• [1]
    Ahsan, H., Perrin, M., Rahman, A., Parvez, F., Stute, M., Zheng, Y., Milton, A.H., Brandt-Rauf, P., van Geen, A., Graziano, J. (2000) Associations between drinking water and urinary arsenic levels and skin lesions in Bangladesh. J. Occup. Environ. Med. 42, 11951201.
  • [2]
    Milton, A.H., Hasan, Z., Rahman, A., Rahman, M. (2001) Chronic arsenic poisoning and respiratory effects in Bangladesh. J. Occup. Health 43, 136140.
  • [3]
    Welch, A.H., Westjohn, D.B., Helsel, D.R., Wanty, R.B. (2000) Arsenic in ground water of the United States: occurrence and geochemistry. Groundwater 38, 589604.
  • [4]
    Brasier, L.L. (1997) Water making many ill and Oakland to map arsenic sites, Detroit Free Press, November 19 and November 20.
  • [5]
    Ryker, S. (2001) Mapping arsenic in groundwater. Geotimes 46, 3438.
  • [6]
    Ahmann, D., Roberts, A.L., Krumholz, L.R., Morel, F.M. Microbe grows by reducing arsenic,. Nature. 371, 1994. 750
  • [7]
    Kaiser, J. Toxicologist. Science only one part of arsenic standards,. Science. 291, 2001. 2533
  • [8]
    Nriagu, J.O. (Ed.) (1994) Arsenic in the Environment: Human Health and Ecosystem Effects. Advances in Environmental Science and Technology, Vol. 27. John Wiley and Sons, New York.
  • [9]
    Sehlin, H.M., Lindstrom, E.B. (1992) Oxidation and reduction of arsenic by Sulfolobus acidocaldarius strain BC. FEMS Microbiol. Lett. 93, 8792.
  • [10]
    Suzuki, K., Wakao, N., Kimura, T., Sakka, K., Ohmiya, K. (1998) Expression and regulation of the arsenic resistance operon of Acidiphilium multivorum AIU 301 plasmid pKW301 in Escherichia coli. Appl. Environ. Microbiol. 64, 411418.
  • [11]
    Edwards, K.J., Bond, P.L., Gihring, T.M., Banfield, J.F. (2000) An archaeal iron-oxidizing extreme acidophile important in acid mine drainage. Science 287, 17961799.
  • [12]
    Lenihan, J. (1988) The Crumbs of Creation. Trace Elements in History, Medicine, Industry, Crime and Folklore. Adam Hilger, Bristol.
  • [13]
    NiDhubhghaill, O.M., Sadler, P.J. (1991) The structure and reactivity of arsenic compounds: biological activity and drug design. Struct. Bond. 78, 129190.
  • [14]
    Nriagu, J.O. (2001) Arsenic poisoning through the ages. In: Environmental Chemistry of Arsenic (Frankenberger, W.T., Jr., Ed.), pp. 1–26. Marcel Dekker, New York.
  • [15]
    Bates, M.N., Smith, A.H., Hopenhayn-Rich, C. (1992) Arsenic ingestion and internal cancers: a review. Am. J. Epidemiol. 135, 462476.
  • [16]
    Pershagen, G. (1985) Lung cancer mortality among men living near arsenic-emitting smelters. Am. J. Epidemiol. 122, 684694.
  • [17]
    Jackson, B.P., Bertsch, P.M. (2001) Determination of arsenic speciation in poultry wastes by IC-ICP-MS. Environ. Sci. Technol. 35, 48684873.
  • [18]
    Quinn, J.P., McMullan, G. (1995) Carbon-arsenic bond cleavage by a newly isolated Gram-negative bacterium, strain ASV2. Microbiology 141, 721727.
  • [19]
    Cervantes, C., Ji, G., Ramírez, J.L., Silver, S. (1994) Resistance to arsenic compounds in microorganisms. FEMS Microbiol. Rev. 15, 355367.
  • [20]
    Knowles, F.C., Benson, A.A. (1983) The biochemistry of arsenic. Trends Biochem. Sci. 8, 178180.
  • [21]
    Frankenberger, W.T. Jr. (Ed.) (2001) Environmental Chemistry of Arsenic. Marcel Dekker, New York.
  • [22]
    Challenger, F. (1951) Biological methylation. Adv. Enzymol. 12, 429491.
  • [23]
    Craig, P.J. (1989) Biological and environmental methylation of metals. In: The Chemistry of the Metal-Carbon Bond, Vol. 5 (Hartley, F.R., Ed.), pp. 437–463. John Wiley and Sons, London.
  • [24]
    Frankenberger, W.T. Jr. and Arshad, M. (2001) Volatilization of arsenic. In: Environmental Chemistry of Arsenic (Frankenberger, W.T., Jr., Ed.), pp. 381–410. Marcel Dekker, New York.
  • [25]
    Aposhian, H.V. (1997) Enzymatic methylation of arsenic species and other new approaches to arsenic toxicity. Annu. Rev. Pharmacol. Toxicol. 37, 397419.
  • [26]
    Hall, L.L., George, S.E., Kohan, M.J., Styblo, M., Thomas, D.J. (1997) In vitro methylation of inorganic arsenic in mouse intestinal cecum. Toxicol. Appl. Pharmacol. 147, 101109.
  • [27]
    Bentley, R., Chasteen, T.G. (2002) Microbial methylation of metalloids: arsenic, antimony and bismuth. Microbiol. Mol. Biol. Rev. 66, 250271.
  • [28]
    Silver, S., Phung, L.T. (1996) Bacterial heavy metal resistance: new surprises. Annu. Rev. Microbiol. 50, 753789.
  • [29]
    Rensing, C., Ghosh, M., Rosen, B.P. (1999) Families of soft metal ATPases. J. Bacteriol. 181, 58915897.
  • [30]
    Gatti, D.L., Mitra, B., Rosen, B.P. (2000) Bacterial soft metal ATPases. J. Biol. Chem. 275, 3400934012.
  • [31]
    Silver, S., Phung, L.T. and Rosen, B.P. (2001) Arsenic metabolism: resistance, reduction and oxidation. In: Environmental Chemistry of Arsenic (Frankenberger, W.T., Jr., Ed.), pp. 247–272. Marcel Dekker, New York.
  • [32]
    Stahlberg, H., Braun, T., de Groot, B., Philippsen, A., Borgnia, M.J., Agre, P., Kuhlbrandt, W., Engel, A. (2000) The 6.9-Å structure of GlpF: a basis for homology modeling of the glycerol channel from Escherichia coli. J. Struct. Biol. 132, 133141.
  • [33]
    Sanders, O.I., Rensing, C., Kuroda, M., Mitra, B., Rosen, B.P. (1997) Antimonite is accumulated by the glycerol facilitator GlpF in Escherichia coli. J. Bacteriol. 179, 33653367.
  • [34]
    Wysocki, R., Chery, C.C., Wawrzycka, D., Van Hulle, M., Cornelis, R., Thevelein, J.M., Tamas, M.J. (2001) The glycerol channel Fps1p mediates the uptake of arsenite and antimonite in Saccharomyces cerevisiae. Mol. Microbiol. 40, 13911401.
  • [35]
    Liu, Z., Shen, J., Carbrey, J.M., Mukhopadhyay, R., Agre, P., Rosen, B.P. (2002) Arsenite transport by mammalian aquaglyceroporins AQP7 and AQP9. Proc. Natl. Acad. Sci. USA 99, 60536058.
  • [36]
    Wysocki, R., Bobrowicz, P., Ulaszewski, S. (1997) The Saccharomyces cerevisiae ACR3 gene encodes a putative membrane protein involved in arsenite transport. J. Biol. Chem. 272, 3006130066.
  • [37]
    Ghosh, M., Shen, J., Rosen, B.P. (1999) Pathways of As(III) detoxification in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 96, 50015006.
  • [38]
    Silver, S., Budd, K., Leahy, K.M., Shaw, W.V., Hammond, D., Novick, R.P., Willsky, G.R., Malamy, M.H., Rosenberg, H. (1981) Inducible plasmid-determined resistance to arsenate, arsenite and antimony(III) in Escherichia coli and Staphylococcus aureus. J. Bacteriol. 146, 983996.
  • [39]
    Rosen, B.P. (1999) Families of arsenic transporters. Trends Microbiol. 7, 207212.
  • [40]
    Rosen, B.P., Bhattacharjee, H., Zhou, T.Q., Walmsely, A.R. (1999) Mechanism of the ArsA ATPase. Biochim. Biophys. Acta 1461, 207215.
  • [41]
    Tisa, L.S., Rosen, B.P. (1990) Molecular characterization of an anion pump: the ArsB protein is the membrane anchor for the ArsA protein. J. Biol. Chem. 265, 190194.
  • [42]
    Dey, S., Dou, D., Tisa, L.S., Rosen, B.P. (1994) Interaction of the catalytic and the membrane subunits of an oxyanion-translocating ATPase. Arch. Biochem. Biophys. 311, 418424.
  • [43]
    Bobrowicz, P., Wysocki, R., Owsianik, G., Goffeau, A., Ulaszewski, S. (1997) Isolation of three contiguous genes, ACR1, ACR2 and ACR3, involved in resistance to arsenic compounds in the yeast Saccharomyces cerevisiae. Yeast 13, 819828.
  • [44]
    Mukhopadhyay, R., Rosen, B.P. (1998) Saccharomyces cerevisiae ACR2 gene encodes an arsenate reductase. FEMS Microbiol. Lett. 168, 127136.
  • [45]
    Mukhopadhyay, R., Shi, J., Rosen, B.P. (2000) Purification and characterization of ACR2p, the Saccharomyces cerevisiae arsenate reductase. J. Biol. Chem. 275, 2114921157.
  • [46]
    Galperin, M.Y., Walker, D.R., Koonin, E.V. (1998) Analogous enzymes: independent inventions in enzyme evolution. Genome Res. 8, 779790.
  • [47]
    Sato, T., Kobayashi, Y. (1998) The ars operon in the skin element of Bacillus subtilis confers resistance to arsenate and arsenite. J. Bacteriol. 180, 16551661.
  • [48]
    Gladysheva, T.B., Oden, K.L., Rosen, B.P. (1994) Properties of the arsenate reductase of plasmid R773. Biochemistry 33, 72887293.
  • [49]
    Martin, P., DeMel, S., Shi, J., Rosen, B.P., Edwards, B.F.P. (2001) Insights into the structure, solvation, and mechanism of ArsC arsenate reductase, a novel arsenic detoxification enzyme. Structure 9, 10711081.
  • [50]
    Ji, G., Silver, S. (1992) Reduction of arsenate to arsenite by the ArsC protein of the arsenic resistance operon of Staphylococcus aureus plasmid pI258. Proc. Natl. Acad. Sci. USA 89, 94749478.
  • [51]
    Ji, G., Garber, E.A., Armes, L.G., Chen, C.-M., Fuchs, J.A., Silver, S. (1994) Arsenate reductase of Staphylococcus aureus plasmid pI258. Biochemistry 33, 72947299.
  • [52]
    Zegers, I., Martins, J.C., Willem, R., Wyns, L., Messens, J. (2001) Arsenate reductase from S. aureus pI258 is a phosphatase drafted for redox duty. Nature Struct. Biol. 8, 843847.
  • [53]
    Bennett, M.S., Guan, Z., Laurberg, M., Su, X.D. (2001) Bacillus subtilis arsenate reductase is structurally and functionally similar to low molecular weight protein tyrosine phosphatases. Proc. Natl. Acad. Sci. USA 98, 1357713582.
  • [54]
    Kennelly, P.J. (2002) Protein kinases and protein phosphatases in prokaryotes: a genomic perspective. FEMS Microbiol. Lett. 206, 18.
  • [55]
    Cai, J., Salmon, K., DuBow, M.S. (1998) A chromosomal ars operon homologue of Pseudomonas aeruginosa confers increased resistance to arsenic and antimony in Escherichia coli. Microbiology 144, 27052713.
  • [56]
    Butcher, B.G., Deane, S.M., Rawlings, D.E. (2000) The chromosomal arsenic resistance genes of Thiobacillus ferrooxidans have an unusual arrangement and confer increased arsenic and antimony resistance to Escherichia coli. Appl. Environ. Microbiol. 66, 18261833.
  • [57]
    Fauman, E.B., Cogswell, J.P., Lovejoy, B., Rocque, W.J., Holmes, W., Montana, V.G., Piwnica-Worms, H., Rink, M.J., Saper, M.A. (1998) Crystal structure of the catalytic domai n of the human cell cycle control phosphatase, Cdc25A. Cell 93, 617625.
  • [58]
    Hofmann, K., Bucher, P., Kajava, A.V. (1998) A model of Cdc25 phosphatase catalytic domain and Cdk-interaction surface based on the presence of a rhodanese homology domain. J. Mol. Biol. 282, 195208.
  • [59]
    Mukhopadhyay, R., Rosen, B.P. (2001) The phosphatase C(X)5R motif is required for catalytic activity of the Saccharomyces cerevisiae Acr2p arsenate reductase. J. Biol. Chem. 276, 3473834742.
  • [60]
    Ji, G., Silver, S. (1992) Regulation and expression of the arsenic resistance operon from Staphylococcus aureus plasmid pI258. J. Bacteriol. 174, 36843694.
  • [61]
    Oden, K.L., Gladysheva, T.B., Rosen, B.P. (1994) Arsenate reduction mediated by the plasmid-encoded ArsC protein is coupled to glutathione. Mol. Microbiol. 12, 301306.
  • [62]
    Shi, J., Vlamis-Gardikas, A., Åslund, F., Holmgren, A., Rosen, B.P. (1999) Reactivity of glutaredoxins 1, 2, and 3 from Escherichia coli shows that glutaredoxin 2 is the primary hydrogen donor to ArsC-catalyzed arsenate reduction. J. Biol. Chem. 274, 3603936042.
  • [63]
    Liu, J., Gladysheva, T.B., Lee, L., Rosen, B.P. (1995) Identification of an essential cysteinyl residue in the ArsC arsenate reductase of plasmid R773. Biochemistry 34, 1347213476.
  • [64]
    Bushweller, J.H., Åslund, F., Wuthrich, K., Holmgren, A. (1992) Structural and functional characterization of the mutant Escherichia coli glutaredoxin (C14_S) and its mixed disulfide with glutathione. Biochemistry 31, 92889293.
  • [65]
    Åslund, F., Ehn, B., Miranda-Vizuete, A., Pueyo, C., Holmgren, A. (1994) Two additional glutaredoxins exist in Escherichia coli: glutaredoxin 3 is a hydrogen donor for ribonucleotide reductase in a thioredoxin/glutaredoxin 1 double mutant. Proc. Natl. Acad. Sci. USA 91, 98139817.
  • [66]
    Denu, J.M., Dixon, J.E. (1998) Protein tyrosine phosphatases: mechanisms of catalysis and regulation. Curr. Opin. Chem. Biol. 2, 633641.
  • [67]
    Shi, L., Potts, M., Kennelly, P.J. (1998) The serine, threonine and/or tyrosine-specific protein kinases and protein phosphatases of prokaryotic organisms: a family portrait. FEMS Microbiol. Rev. 22, 229253.
  • [68]
    Messens, J., Hayburn, G., Desmyter, A., Laus, G., Wyns, L. (1999) The essential catalytic redox couple in arsenate reductase from Staphylococcus aureus. Biochemistry 38, 1685716865.
  • [69]
    Jacobs, D.M., Messens, J., Wechselberger, R.W., Brosens, E., Willem, R., Wyns, L., Martins, J.C. (2001) 1H, 13C and 15N backbone resonance assignment of arsenate reductase from Staphylococcus aureus in its reduced state. J. Biomol. NMR 20, 9596.
  • [70]
    Messens, J., Martins, J.C., Brosens, E., Van Belle, K., Jacobs, D.M., Willem, R., Wyns, L. (2002) Kinetics and active site dynamics of Staphylococcus aureus arsenate reductase. J. Biol. Inorg. Chem. 7, 146156.
  • [71]
    Newman, D.K., Ahmann, D., Morel, F.M.M. (1998) A brief review of microbial arsenate respiration. Geomicrobiology 15, 255268.
  • [72]
    Stolz, J.F., Oremland, R.S. (1999) Bacterial respiration of arsenic and selenium. FEMS Microbiol. Rev. 23, 615627.
  • [73]
    Oremland, R.S., Newman, D.K., Kail, B.W. and Stolz, J.F. (2001) Bacterial respiration of arsenic and its significance in the environment. In: Environmental Chemistry of Arsenic (Frankenberger, W.T., Jr., Ed.), pp. 273–296. Marcel Dekker, New York.
  • [74]
    Ehrlich, H.L. (2001) Bacterial oxidation of As(III) compounds. In: Environmental Chemistry of Arsenic (Frankenberger, W.T., Jr., Ed.), pp. 313–328. Marcel Dekker, New York.
  • [75]
    Anderson, G.L., Williams, J., Hille, R. (1992) The purification and characterization of arsenite oxidase from Alcaligenes faecalis, a molybdenum-containing hydroxylase. J. Biol. Chem. 267, 2367423682.
  • [76]
    Legge, J.W., Turner, A.W. (1954) Bacterial oxidation of arsenite. III. Cell-free arsenite dehydrogenase. Aust. J. Biol. Sci. 7, 496503.
  • [77]
    Anderson, G.L., Ellis, P.J., Kuhn, P. and Hille, R. (2001) Oxidation of arsenite by Alcaligenes faecalis. In: Environmental Chemistry of Arsenic (Frankenberger, W.T., Jr., Ed.), pp. 343–362. Marcel Dekker, New York.
  • [78]
    Hille, R. (2000) Molybdenum enzymes. Subcell. Biochem. 35, 445485.
  • [79]
    McEwan, A., Ridge, J.P., McDevitt, C.A., Hugenholtz, P. (2002) The DMSO reductase family of microbial molybdenum enzymes: molecular properties and role in the dissimilatory reduction of toxic elements. Geomicrobiology 19, 321.
  • [80]
    Ellis, P.J., Conrads, T., Hille, R., Kuhn, P. (2001) Crystal structure of the 100 kDa arsenite oxidase from Alcaligenes faecalis in two crystal forms at 1.64 Å and 2.03 Å. Structure 9, 125132.
  • [81]
    Krafft, T., Macy, J.M. (1998) Purification and characterization of the respiratory arsenate reductase of Chrysiogenes arsenatis. Eur. J. Biochem. 255, 647653.
  • [82]
    Berks, B.C., Sargent, F., Palmer, T. (2000) The Tat protein export pathway. Mol. Microbiol. 35, 260274.
  • [83]
    Yahr, T.L., Wickner, W.T. (2001) Functional reconstitution of bacterial Tat translocation in vitro. EMBO J. 20, 24722479.
  • [84]
    Newman, D.K., Kennedy, E.K., Coates, J.D., Ahmann, D., Ellis, D.J., Lovley, D.R., Morel, F.M. (1997) Dissimilatory arsenate and sulfate reduction in Desulfotomaculum auripigmentum sp. nov. Arch. Microbiol. 168, 380388.
  • [85]
    Messens, J., Martins, J.C., Van Belle, K., Brosens, E., Desmyter, A., De Gieter, M., Wieruszeski, J.M., Willem, R., Wyns, L., Zegers, I. (2002) All intermediates of the arsenate reductase mechanism including an intramolecular dynamic disulfide bond cascade. Proc. Natl. Acad. Sci. USA 99, 85068511.