SEARCH

SEARCH BY CITATION

References

  • Ahmed R & Duncan RF (2004) Translational regulation of Hsp90 mRNA. AUG-proximal 5′-untranslated region elements essential for preferential heat shock translation. J Biol Chem 279: 4991949930.
  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W & Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25: 33893402.
  • Altuvia S & Oppenheim AB (1986) Translational regulatory signals within the coding region of the bacteriophage λ cIII gene. J Bacteriol 167: 415419.
  • Altuvia S, Locker-Giladi H, Koby S, Ben-Nun O & Oppenheim AB (1987) RNase III stimulates the translation of the cIII gene of bacteriophage lambda. Proc Natl Acad Sci USA 84: 65116515.
  • Altuvia S, Kornitzer D, Teff D & Oppenheim AB (1989) Alternative mRNA structures of the cIII gene of bacteriophage λ determine the rate of its translation initiation. J Mol Biol 210: 265280.
  • Altuvia S, Kornitzer D, Kobi S & Oppenheim AB (1991) Functional and structural elements of the mRNA of the cIII gene of bacteriophage lambda. J Mol Biol 218: 723733.
  • Avedissian M, Lessing D, Gober JW, Shapiro L & Gomes SL (1995) Regulation of the Caulobacter crescentus dnaKJ operon. J Bacteriol 177: 34793484.
  • Balsiger S, Ragaz C, Baron C & Narberhaus F (2004) Replicon-specific regulation of small heat shock genes in Agrobacterium tumefaciens. J Bacteriol 186: 68246829.
  • Chowdhury S, Ragaz C, Kreuger E & Narberhaus F (2003) Temperature-controlled structural alterations of an RNA thermometer. J Biol Chem 278: 4791547921.
  • Cuesta R, Laroia G & Schneider RJ (2000) Chaperone hsp27 inhibits translation during heat shock by binding eIF4G and facilitating dissociation of cap-initiation complexes. Genes Dev 14: 14601470.
  • Epshtein V, Mironov AS & Nudler E (2003) The riboswitch-mediated control of sulfur metabolism in bacteria. Proc Natl Acad Sci USA 100: 50525056.
  • Fang L, Jiang W, Bae W & Inouye M (1997) Promoter-independent cold-shock induction of cspA and its derepression at 37°C by mRNA stabilization. Mol Microbiol 23: 355364.
  • Gardner PP & Giegerich R (2004) A comprehensive comparison of comparative RNA structure prediction approaches. BMC Bioinformat 5: 140.
  • Gottesman S (2002) Stealth regulation: biological circuits with small RNA switches. Genes Dev 16: 28292842.
  • Graumann P & Marahiel MA (1996) Some like it cold: response of microorganisms to cold shock. Arch Microbiol 166: 293300.
  • Gross CA (1996) Function and regulation of the heat shock proteins. Escherichia coli and Salmonella: Cellular and Molecular Biology (NeidhardtFC, et al., eds), pp. 13821399. American Society for Microbiology, Washington, DC.
  • Grundy FJ & Henkin TM (2004) Regulation of gene expression by effectors that bind to RNA. Curr Opin Microbiol 7: 126131.
  • Grundy FJ, Lehman SC & Henkin TM (2003) The L box regulon: lysine sensing by leader RNAs of bacterial lysine biosynthesis genes. Proc Natl Acad Sci USA 100: 1205712062.
  • Gualerzi CO, Giuliodori AM & Pon CL (2003) Transcriptional and post-transcriptional control of cold-shock genes. J Mol Biol 331: 527539.
  • Henkin TM & Yanofsky C (2002) Regulation by transcription attenuation in bacteria: how RNA provides instructions for transcription termination/antitermination decisions. Bioessays 24: 700707.
  • Herman C, Thévenet D, D'Ari R & Bouloc P (1995) Degradation of σ32, the heat shock regulator in Escherichia coli, is governed by HflB. Proc Natl Acad Sci USA 92: 35163520.
  • Herman C, Thévenet D, D'Ari R & Bouloc P (1997) The HflB protease of Escherichia coli degrades its inhibitor λcIII. J Bacteriol 179: 358363.
  • Hernandez G, Vazquez-Pianzola P, Sierra JM & Rivera-Pomar R (2004) Internal ribosome entry site drives cap-independent translation of reaper and heat shock protein 70 mRNAs in Drosophila embryos. RNA 10: 17831797.
  • Hess MA & Duncan RF (1994) RNA/protein interactions in the 5′-untranslated leader of HSP70 mRNA in Drosophila lysates. Lack of evidence for specific protein binding. J Biol Chem 269: 1091310922.
  • Hess MA & Duncan RF (1996) Sequence and structure determinants of I Hsp70 mRNA translation: 5′-UTR secondary structure specifically inhibits heat shock protein mRNA translation. Nucleic Acids Res 24: 24412449.
  • Hoe NP & Goguen JD (1993) Temperature sensing in Yersinia pestis: translation of the LcrF activator protein is thermally regulated. J Bacteriol 175: 79017909.
  • Hoe NP, Minion FC & Goguen JD (1992) Temperature sensing in Yersinia pestis: regulation of yopE transcription by lcrF. J Bacteriol 174: 42754286.
  • Hofacker IL (2003) Vienna RNA secondary structure server. Nucleic Acids Res 31: 34293431.
  • Holcik M, Sonenberg N & Korneluk RG (2000) Internal ribosome initiation of translation and the control of cell death. Trends Genet 16: 469473.
  • Hurme R & Rhen M (1998) Temperature sensing in bacterial gene regulation – what it all boils down to. Mol Microbiol 30: 16.
  • Jarzembowski JA, Rajagopalan LE, Shin HC & Malter JS (1999) The 5′-untranslated region of GM-CSF mRNA suppresses translational repression mediated by the 3′ adenosine-uridine-rich element and the poly(A) tail. Nucleic Acids Res 27: 36603666.
  • Johansson J, Mandin P, Renzoni A, Chiaruttini C, Springer M & Cossart P (2002) An RNA thermosensor controls expression of virulence genes in Listeria monocytogenes. Cell 110: 551561.
  • Kaempfer R (2003) RNA sensors: novel regulators of gene expression. EMBO Rep 4: 10431047.
  • Kim YK & Jang SK (2002) Continuous heat shock enhances translational initiation directed by internal ribosomal entry site. Biochem Biophys Res Commun 297: 224231.
  • Klemenz R, Hultmark D & Gehring WJ (1985) Selective translation of heat shock mRNA in Drosophila melanogaster depends on sequence information in the leader. EMBO J 4: 20532060.
  • Konkel ME & Tilly K (2000) Temperature-regulated expression of bacterial virulence genes. Microbes Infect 2: 157166.
  • Kornitzer D, Teff D, Altuvia S & Oppenheim AB (1989) Genetic analysis of bacteriophage λ cIII gene: mRNA structural requirements for translation initiation. J Bacteriol 171: 25632572.
  • Kubodera T, Watanabe M, Yoshiuchi K, Yamashita N, Nishimura A, Nakai S, Gomi K & Hanamoto H (2003) Thiamine-regulated gene expression of Aspergillus oryzae thiA requires splicing of the intron containing a riboswitch-like domain in the 5′-UTR. FEBS Lett 555: 516520.
  • Lai EC (2003) RNA sensors and riboswitches: self-regulating messages. Curr Biol 13: 285291.
  • Lamphear BJ & Panniers R (1991) Heat shock impairs the interaction of cap-binding protein complex with 5′ mRNA cap. J Biol Chem 266: 27892794.
  • Landick R, Turnbough CL & Yanofsky C (1996) Transcription attenuation. Escherichia coli and Salmonella: Cellular and Molecular Biology (NeidhardtFC, et al., eds), pp. 12631286. ASM Press, Washington, DC.
  • Lee MG (1998) The 3′-untranslated region of the hsp70 genes maintains the level of steady state mRNA in Trypanosoma brucei upon heat shock. Nucleic Acids Res 26: 40254033.
  • Lindquist S & Craig EA (1988) The heat-shock proteins. Annu Rev Genet 22: 631677.
  • Mandal M & Breaker RR (2004a) Adenine riboswitches and gene activation by disruption of a transcription terminator. Nat Struct Mol Biol 11: 2935.
  • Mandal M & Breaker RR (2004b) Gene regulation by riboswitches. Nat Rev Mol Cell Biol 5: 451463.
  • Mandal M, Boese B, Barrick JE, Winkler WC & Breaker RR (2003) Riboswitches control fundamental biochemical pathways in Bacillus subtilis and other bacteria. Cell 113: 577586.
  • Mandal M, Lee M, Barrick JE, Weinberg Z, Emilsson GM, Ruzzo WL & Breaker RR (2004) A glycine-dependent riboswitch that uses cooperative binding to control gene expression. Science 306: 275279.
  • Mathews DH, Sabina J, Zuker M & Turner DH (1999) Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J Mol Biol 288: 911940.
  • McDaniel BA, Grundy FJ, Artsimovitch I & Henkin TM (2003) Transcription termination control of the S box system: direct measurement of S-adenosylmethionine by the leader RNA. Proc Natl Acad Sci USA 100: 30833088.
  • McGarry TJ & Lindquist S (1985) The preferential translation of Drosophila hsp70 mRNA requires sequences in the untranslated leader. Cell 42: 903911.
  • Mironov AS, Gusarov I, Rafikov R, Lopez LE, Shatalin K, Kreneva RA, Perumov DA & Nudler E (2002) Sensing small molecules by nascent RNA: a mechanism to control transcription in bacteria. Cell 111: 747756.
  • Moll I, Afonyushkin T, Vytvytska O, Kaberdin VR & Bläsi U (2003) Coincident Hfq binding and RNase E cleavage sites on mRNA and small regulatory RNAs. RNA 9: 13081314.
  • Morimoto RI (1998) Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones, and negative regulators. Genes Dev 12: 37883796.
  • Morita M, Kanemori M, Yanagi H & Yura T (1999a) Heat-induced synthesis of σ32 in Escherichia coli: structural and functional dissection of rpoH mRNA secondary structure. J Bacteriol 181: 401410.
  • Morita MT, Tanaka Y, Kodama TS, Kyogoku Y, Yanagi H & Yura T (1999b) Translational induction of heat shock transcription factor σ32: evidence for a built-in RNA thermosensor. Genes Dev 13: 655665.
  • Münchbach M, Nocker A & Narberhaus F (1999) Multiple small heat shock proteins in rhizobia. J Bacteriol 181: 8390.
  • Nagai H, Yuzawa H & Yura T (1991) Interplay of two cis-acting messenger RNA regions in translational control of σ32 synthesis during the heat shock response of Escherichia coli. Proc Natl Acad Sci USA 88: 1051510519.
  • Nahvi A, Sudarsan N, Ebert MS, Zou X, Brown KL & Breaker RR (2002) Genetic control by a metabolite binding mRNA. Chem Biol 9: 10431049.
  • Nakahigashi K, Yanagi H & Yura T (1995) Isolation and sequence analysis of rpoH genes encoding σ32 homologs from Gram negative bacteria: conserved mRNA and protein segments for heat shock regulation. Nucleic Acids Res 23: 43834390.
  • Narberhaus F (1999) Negative regulation of bacterial heat shock genes. Mol Microbiol 31: 18.
  • Narberhaus F (2002a) mRNA-mediated detection of environmental conditions. Arch Microbiol 178: 404410.
  • Narberhaus F (2002b) α-Crystallin-type heat shock proteins: socializing minichaperones in the context of a multichaperone network. Microbiol Mol Biol Rev 66: 6493.
  • Narberhaus F, Weiglhofer W, Fischer HM & Hennecke H (1996) The Bradyrhizobium japonicumrpoH1 gene encoding a σ32-like protein is part of a unique heat shock gene cluster together with groESL1 and three small heat shock genes. J Bacteriol 178: 53375346.
  • Narberhaus F, Käser R, Nocker A & Hennecke H (1998) A novel DNA element that controls bacterial heat shock gene expression. Mol Microbiol 28: 315323.
  • Nocker A, Hausherr T, Balsiger S, Krstulovic NP, Hennecke H & Narberhaus F (2001a) mRNA-based thermosensor controls expression of rhizobial heat shock genes. Nucleic Acids Res 29: 48004807.
  • Nocker A, Krstulovic NP, Perret X & Narberhaus F (2001b) ROSE elements occur in disparate rhizobia and are functionally interchangeable between species. Arch Microbiol 176: 4451.
  • Nou X & Kadner RJ (1998) Coupled changes in translation and transcription during cobalamin-dependent regulation of btuB expression in Escherichia coli. J Bacteriol 180: 67196728.
  • Nou X & Kadner RJ (2000) Adenosylcobalamin inhibits ribosome binding to btuB RNA. Proc Natl Acad Sci USA 97: 71907195.
  • Nudler E & Mironov AS (2004) The riboswitch control of bacterial metabolism. Trends Biochem Sci 29: 1117.
  • Parsons LM, Waring AL, Limberger RJ & Shayegani M (1999) The dnaK/dnaJ operon of Haemophilus ducreyi contains a unique combination of regulatory elements. Gene 233: 109119.
  • Phadtare S, Yamanaka K & Inouye M (2000) The cold shock reponse. Bacterial Stress Responses (StorzG & Hengge-AronisR, eds), pp. 3345. ASM Press, Washington, DC.
  • Quijada L, Soto M, Alonso C & Requena JM (2000) Identification of a putative regulatory element in the 3′-untranslated region that controls expression of HSP70 in Leishmania infantum. Mol Biochem Parasitol 110: 7991.
  • Renzoni A, Klarsfeld A, Dramsi S & Cossart P (1997) Evidence that PrfA, the pleiotropic activator of virulence genes in Listeria monocytogenes, can be present but inactive. Infect Immun 65: 15151518.
  • Repoila F & Gottesman S (2001) Signal transduction cascade for regulation of RpoS: temperature regulation of DsrA. J Bacteriol 183: 40124023.
  • Repoila F, Majdalani N & Gottesman S (2003) Small non-coding RNAs, co-ordinators of adaptation processes in Escherichia coli: the RpoS paradigm. Mol Microbiol 48: 855861.
  • Schumann W (2003) The Bacillus subtilis heat shock stimulon. Cell Stress Chaperones 8: 207217.
  • Servant P & Mazodier P (2001) Negative regulation of the heat shock response in Streptomyces. Arch Microbiol 176: 237242.
  • Shapira M, McEwen JG & Jaffe CL (1988) Temperature effects on molecular processes which lead to stage differentiation in Leishmania. EMBO J 7: 28952901.
  • Shotland Y, Koby S, Teff D, et al. (1997) Proteolysis of the phage λ CII regulatory protein by FtsH (HflB) of Escherichia coli. Mol Microbiol 24: 13031310.
  • Sledjeski DD, Gupta A & Gottesman S (1996) The small RNA, DsrA, is essential for the low temperature expression of RpoS during exponential growth in Escherichia coli. EMBO J 15: 39934000.
  • Soukup JK & Soukup GA (2004) Riboswitches exert genetic control through metabolite-induced conformational change. Curr Opin Struct Biol 14: 344349.
  • Storz G (2002) An expanding universe of noncoding RNAs. Science 296: 12601263.
  • Straus DB, Walter WA & Gross CA (1987) The heat shock response of E. coli is regulated by changes in the concentration of σ32. Nature 329: 348351.
  • Straus D, Walter W & Gross CA (1990) DnaK, DnaJ, and GrpE heat shock proteins negatively regulate heat shock gene expression by controlling the synthesis and stability of σ32. Genes Dev 4: 22022209.
  • Sudarsan N, Barrick JE & Breaker RR (2003) Metabolite-binding RNA domains are present in the genes of eukaryotes. RNA 9: 644647.
  • Sudarsan N, Wickiser JK, Nakamura S, Ebert MS & Breaker RR (2003) An mRNA structure in bacteria that controls gene expression by binding lysine. Genes Dev 17: 26882697.
  • Tilly K, Erickson J, Sharma S, Georgopoulos C (1986) Heat shock regulatory gene rpoH mRNA level increases after heat shock in Escherichia coli. J Bacteriol 168: 11551158.
  • Tomoyasu T, Gamer J, Bukau B, et al. (1995) Escherichia coli FtsH is a membrane bound, ATP-dependent protease which degrades the heat-shock transcription factor σ32. EMBO J 14: 25512560.
  • Vanhamme L & Pays E (1995) Control of gene expression in trypanosomes. Microbiol Rev 59: 223240.
  • Vitreschak AG, Rodionov DA, Mironov AA & Gelfand MS (2004) Riboswitches: the oldest mechanism for the regulation of gene expression? Trends Genet 20: 4450.
  • Von Der Haar T, Gross JD, Wagner G & McCarthy JE (2004) The mRNA cap-binding protein eIF4E in post-transcriptional gene expression. Nat Struct Mol Biol 11: 503511.
  • Voss B, Meyer C & Giegerich R (2004) Evaluating the predictability of conformational switching in RNA. Bioinformatics 20: 15731582.
  • Wassarman KM, Zhang A & Storz G (1999) Small RNAs in Escherichia coli. Trends Microbiol 7: 3745.
  • Winkler WC & Breaker RR (2003) Genetic control by metabolite-binding riboswitches. Chembiochem 4: 10241032.
  • Winkler WC, Cohen-Chalamish S & Breaker RR (2002a) An mRNA structure that controls gene expression by binding FMN. Proc Natl Acad Sci USA 99: 1590815913.
  • Winkler W, Nahvi A & Breaker RR (2002b) Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression. Nature 419: 952956.
  • Winkler WC, Nahvi A, Sudarsan N, Barrick JE & Breaker R.R. (2003) An mRNA structure that controls gene expression by binding S-adenosylmethionine. Nat Struct Biol 10: 701707.
  • Winkler WC, Nahvi A, Roth A, Collins JA & Breaker RR (2004) Control of gene expression by a natural metabolite-responsive ribozyme. Nature 428: 281286.
  • Yamanaka K, Mitta M & Inouye M (1999) Mutation analysis of the 5′ untranslated region of the cold shock cspA mRNA of Escherichia coli. J Bacteriol 181: 62846291.
  • Yost HJ & Lindquist S (1991) Heat shock proteins affect RNA processing during the heat shock response of Saccharomyces cerevisiae. Mol Cell Biol 11: 10621068.
  • Yueh A & Schneider RJ (2000) Translation by ribosome shunting on adenovirus and hsp70 mRNAs facilitated by complementarity to 18S rRNA. Genes Dev 14: 414421.
  • Yura T, Kanemori M & Morita MT (2000) The heat shock response: regulation and function. Bacterial Stress Responses (StorzG & Hengge-AronisR, eds), pp. 318. ASM Press, Washington, DC.
  • Zilka A, Garlapati S, Dahan E, Yaolsky V & Shapira M (2001) Developmental regulation of heat shock protein 83 in Leishmania. 3′ processing and mRNA stability control transcript abundance, and translation is directed by a determinant in the 3′-untranslated region. J Biol Chem 276: 4792247929.
  • Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31: 34063415.
  • Zuker M, Mathews DH & Turner DH (1999) Algorithms and thermodynamics for RNA secondary structure prediction: a practical guide. RNA Biochemistry and Biotechnology (BarciszewskiJ & ClarkBFC, eds.) Kluwer Academic Publishers, NATO ASI Series.