., Sanderson, K.E., Spieth, J., Clifton, S.W., Latreille, P., Courtney, L., Porwollik, S., Ali, J., Dante, M., Du, F., Hou, S., Layman, D., Leonard, S., Nguyen, C., Scott, K., Holmes, A., Grewal, N., Mulvaney, E., Ryan, E., Sun, H., Florea, L., Miller, W., Stoneking, T., Nhan, M., Waterston, R., Wilson, R.K. (2001) Complete genome sequence of Salmonella enterica serovar Typhimurium LT2. Nature 413, 852856.
  • [121]
    May, B.J., Zhang, Q., Li, L.L., Paustian, M.L., Whittam, T.S., Kapur, V. (2001) Complete genomic sequence of Pasteurella multocida, Pm70. Proc. Natl. Acad. Sci. USA 98, 34603465.
  • [122]
    Goldman, B.S., Beck, D.L., Monika, E.M., Kranz, R.G. (1998) Transmembrane heme delivery systems. Proc. Natl. Acad. Sci. USA 95, 50035008.
  • [123]
    Schiött, T., von Wachenfeldt, C., Hederstedt, L. (1997) Identification and characterization of the ccdA gene, required for cytochrome c synthesis in Bacillus subtilis. J. Bacteriol. 179, 19621973.
  • [124]
    Dias, J.M., Cunha, C.A., Teixeira, S., Almeida, G., Costa, C., Lampreia, J., Moura, J.J.G., Moura, I., Romão, M.J. (2000) Crystallization and preliminary X-ray analysis of a membrane-bound nitrite reductase from Desulfovibrio desulfuricans ATCC 27774. Acta Crystallogr. D56, 215217.
  • [125]
    Steuber, J., Arendsen, A.F., Hagen, W.R., Kroneck, P.M.H. (1995) Molecular properties of the dissimilatory sulfite reductase from Desulfovibrio desulfuricans (Essex) and comparison with the enzyme from Desulfovibrio vulgaris (Hildenborough). Eur. J. Biochem. 233, 873879.
  • [126]
    Vignais, P.M., Billoud, B., Meyer, J. (2001) Classification and phylogeny of hydrogenases. FEMS Microbiol. Rev. 25, 455501.
  • [127]
    Fauque, G. H.D. Peck Jr., Moura, J.J.G., Huynh, B.H., Berlier, Y., DerVartanian, D.V., Teixeira, M., Przybyla, A.E., Lespinat, P.A., Moura, I., LeGall, J. (1988) The three classes of hydrogenases from sulfate-reducing bacteria of the genus Desulfovibrio. FEMS Microbiol. Rev. 54, 299344.
  • [128]
    Pereira, I.A.C., Romão, C.V., Xavier, A.V., LeGall, J., Teixeira, M. (1998) Electron transfer between hydrogenases and mono- and multiheme cytochromes in Desulfovibrio spp. J. Biol. Inorg. Chem. 3, 494498.
  • [129]
    Einsle, O., Foerster, S., Mann, K., Fritz, G., Messerschmidt, A., Kroneck, P.M.H. (2001) Spectroscopic investigation and determination of reactivity and structure of the tetraheme cytochrome c3 from Desulfovibrio desulfuricans Essex 6. Eur. J. Biochem. 268, 30283035.
  • [130]
    Morais, J., Palma, P.N., Frazao, C., Caldeira, J., LeGall, J., Moura, I., Moura, J.J.G., Carrondo, M.A. (1995) Structure of the tetraheme cytochrome from Desulfovibrio desulfuricans ATCC 27774: X-ray diffraction and electron paramagnetic resonance studies. Biochemistry 34, 1283012841.
  • [131]
    Nicolet, Y., Piras, C., Legrand, P., Hatchikian, C.E., Fontecilla-Camps, J.C. (1999) Desulfovibrio desulfuricans iron hydrogenase: the structure shows unusual coordination to an active site Fe binuclear center. Structure 7, 1323.
  • [132]
    Morelli, X., Czjzek, M., Hatchikian, C.E., Bornet, O., Fontecilla-Camps, J.C., Palma, N.P., Moura, J.J.G., Guerlesquin, F. (2000) Structural model of the Fe-hydrogenase/cytochrome c553 complex combining transverse relaxation-optimized spectroscopy experiments and soft docking calculations. J. Biol. Chem. 275, 2320423210.
  • [133]
    Costa, C., Teixeira, M., LeGall, J., Moura, J.J.G., Moura, I. (1997) Formate dehydrogenase from Desulfovibrio desulfuricans ATCC 27774: isolation and spectroscopic characterization of the active sites (heme, iron–sulfur centers and molybdenum). J. Biol. Inorg. Chem. 2, 198208.
  • [134]
    Sebban, C., Blanchard, L., Bruschi, M., Guerlesquin, F. (1995) Purification and characterization of the formate dehydrogenase from Desulfovibrio vulgaris Hildenborough. FEMS Microbiol. Lett. 133, 143149.
  • [135]
    Sebban-Kreuzer, C., Dolla, A., Guerlesquin, F. (1998) The formate dehydrogenase-cytochrome c553 complex from Desulfovibrio vulgaris Hildenborough. Eur. J. Biochem. 253, 645652.
  • [136]
    Blackledge, M., Medvedeva, S., Poncin, M., Guerlesquin, F., Bruschi, M., Marion, D. (1995) Structure and dynamics of ferrocytochrome c553 from Desulfovibrio vulgaris studied by NMR spectroscopy and restrained molecular dynamics. J. Mol. Biol. 245, 661681.
  • [137]
    Saraiva, L.M., da Costa, P.N., Conte, C., Xavier, A.V., LeGall, J. (2001) In the facultative sulphate/nitrate reducer Desulfovibrio desulfuricans ATCC 27774, the nine-haem cytochrome c is part of a membrane-bound redox complex mainly expressed in sulphate-grown cells. Biochim. Biophys. Acta 1520, 6370.
  • [138]
    Matias, P., Coelho, R., Pereira, I.A.C., Coelho, A.V.J., Thompson, A.W., Sieker, A.C., LeGall, J., Carrondo, M.A. (1999) The primary and three-dimensional structures of a nine-haem cytochrome c from Desulfovibrio desulfuricans ATCC 27774 reveal a new member of the Hmc family. Structure 7, 119130.
  • [139]
    Matias, P., Saraiva, L.M., Soares, C.M., Coelho, A.V.J., LeGall, J., Carrondo, M.A. (1999) Nine-haem cytochrome c from Desulfovibrio desulfuricans ATCC 27774: primary sequence determination, crystallographic refinement at 1.8 Å and modelling studies of its interaction with the tetrahaem cytochrome c3. J. Biol. Inorg. Chem. 4, 478494.
  • [140]
    Saraiva, L.M., da Costa, P.N., LeGall, J. (1999) Sequencing the gene encoding Desulfovibrio desulfuricans ATCC 27774 nine-heme cytochrome c. Biochem. Biophys. Res. Commun. 262, 629634.
  • [141]
    Fritz, G., Griesshaber, D., Seth, O., Kroneck, P.M.H. (2001) Nonaheme cytochrome c, a new physiological electron acceptor for [Ni,Fe] hydrogenase in the sulfate-reducing bacterium Desulfovibrio desulfuricans Essex: primary sequence, molecular parameters, and redox properties. Biochemistry 40, 13171324.
  • [142]
    Umhau, S., Fritz, G., Diederichs, K., Breed, J., Welte, W., Kroneck, P.M.H. (2001) Three-dimensional structure of the nonaheme cytochrome c from Desulfovibrio desulfuricans Essex in the Fe(III) state at 1.89 Å resolution. Biochemistry 40, 13081316.
  • [143]
    Rapp-Giles, B.J., Casalot, L., English, R.S. J.A. Ringbauer Jr., Dolla, A., Wall, J.D. (2000) Cytochrome c3 mutants of Desulfovibrio desulfuricans. Appl. Environ. Microbiol. 66, 671677.
  • [144]
    Bruschi, M., Bertrand, P., More, C., Leroy, G., Bonicel, J., Haladjian, J., Chottard, G., Pollock, W.B.R., Voordouw, G. (1992) Axial coordination and reduction potentials of the sixteen hemes in high-molecular-mass cytochrome c from Desulfovibrio vulgaris (Hildenborough). Biochemistry 31, 32813288.
  • [145]
    Rossi, M., Pollock, W.B.R., Rij, M.W., Keon, R.G., Fu, R., Voordouw, G. (1993) The hmc operon of Desulfovibrio vulgaris subsp. vulgaris Hildenborough encodes a potential transmembrane redox protein complex. J. Bacteriol. 175, 46994711.
  • [146]
    Dolla, A., Pohorelic, B.K., Voordouw, J.K., Voordouw, G. (2000) Deletion of the hmc operon of Desulfovibrio vulgaris subsp. vulgaris Hildenborough hampers hydrogen metabolism and low-redox-potential niche establishment. Arch. Microbiol. 174, 143151.
  • [147]
    Abou-Jaoudé, A., Chippaux, M., Pascal, M.-C. (1979) Formate-nitrite reduction in Escherichia coli K12. 1. Physiological study of the system. Eur. J. Biochem. 95, 309314.
  • [148]
    Rehr, B., Klemme, J.-H. (1986) Metabolic role and properties of nitrite reductase of nitrate-ammonifying marine Vibrio species. FEMS Microbiol. Lett. 35, 325328.
  • [149]
    Grove, J., Busby, S., Cole, J. (1996) The role of the genes nrfEFG and ccmFH in cytochrome c biosynthesis in Escherichia coli. Mol. Gen. Genet. 252, 332341.
  • [150]
    Gray, C.T., Wimpenny, J.W.T., Hughes, D.E., Ranlett, M. (1963) A soluble c-type cytochrome from anaerobically grown Escherichia coli and various Enterobacteriaceae. Biochim. Biophys. Acta 67, 157160.
  • [151]
    Fujita, T., Sato, S. (1966) Studies on soluble cytochromes in Enterobacteriaceae. IV. Possible involvement of cytochrome c-552 in anaerobic nitrite metabolism. J. Biochem. 60, 691700.
  • [152]
    Fujita, T., Sato, S. (1966) Studies on soluble cytochromes in Enterobacteriaceae. III. Localization of cytochrome c-552 in the surface layer of cells. J. Biochem. 60, 568577.
  • [153]
    Cole, J.A. (1968) Cytochrome c552 and nitrite reduction in Escherichia coli. Biochim. Biophys. Acta 162, 356368.
  • [154]
    Page, L., Griffiths, L., Cole, J.A. (1990) Different physiological roles of two independent pathways for nitrite reduction to ammonia by enteric bacteria. Arch. Microbiol. 154, 349354.
  • [155]
    Wang, H., Gunsalus, R.P. (2000) The nrfA and nirB nitrite reductase operons in Escherichia coli are expressed differently in response to nitrate than to nitrite. J. Bacteriol. 182, 58135822.
  • [156]
    Jackson, R.H., Cornish-Bowden, A., Cole, J.A. (1981) Prosthetic groups of the NADH-dependent nitrite reductase from Escherichia coli K12. Biochem. J. 193, 861867.
  • [157]
    Abou-Jaoudé, A., Chippaux, M., Pascal, M.C., Casse, F. (1977) Formate: a new electron donor for nitrite reduction in Escherichia coli K12. Biochem. Biophys. Res. Commun. 78, 579583.
  • [158]
    Abou-Jaoudé, A., Chippaux, M., Pascal, M.-C. (1979) Formate-nitrite reduction in Escherichia coli K12. 2. Identification of components involved in the electron transfer. Eur. J. Biochem. 95, 315321.
  • [159]
    Pope, N.R., Cole, J.A. (1984) Pyruvate and ethanol as electron donors for nitrite reduction by Escherichia coli K12. J. Gen. Microbiol. 130, 12791284.
  • [160]
    Hussain, H., Grove, J., Griffiths, L., Busby, S., Cole, J. (1994) A seven-gene operon essential for formate-dependent nitrite reduction by enteric bacteria. Mol. Microbiol. 12, 153163.
  • [161]
    Potter, L.C., Cole, J.A. (1999) Essential roles for the products of the napABCD genes, but not napFGH, in periplasmic nitrate reduction by Escherichia coli K-12. Biochem. J. 344, 6976.
  • [162]
    Méjean, V., Iobbi-Nivol, C., Lepelletier, M., Giordano, G., Chippaux, M., Pascal, M.C. (1994) TMAO anaerobic respiration in Escherichia coli: involvement of the tor operon. Mol. Microbiol. 11, 11691179.
  • [163]
    Gon, S., Patte, J.C., Méjean, V., Iobbi-Nivol, C. (2000) The torYZ (yecK bisZ) operon encodes a third respiratory trimethylamine N-oxide reductase in Escherichia coli. J. Bacteriol. 182, 57795786.
  • [164]
    Iobbi-Nivol, C., Crooke, H., Griffiths, L., Grove, J., Hussain, H., Pommier, J., Mejean, V., Cole, J.A. (1994) A reassessment of the range of c-type cytochromes synthesized by Escherichia coli K-12. FEMS Microbiol. Lett. 119, 8994.
  • [165]
    Dietrich, W., Klimmek, O. (2002) The function of methyl-menaquinone-6 and polysulfide reductase membrane anchor (PsrC) in polysulfide respiration of Wolinella succinogenes. Eur. J. Biochem. 269, 10861095.
  • [166]
    Sawers, G. (1994) The hydrogenases and formate dehydrogenases of Escherichia coli. Antonie Van Leeuwenhoek 66, 5788.
  • [167]
    Darwin, A., Tormay, P., Page, L., Griffiths, L., Cole, J. (1993) Identification of the formate dehydrogenases and genetic determinants of formate-dependent nitrite reduction by Escherichia coli K12. J. Gen. Microbiol. 139, 18291840.
  • [168]
    Stanley, N.R., Sargent, F., Buchanan, G., Shi, J., Stewart, V., Palmer, T., Berks, B.C. (2002) Behaviour of topological marker proteins targeted to the Tat protein transport pathway. Mol. Microbiol. 43, 10051021.
  • [169]
    Jones, R.W. (1980) Proton translocation by the membrane-bound formate dehydrogenase of Escherichia coli. FEBS Microbiol. Lett. 8, 167171.
  • [170]
    Benoit, S., Abaibou, H., Mandrand-Berthelot, M.-A. (1998) Topological analysis of the aerobic membrane-bound formate dehydrogenase of Escherichia coli. J. Bacteriol. 180, 66256634.
  • [171]
    Myers, C.R., Myers, J.M. (1997) Cloning and sequence of cymA, a gene encoding a tetraheme cytochrome c required for reduction of iron(III), fumarate, and nitrate by Shewanella putrefaciens MR-1. J. Bacteriol. 179, 11431152.
  • [172]
    Myers, J.M., Myers, C.R. (2000) Role of the tetraheme cytochrome CymA in anaerobic electron transport in cells of Shewanella putrefaciens MR-1 with normal levels of menaquinone. J. Bacteriol. 182, 6772.
  • [173]
    Kranz, R., Lill, R., Goldman, B., Bonnard, G., Merchant, S. (1998) Molecular mechanisms of cytochrome c biogenesis: three distinct systems. Mol. Microbiol. 29, 383396.
  • [174]
    Page, M.D., Sambongi, Y., Ferguson, S.J. (1998) Contrasting routes of c-type cytochrome assembly in mitochondria, chloroplasts and bacteria. Trends Biochem. Sci. 23, 103108.
  • [175]
    Beckett, C.S., Loughman, J.A., Karberg, K.A., Donato, G.M., Goldman, W.E., Kranz, R.G. (2000) Four genes are required for the system II cytochrome c biogenesis pathway in Bordetella pertussis, a unique bacterial model. Mol. Microbiol. 38, 465481.
  • [176]
    Schulz, H., Pellicioli, E.C., Thöny-Meyer, L. (2000) New insights into the role of CcmC, CcmD and CcmE in the haem delivery pathway during cytochrome c maturation by a complete mutational analysis of the conserved tryptophan-rich motif of CcmC. Mol. Microbiol. 37, 13791388.
  • [177]
    Ren, Q., Ahuja, U., Thöny-Meyer, L. (2002) A bacterial cytochrome c heme lyase: CcmF forms a complex with the heme chaperone CcmE and CcmH, but not with apocytochrome c. J. Biol. Chem. 277, 76577663.
  • [178]
    Fabianek, R.A., Hennecke, H., Thöny-Meyer, L. (2000) Periplasmic protein thiol:disulfide oxidoreductases of Escherichia coli. FEMS Microbiol. Rev. 24, 303316.
  • [179]
    Reid, E., Cole, J., Eaves, D.J. (2001) The Escherichia coli CcmG protein fulfils a specific role in cytochrome c assembly. Biochem. J. 355, 5158.
  • [180]
    Blasco, F., Guigliarelli, B., Magalon, A., Asso, M., Giordano, G., Rothery, R.A. (2001) The coordination and function of the redox centres of the membrane-bound nitrate reductases. Cell. Mol. Life Sci. 58, 179193.
  • [181]
    Wang, H., Tseng, C.P., Gunsalus, R.P. (1999) The napF and narG nitrate reductase operons in Escherichia coli are differentially expressed in response to submicromolar concentrations of nitrate but not nitrite. J. Bacteriol. 181, 53035308.