• [1]
    Dieuaide-Noubhani, M, Raffard, G, Canioni, P, Pradet, P, Raymond, P (1995) Quantification of compartmented metabolic fluxes in maize root tips using isotope distribution from 13C- or 14C-labelled glucose. J. Biol. Chem. 270, 1314713159.
  • [2]
    Landau, B.R (1999) Quantifying the contribution of gluconeogenesis to glucose production in fasted human subjects using stable isotopes. Proc. Nutr. Soc. 58, 963972.
  • [3]
    Newsholme, E.A., Parry-Billings, M (1992) Some evidence for the existence of substrate cycles and their utility in vivo. Biochem. J. 285, 340341.
  • [4]
    Torres, J.C., Guixé, V, Babul, J (1997) A mutant phosphofructokinase produces a futile cycle during gluconeogenesis in Escherichia coli. Biochem. J. 327, 675684.
  • [5]
    Gueirreiro, N, Ksenzenko, V.N., Djordjevic, M.A., Ivashina, T.V., Rolfe, B.G (2000) Elevated levels of synthesis of over 20 proteins results after mutation of the Rhizobium leguminosarum exopolysaccharide synthesis gene pssA. J. Bacteriol. 182, 45214532.
  • [6]
    Katz, J, Rognstad, R (1967) The labelling of pentose phosphate from glucose-14C and estimation of the rates of transaldolase, transketolase, the contribution of the pentose-phosphate cycle, and ribose-phosphate synthesis. Biochemistry 6, 22272247.
  • [7]
    Sherry, A.D., Malloy, C.R (1996) Isotopic methods for probing organisation of cellular metabolism. Cell Biochem. Funct. 14, 259268.
  • [8]
    Szyperski, T (1998) 13C-NMR, MS and metabolic flux balancing in biotechnology research. Q. Rev. Biophys. 31, 41106.
  • [9]
    Klapa, M.I., Park, S.M., Sinskey, A.J., Stephanopoulos, G (1999) Metabolite and isotopomer balancing in the analysis of metabolic cycles: I theory. Biotechnol. Bioeng. 62, 375391.
  • [10]
    Rager, M.N., Binet, M.R.B., Bouvet, O.M.M (1999) 31P and 13C nuclear magnetic resonance studies of metabolic pathways in Pasteurella multocida. Characterisation of a new mannitol-producing metabolic pathway. Eur. J. Biochem. 263, 695701.
  • [11]
    Neves, A.R., Ramos, A, Shearman, C, Gasson, M.J., Almeida, J.S., Santos, H (2000) Metabolic characterisation of Lactococcus lactis deficient in lactate dehydrogenase using in vivo 13C-NMR. Eur. J. Biochem. 267, 38593868.
  • [12]
    Christensen, B, Nielsen, J (2000) Metabolic network analysis. A powerful tool in metabolic engineering. Adv. Biochem. Eng. Biotechnol. 66, 209231.
  • [13]
    Hondman, D.H.A., Busink, R, Witteveen, C.F.B., Visser, J (1991) Glycerol catabolism in A. nidulans. J. Gen. Microbiol. 137, 629636.
  • [14]
    Witteveen, C.F.B., Busink, R, van der Vondervoort, P, Dijkema, C, Swart, K.D., Visser, J (1989) L-arabinose and D-xylose catabolism in A. niger. J. Gen. Microbiol. 135, 21632171.
  • [15]
    Bacher, A, Rieder, C, Eichinger, D, Arigoni, D, Fuchs, G, Eisenrich, W (1999) Elucidation of novel biosynthetic pathways and metabolite flux patterns by retrobiosynthetic NMR analysis. FEMS Microbiol. Rev. 22, 567598.
  • [16]
    Grivet, J.P (2001) NMR and microorganisms. Curr. Issues Mol. Biol. 3, 714.
  • [17]
    Lundberg, P, Harmsen, E, Ho, C, Vogel, H.J (1990) Nuclear magnetic resonance studies of cellular metabolism. Anal. Biochem. 19, 193222.
  • [18]
    Barbotin, J.-N. and Portais, J.-C. (Eds.) (2000) NMR in Microbiology, Theory and Applications. Horizon Scientific Press, Norfolk.
  • [19]
    Breedveld, M.W., Dijkema, C, Zevenhuizen, L.P.T.M., Zhender, A.J.B (1993) Response of intracellular carbohydrates to a NaCl shock in Rhizobium leguminosarum biovar trifolii TA-1 and Rhizobium meliloti Su47. J. Gen. Microbiol. 139, 31573163.
  • [20]
    Cherniak, R, O'Neill, E.B., Sheng, S (1998) Assimilation of xylose, mannose and mannitol for synthesis of glucoronoxylomannan of Cryptococcus neoformans determined by 13C nuclear magnetic resonance spectroscopy. Infect. Immun. 66, 29962998.
  • [21]
    Christensen, B, Nielsen, J (1999) Isotopomer analysis using GC-MS. Metab. Eng. 1, 282290.
  • [22]
    Dauner, M, Sauer, U (2000) GC-MS analysis of amino acids rapidly provides rich information for isotopomer balancing. Biotechnol. Prog. 16, 642649.
  • [23]
    Schmidt, K, Carlsen, M, Nielsen, J, Villadsen, J (1997) Modeling isotopomer distributions in biochemical networks using isotopomer mapping matrices. Biotechnol. Bioeng. 55, 831840.
  • [24]
    Szyperski, T, Glaser, R.W., Hochuli, M, Fiaux, J, Sauer, U, Bailey, J.E., Wuthrich, K (1999) Bioreaction network topology and metabolic flux ratio analysis by biosynthetic fractional 13C labeling and two-dimensional NMR spectroscopy. Metab. Eng. 1, 189197.
  • [25]
    Stephanopoulos, G (1999) Metabolic fluxes and metabolic engineering. Metab. Eng. 1, 111.
  • [26]
    Wiechert, W, Mollney, M, Petersen, S, DeGraaf, A.A (2001) A universal framework for 13C metabolic flux analysis. Metab. Eng. 3, 265283.
  • [27]
    Wiechert, W (2002) Modeling and simulation: tools for metabolic engineering. J. Biotechnol. 94, 3763.
  • [28]
    Babul, J, Clifton, D, Kretschmer, M, Fraenkel, G (1993) Glucose metabolism in Escherichia coli and the effect of increased amount of aldolase. Biochemistry 32, 46854692.
  • [29]
    den Hollander, J.A., Brown, T.R., Ugurbil, K, Shulman, R.G (1979) 13C nuclear magnetic resonance studies of anaerobic glycolysis in suspensions of yeast cells. Proc. Natl. Acad. Sci. USA 76, 60966100.
  • [30]
    den Hollander, J.A., Ugurbil, K, Shulman, R.G (1986) 31P and 13C studies of intermediates of aerobic and anaerobic glycolysis in Saccharomyces cerevisiae. Biochemistry 25, 212221.
  • [31]
    Navas, M.A., Cerdàn, S, Gancedo, J.M (1993) Futile cycles in Saccharomyces cerevisiae strains expressing the gluconeogenic enzymes during growth on glucose. Proc. Natl. Acad. Sci. USA 90, 12901294.
  • [32]
    Shulman, R.G., Brown, T.R., Ugurbil, K, Ogawa, S, Cohen, S.M., den Hollander, J.A (1979) Cellular applications of 31P and 13C nuclear magnetic resonance. Science 205, 160166.
  • [33]
    Rollin, C, Morgant, V, Guyonvarch, A, Guerquin-Kern, J.L (1995) 13C-NMR studies of Corynebacterium melassecola metabolic pathways. Eur. J. Biochem. 227, 488493.
  • [34]
    Neves, A.R., Ramos, A, Nunes, M, Kleerebezem, M, Hugenholtz, J, de Vos, W.M., Almeida, J.S., Santos, H (1999) In vivo nuclear magnetic resonance studies of glycolytic kinetics in Lactococcus lactis. Biotechnol. Bioeng. 64, 200212.
  • [35]
    Wood, T (1986) Distribution of the pentose-phosphate pathway in living organisms. Cell Biochem. Funct. 4, 235240.
  • [36]
    Schuster, R, Holzhütter, H, Schuster, S (1992) Simplification of complex kinetic models used for the quantitative analysis of nuclear magnetic resonance or radioactive tracer. J. Chem. Soc. Faraday Trans. 88, 28372844.
  • [37]
    Berthon, H.A., Bubb, W.A., Kuchel, P (1993) 13C nmr isotopomer and computer-simulation studies of the non-oxidative pentose phosphate pathway of human erythrocytes. Biochem. J. 296, 379387.
  • [38]
    Follstad, B.D., Stephanopoulos, G (1998) Effect of reversible reactions on isotope label redistribution. Analysis of the pentose phosphate pathway. Eur. J. Biochem. 252, 360371.
  • [39]
    Van Winden, W, Verheijen, P, Heijnen, S (2001) Possible pitfalls of flux calculations based on 13C-labelling. Metab. Eng. 3, 151162.
  • [40]
    Wiechert, W. and de Graaf, A.A. (1997) Bidirectional steps in metabolic networks: I. Modelling and simulation of carbon isotope labelling experiments. Biotechnol. Bioeng. 55, 101–117, and following papers in the series: Biotechnol. Bioeng. 55 (1997) 118–135, Biotechnol. Bioeng. 66 (1999) 69–85, Biotechnol. Bioeng. 66 (1999) 86–103.
  • [41]
    Kai, A, Ishido, T, Arashida, T, Hatanaka, K, Hatanaka, K, Akaike, T, Matsuzaki, K, Kaneko, Y, Mimura, T (1993) Biosynthesis of curdlan from culture media containing 13C-labelled glucose as the carbon source. Carbohydr. Res. 240, 153159.
  • [42]
    Kai, A, Arashida, T, Hatanaka, K, Akaike, T, Matsuzaki, K, Mimura, T, Kaneko, Y (1994) Analysis of the biosynthetic process of cellulose and curdlan using 13C-labelled glucose. Carbohydr. Polym. 23, 235239.
  • [43]
    Portais, J.C., Tavernier, P, Gosselin, I, Barbotin, J.N (1999) Cyclic organisation of the carbohydrate metabolism in Sinorhizobium meliloti. Eur. J. Biochem. 265, 473480.
  • [44]
    Kai, A, Karasawa, H, Kikawa, M, Hatanaka, K, Matsuzaki, K, Mimura, T, Kaneko, Y (1998) Biosynthesis of 13C-labelled branched polysaccharides by pestalotiopsis from 13C-labelled glucoses and the mechanism of formation. Carbohydr. Polym. 35, 271278.
  • [45]
    Gosselin, I., Barbotin, J.-N. and Portais, J.-C. (2000) in: NMR in Microbiology, Theory and Applications (Barbotin, J.-N. and Portais, J.-C., Eds.), pp. 331–348. Horizon Scientific Press, Norfolk.
  • [46]
    Stowers, M.D (1985) Carbon metabolism in Rhizobium species. Annu. Rev. Microbiol. 39, 89108.
  • [47]
    Irigoyen, J.J., Sanchez-Diaz, M, Emerich, D.W (1990) Carbon metabolism enzymes of Rhizobium meliloti cultures and bacteroids and their distribution within alfalfa nodules. Appl. Environ. Microbiol. 56, 25872589.
  • [48]
    Jones, D.N.M., Sanders, J.K.M (1989) Biosynthetic studies using 13C-COSY: the Klebsiella K3 serotype polysaccharide. J. Am. Chem. Soc. 111, 51325137.
  • [49]
    Tavernier, P, Portais, J.C., Besson, I, Courtois, J, Courtois, B, Barbotin, J.N (1998) A 13C-NMR study of exopolysaccharide synthesis in Rhizobium meliloti Su47 strain. J. Chim. Phys. 95, 256259.
  • [50]
    Rijhwani, S.K., Ho, C.H., Shanks, J.V (1999) In vivo 31P and 13C NMR measurements for evaluation of plant metabolic pathways. Metab. Eng. 1, 1225.
  • [51]
    Beale, J.M., Foster, J.L (1996) Carbohydrate fluxes into alginate biosynthesis in Azotobacter vinelandii NCIB 8789: NMR investigation of the triose pools. Biochemistry 35, 44924501.
  • [52]
    Gagnaire, D.Y., Taravel, F.R (1980) Biosynthesis of bacterial cellulose from d-glucose uniformly enriched in 13C. Eur. J. Biochem. 103, 133143.
  • [53]
    Dickinson, J.R., Sobanski, M.A., Hewlins, M.J (1995) In Saccharomyces cerevisiae deletion of phosphoglucose isomerase can be suppressed by increased activities of enzymes of the hexose monophosphate pathway. Microbiology 141, 385391.
  • [54]
    Szyperski, T (1995) Biosynthetically directed 13C-fractional labelling of proteinogenic amino acids. Eur. J. Biochem. 232, 433448.
  • [55]
    Portais, J.C., Schuster, R, Merle, M, Canioni, P (1993) Metabolic flux determination in C6 glioma cells using carbon-13 distribution upon [1-13C]glucose incubation. Eur. J. Biochem. 217, 457468.
  • [56]
    Marx, A, De Graaf, A.A., Wiechert, W, Eggeling, L, Sahm, H (1996) Determination of the fluxes in the central metabolism of Corynebacterium glutamicum by nuclear magnetic resonance spectroscopy combined with metabolite balancing. Biotechnol. Bioeng. 49, 111129.
  • [57]
    Frey, A.D., Fiaux, J, Szyperski, T, Wuthrich, K, Bailey, J.E., Kallio, P.T (2001) Dissection of central carbon metabolism of hemoglobin-expressing Escherichia coli by 13C nuclear magnetic resonance flux distribution analysis in microaerobic bioprocesses. Appl. Environ. Microbiol. 67, 680687.
  • [58]
    Schmidt, K, Nielsen, J, Villadsen, J (1999) Quantitative analysis of metabolic fluxes in Escherichia coli, using two-dimensional NMR spectroscopy and complete isotopomer models. J. Biotechnol. 71, 175190.
  • [59]
    Wendish, V.F., De Graaf, A.A., Sahm, H, Eikmanns, B (2000) Quantitative determination of metabolic fluxes during co-utilization of two carbon sources: comparative analyses with Corynebacterium glutamicum during growth on acetate and/or glucose. J. Bacteriol. 182, 30883096.
  • [60]
    Dauner, M, Bailey, J.E., Sauer, U (2001) Metabolic flux analysis with a comprehensive isotopomer model in Bacillus subtilis. Biotechnol. Bioeng. 76, 144156.
  • [61]
    Fiaux, J, Cakar, Z.P., Bailey, J.E., Sauer, U, Szyperski, T (2001) Central carbon metabolism of Saccharomyces cerevisiae explored by biosynthetic fractional (13)C labeling of common amino acids. Eur. J. Biochem. 268, 24642479.
  • [62]
    Schmidt, K, Nielsen, J, Villadsen, J (1999) Quantitative analysis of metabolic fluxes in Escherichia coli, using two-dimensional NMR spectroscopy and complete isotopomer models. J. Biotechnol. 71, 175190.
  • [63]
    Petersen, S, de Graaf, A.A., Eggeling, L, Mollney, M, Wiechert, W, Sahm, H (2000) In vivo quantification of parallel and bidirectional fluxes in the anaplerosis of Corynebacterium glutamicum. J. Biol. Chem. 275, 3593235941.
  • [64]
    Schuster, S, Fell, D.A., Dandekar, T (2000) A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic networks. Nat. Biotechnol. 18, 326332.
  • [65]
    Walker, T.E., Han, C.H., Kollman, V.H., London, R.E., Matwiyoff, N.A (1982) 13C nuclear magnetic resonance studies of the biosynthesis by Microbacterium ammoniaphilum of l-glutamate selectively enriched with carbon-13. J. Biol. Chem. 257, 11891195.
  • [66]
    Campbell-Burk, S.L., den Hollander, J.A., Alger, J.R., Shulman, R.G (1987) 31P NMR saturation-transfer and 13C NMR kinetic studies of glycolytic regulation during anaerobic and aerobic glycolysis. Biochemistry 26, 74937500.
  • [67]
    Maaheimo, H, Fiaux, J, Çakar, Z.P., Baley, J.E., Sauer, U, Szyperski, T (2001) Central carbon metabolism of Saccharomyces cerevisiae explored by biosynthetic fractional 13C labeling of common amino acids. Eur. J. Biochem. 268, 24642479.
  • [68]
    Guillouet, S., Lessard, P.A. and Sinskey, A.J. (2000) in: NMR in Microbiology, Theory and Applications (Barbotin, J.-N. and Portais, J.-C., Eds.), pp. 259–282. Horizon Scientific Press, Norfolk.
  • [69]
    Marx, A, Eikmanns, B.J., Sahm, H, De Graaf, A.A., Eggeling, L (1998) Response of central metabolism in Corynebacterium glutamicum to the use of an NADH-dependent glutamate dehydrogenase. Metab. Eng. 1, 3548.
  • [70]
    Dominguez, H, Rollin, C, Guyonvarch, A, Guerguin-Kern, J.L., Cocaign-Bousquet, M, Lindley, N (1998) Carbon-flux distribution in the central metabolic pathways of Corynebacterium glutamicum during growth on fructose. Eur. J. Biochem. 254, 96102.
  • [71]
    Canonaco, F, Hess, T.A., Heri, S, Wang, T, Szyperski, T, Sauer, U (2001) Metabolic flux response to phosphoglucose isomerase knock-out in Escherichia coli and impact of overexpression of the soluble transhydrogenase UdhA. FEMS Microbiol. Lett. 204, 247252.
  • [72]
    Conway, T (1992) The Entner-Doudoroff pathway: history, physiology and molecular biology. FEMS Microbiol. Rev. 103, 128.
  • [73]
    Hochster, R.M., Katznelson, H (1958) On the mechanism of glucose-6-phosphate oxidation in cell-free extracts of Xanthomonas phaseoli (XP8). Can. J. Biochem. Physiol. 36, 669689.
  • [74]
    Selig, M, Xavier, K.B., Santos, H, Schonheit, P (1997) Comparative analysis of Embden-Meyerhof and Entner-Doudoroff glycolytic pathways in hyperthermophilic archae and the bacterium Thermogata. Arch. Microbiol. 167, 217232.
  • [75]
    Adams, M.W (1994) Biochemical diversity among sulfur-dependent, hyperthermophilic microorganisms. FEMS Microbiol. Rev. 15, 261277.
  • [76]
    Lessie, T.G (1984) Alternate pathways of carbohydrate utilization in Pseudomonads. Annu. Rev. Microbiol. 38, 359387.
  • [77]
    Temple, L.M., Sage, A.E., Schweizer, H.P. and Phibbs, P.V. Jr. (1998) Carbohydrate metabolism in Pseudomonas aeruginosa. In Pseudomonas (Montie, T.C., Ed.), Biotechnology Handbooks 10. Plenum Press, New York.
  • [78]
    Lynn, A.R., Sokatch, J.R (1984) Incorporation of isotope from specifically labelled glucose into alginates of Pseudomonas aeruginosa and Azotobacter vinalandii. J. Bacteriol. 158, 11611162.
  • [79]
    Linton, J.D (1990) The relationship between metabolite production and the growth efficiency of the producing organism. FEMS Microbiol. Lett. 75, 118.
  • [80]
    Schleissner, C, Reglero, A, Luengo, J.M (1997) Catabolism of d-glucose by Pseudomonas putida U occurs via extracellular transformation into d-gluconic acid and induction of a specific gluconate transport system. Microbiology 143, 15971603.
  • [81]
    Anderson, A.J., Hacking, A.J., Dawes, E.A (1987) Alternate pathways for the biosynthesis of alginate from fructose and glucose in Pseudomonas mendocina and Azotobacter vinelaandii. J. Gen. Microbiol. 133, 10451052.
  • [82]
    Portais, J.C., Tavernier, P, Gosselin, I, Barbotin, J.-N (2000) Relevance and isotopic assessment of hexose-6-phosphate recycling in microorganisms. J. Biotechnol. 77, 4964.
  • [83]
    Narbad, A, Hewlins, M.J.E., Gacesa, P, Russel, N.J (1990) The use of 13C-n.m.r. spectroscopy to monitor alginate biosynthesis in mucoid Pseudomonas aeruginosa. Biochem J. 267, 579584.
  • [84]
    Tabita, R, Lundgren, D.G (1971) Heterotrophic metabolism of the chemolithotroph Thiobacillus ferrooxidans. J. Bacteriol. 108, 334342.
  • [85]
    Wood, A.P., Kelly, D.P., Thurston, C.F (1977) Simultaneous operation of three catabolic pathways in the metabolism of glucose by Thiobacillus A2. Arch. Microbiol. 113, 265274.
  • [86]
    Tavernier, P, Besson, I, Portais, J.C., Courtois, J, Courtois, B, Barbotin, J.N (1998) In vivo 3C-NMR studies of polymer synthesis in Rhizobium meliloti M5N1 strain. Biotechnol. Bioeng. 58, 250253.
  • [87]
    Portais, J.C., Tavernier, P, Besson, I, Courtois, J, Courtois, B, Barbotin, J.N (1997) Mechanism of gluconate synthesis in Rhizobium meliloti by using in vivo NMR. FEBS Lett. 412, 485489.
  • [88]
    Gosselin, I, Wattraint, O, Riboul, D, Barbotin, J.N., Portais, J.C (2001) A deeper investigation of hexose-6-phosphate recycling in Sinorhizobium meliloti. FEBS Lett. 499, 4549.
  • [89]
    Lambert, A, Osteras, M, Mandon, K, Poggi, M.-C, Le Rudulier, D (2001) Fructose uptake in Sinorhizobium meliloti is mediated by a high-affinity ATP-binding cassette transport system. J. Bacteriol. 183, 47094717.
  • [90]
    Zevenhuizen, L.P.T.M (1981) Cellular glycogen, β-(1,2)-glucan, poly-β-hydroxybutyric acid and extracellular polysaccharides in fast growing species of Rhizobium. Antonie van Leeuwenhoek 47, 481497.
  • [91]
    Tavernier, P, Portais, J.-C, Nava Saucedo, J.E., Courtois, J, Courtois, B, Barbotin, J.-N (1997) Exopolysaccharide and poly-β-hydroxybutyrate coproduction in two Rhizobium meliloti strains. Appl. Environ. Microbiol. 63, 2126.
  • [92]
    Matheron, C, Delort, A.-M, Gaudet, G, Forano, E (1996) Simultaneous but differential metabolism of glucose and cellobiose in cells, studied by in vivo 13C-NMR. Evidence of glucose 6-phosphate accumulation. Can. J. Microbiol. 42, 10911099.
  • [93]
    Matheron, C, Delort, A.-M, Gaudet, G, Forano, E, Liptaj, T (1998) 13C- and 1H-NMR study of glycogen futile cycling in strains of the genus Fibrobacter. Appl. Environ. Microbiol. 64, 7481.
  • [94]
    Matheron, C, Delort, A.-M, Gaudet, G, Forano, E (1998) In vivo 13C NMR study of glucose and cellobiose metabolism by four cellulolytic strains of the genus Fibrobacter. Biodegradation 9, 451461.
  • [95]
    Ramos, A, Boels, IC, de Vos, WM, Santos, H (2001) Relationship between glycolysis and exopolysaccharide biosynthesis in Lactococcus lactis. Appl. Environ. Microbiol. 67, 3341.
  • [96]
    Gaudet, G, Forano, E, Dauphin, G, Delort, A.-M (1992) Futile cycling of glycogen in Fibrobacter succinogenes as shown by in situ 13C- and 1H-NMR investigation. Eur. J. Biochem. 207, 155162.
  • [97]
    Matheron, C, Delort, A.-M, Gaudet, G, Liptaj, T, Forano, E (1999) Interaction between carbon and nitrogen metabolism in Fibrobacter succinogenes S85: a 13C- and 1H nuclear magnetic resonance and enzymatic study. Appl. Environ. Microbiol. 65, 19411948.
  • [98]
    Tran-Dinh, S, Hervé, M, Wietzerbin, J (1991) Determination of flux through different metabolite pathways in Saccharomyces cervisiae by 1H-NMR and 13C-NMR spectroscopy. Eur. J. Biochem. 201, 715721.
  • [99]
    Deborde, C, Corre, C, Rolin, D.B., Nadal, L, de Certaines, J.D., Boyaval, P (1996) Trehalose biosynthesis in dairy Propionibacterium. J. Magn. Reson. Anal. 2, 297304.
  • [100]
    Werner, I, Bacher, A, Eisenreich, W (1997) Retrobiosynthetic NMR studies with 13C-labelled glucose. Formation of gallic acid in plants and fungi. J. Biol. Chem. 272, 2547425482.
  • [101]
    Inbar, L, Lapidot, A (1991) 13C nuclear magnetic resonance and gas chromatography-mass spectrometry study of carbon metabolism in the actinoycin D producer Streptomyces parvulus by use of 13C-labelled precursors. J. Bacteriol. 173, 77907801.
  • [102]
    Fell, D. (1997) Understanding the Control of Metabolism, pp. 213–225. Portland Press, London.
  • [103]
    Newsholme, E.A., Challis, R.A.J., Crabtree, B (1984) Substrate cycles: their role in improving sensitivity in metabolic control. Trends Biochem. Sci. 9, 277280.
  • [104]
    Steinbuchel, A (1986) Expression of the Escherichia coli pfkA gene in Alcaligenes eutrophus and in other Gram-negative bacteria. J. Bacteriol. 107, 570573.
  • [105]
    Rognstad, R (1996) Futile cycling in carbohydrate metabolism I. Background and current controversies on pyruvate cycling. Biochem. Arch. 12, 7183.
  • [106]
    Torres, J.C., Guixé, V, Babul, J (1995) A new method for assessing rates of the futile cycle during glycolytic and gluconeogenic metabolism. Arch. Biochem. Biophys. 321, 517525.
  • [107]
    Ronimus, R.S., Morgan, H.W (2001) The biochemical properties and phylogenies of phosphofructokinases from extremophiles. Extremophiles 5, 357373.
  • [108]
    Kengen, S, de Bok, F.A.M., van Loo, N.D., Dijkema, C, Stams, A.J.M., de Vos, W (1994) Evidence for the operation of a novel Embden-Meyerhof pathway that involves ADP-dependant kinases during sugar fermentation by Pyrococcus furiosus. J. Biol. Chem. 269, 1753717541.
  • [109]
    Alves, A.M., Euverink, G.J., Santos, H, Dijkhuizen, L (2001) Different physiological roles of ATP- and PP(i)-dependent phosphofructokinase isoenzymes in the methylotrophic actinomycete Amycolatopsis methanolica. J. Bacteriol. 183, 72317240.
  • [110]
    Landau, B.R (2001) Methods for measuring glycogen cycling. Am. J. Physiol. Endocrinol. Metab. 281, E413E419.
  • [111]
    Inbar, L, Kahana, Z.E., Lapidot, A (1985) Natural-abundance 13C Nuclear magnetic resonance studies of regulation and overproduction of l-lysine by Brevibacterium flavum. Eur. J. Biochem. 162, 621633.
  • [112]
    Matheron, C, Delort, A.-M, Gaudet, G, Forano, E (1997) Re-investigation of glucose metabolism in Fibrobacter succinogenes using NMR and enzymatic assays. Evidence of pentose phosphate phosphoketolase and pyruvate formate lyase activity. Biochim. Biophys. Acta 1335, 5060.
  • [113]
    Bibollet, X, Bosc, N, Matulova, M, Delort, A.-M, Gaudet, G, Forano, E (2000) 13C- and 1H-NMR study of cellulose metabolism by Fibrobacter succinogenes S85. J. Biotechnol. 77, 3747.
  • [114]
    Sillerud, L.O., Shulman, R.G (1983) Structure and metabolism of mammalian liver glycogen monitored by carbon-13 nuclear magnetic resonance. Biochemistry 22, 10871094.
  • [115]
    Matulova, M, Delort, A.M., Nouaille, R, Gaudet, G, Forano, E (2001) Concurrent maltodextrin and cellodextrin synthesis by Fibrobacter succinogenes S85 as identified by 2D NMR spectroscopy. Eur. J. Biochem. 268, 39073915.
  • [116]
    Schachar-Hill, Y, Pfeffer, P.E D.D. Doubs Jr., Osman, S.F., Doner, L.W., Ratcliffe, R.G (1995) Partitioning of intermediate carbon metabolism in vesicular-arbuscular mycorrhizal colonized leek. Plant Physiol. 108, 715.
  • [117]
    Bago, B, Pfeffer, P.E D.D. Doubs Jr., Brouillette, J, Bécard, G, Schachar-Hill, Y (1999) Carbon metabolism in spores of the Arbuscar Mycorrhizal fungus Glomus intraradices as revealed by nuclear magnetic resonance spectroscopy. Plant Physiol. 121, 263271.
  • [118]
    Pfeffer, P.E D.D. Doubs Jr., Bécard, G, Schachar-Hill, Y (1999) Carbon uptake and the metabolism and transport of lipids in an arbuscar mycorrhiza. Plant Physiol. 120, 587598.
  • [119]
    Thevelein, J.M., den Hollander, J.A., Shulman, R.G (1982) Changes in the activity and properties of trehalase during early germination of yeast ascospores: correlation with trehalose breakdown as studied by in vivo 13C NMR. Proc. Natl. Acad. Sci. USA 79, 35033507.
  • [120]
    Barton, J.K., den Hollander, J.A., Hopfield, J.J., Shulman, R.G (1982) 13C Nuclear magnetic resonance study of trehalose mobilisation in yeast spores. J. Bacteriol. 151, 177185.
  • [121]
    François, J, Parrou, J (2000) Reserve carbohydrates metabolism in the yeast Saccharomyces cerevisiae. FEMS Microbiol. Rev. 25, 125145.
  • [122]
    Romeo, T, Black, J, Preiss, J (1990) Genetic regulation of glycogen biosynthesis in Escherichia coli: in vivo effects of the catabolic repression and stringent response systems in glg gene expression. Curr. Microbiol. 264, 39303934.
  • [123]
    Roach, P.J., Cheng, C, Huang, D, Lin, A, Mu, J, Skurat, A.V., Wilson, W, Zhai, L (1998) Novel aspects of the regulation of glycogen storage. J. Basic Clin. Physiol. Pharmacol. 9, 139151.
  • [124]
    Belanger, A.E., Hatfull, G.F (1999) Exponential-phase glycogen recycling is essential for growth of Mycobacterium smegmatis. J. Bacteriol. 181, 66706678.
  • [125]
    Guedon, E, Desvaux, M, Petitdemange, H (2000) Kinetic analysis of Clostridium cellulolyticum carbohydrate metabolism: importance of glucose-1-phosphate and glucose-6-phosphate branch points for distribution of carbon fluxes inside and outside cells as revealed by steady-state continuous culture. J. Bacteriol. 182, 20102017.
  • [126]
    Desvaux, M, Guedon, E, Petitdemange, H (2001) Carbon flux distribution and kinetics of cellulose fermentation in steady-state continuous cultures of Clostridium cellulolyticum on a chemically defined medium. J. Bacteriol. 183, 119130.
  • [127]
    Shulman, G.I., Rothman, D.L., Chung, Y, Rosseti, L W.A. Petit Jr., Barett, E.J., Shulman, R.G (1988) 13C NMR studies of glycogen turnover in the perfused rat liver. J. Biol. Chem. 263, 50275029.
  • [128]
    Massillon, D, Bollen, M, De Wulf, H, Overloop, K, Vanstapel, F, Van Hecke, P, Stalmans, W (1995) Demonstration of a glycogen/glucose-1-phosphate cycle in hepatocytes from fasted rats. Selective inactivation of phosphorylase by 2-deoxy-2-fluoro-α-d-glucopyranosyl fluoride. J. Biol. Chem. 270, 1935119356.
  • [129]
    Shulman, R.G., Rothman, D.L (2001) The ‘glycogen shunt’ in exercising muscle: A role for glycogen in muscle energetics and fatigue. Proc. Natl. Acad. Sci. USA 98, 457461.
  • [130]
    Laughlin, M.R., Petit, W.A., Dizon, J.M., Shulman, R.G., Barrett, E.J (1988) NMR measurement of in vivo myocardial glycogen metabolism. J. Biol. Chem. 263, 22852291.
  • [131]
    Melendez, R, Melendez-Hevia, E, Canela, E.I (1999) The fractal structure of glycogen: a clever solution to optimize cell metabolism. Biophys. J. 77, 13271332.
  • [132]
    Hottiger, T, Schmutz, P, Wiemken, A (1987) Heat-induced accumulation and futile cycling of trehalose in Saccharomyces cerevisiae. J. Bacteriol. 169, 55185522.
  • [133]
    Arguelles, J.C (2000) Physiological roles of trehalose in bacteria and yeasts: a comparative study. Arch. Microbiol. 174, 217224.
  • [134]
    Blomberg, A (2000) Metabolic surprises in Saccharomyces cerevisiae during adaptation to saline conditions: questions, some answers and a model. FEMS Microbiol. Lett. 182, 18.
  • [135]
    Teusink, B, Walsh, M.C., Van Dam, K, Westerhoff, V (1998) The danger of metabolic pathways with turbo design. Trends Biochem. Sci. 23, 162169.
  • [136]
    Jeong, R, Tombor, B, Albert, R, Oltvai, Z.N., Barabasi, A.-L (2000) The large-scale organization of metabolic networks. Nature 407, 651654.
  • [137]
    Gleiss, P.M., Stadler, P.F., Wagner, A. and Fell, D.A. (2000) Small cycles in small worlds. The Santa Fe Institute, electronic publications at: