SEARCH

SEARCH BY CITATION

References

  • Abramovitch RB, Anderson JC & Martin GB (2006) Bacterial elicitation and evasion of plant innate immunity. Nat Rev Mol Cell Biol 7: 601611.
  • Allen EK, Allen ON & Newman AS (1953) Pseudonodulation of leguminous plants induced by 2-bromo-3,5-dichlorobenzoic acid. Am J Bot 40: 429435.
  • Aloni R, Pradel KS & Ullrich CI (1995) The 3-dimensional structure of vascular tissues in Agrobacterium tumefaciens-induced crown galls and in the host stems of Ricinus communis L. Planta 196: 597605.
  • Altschul SF, Madden TL, Schaffer AA, Zhang JH, Zhang Z, Miller W & Lipman DJ (1997) Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25: 33893402.
  • Amin MR & Onodera R (1997) Synthesis of phenylalanine and production of other related compounds from phenylpyruvic acid and phenylacetic acid by ruminal bacteria, protozoa, and their mixture in vitro. J Gen Appl Microbiol 43: 915.
  • Arshad M & Frankenberger WT (1991) Microbial production of plant hormones. Plant Soil 133: 18.
  • Badenochjones J, Rolfe BG & Letham DS (1983) Phytohormones, Rhizobium mutants, and nodulation in legumes. 3. Auxin metabolism in effective and ineffective pea root nodules. Plant Physiol 73: 347352.
  • Badescu GO & Napier RM (2006) Receptors for auxin: will it all end in TIRs? Trends Plant Sci 11: 217223.
  • Bak S, Tax FE, Feldmann KA, Galbraith DW & Feyereisen R (2001) CYP83B1, a cytochrome P450 at the metabolic branch paint in auxin and indole glucosinolate biosynthesis in Arabidopsis. Plant Cell 13: 101111.
  • Bar T & Okon Y (1992) Induction of indole-3-acetic acid synthesis and possible toxicity of tryptophan in Azospirillum brasilense Sp7. Symbiosis 13: 191198.
  • Bar T & Okon Y (1993) Tryptophan conversion to indole-3-acetic acid via indole-3-acetamide in Azospirillum brasilense Sp7. Can J Microbiol 39: 8186.
  • Barnett MJ, Toman CJ, Fisher RF & Long SR (2004) A dual-genome Symbiosis Chip for coordinate study of signal exchange and development in a prokaryote–host interaction. Proc Natl Acad Sci USA 101: 1663616641.
  • Bartling D, Seedorf M, Mithofer A & Weiler EW (1992) Cloning and expression of an Arabidopsis nitrilase which can convert indole-3-acetonitrile to the plant hormone, indole-3-acetic acid. Eur J Biochem 205: 417424.
  • Bartling D, Seedorf M, Schmidt RC & Weiler EW (1994) Molecular characterization of 2 cloned nitrilases from Arabidopsis thaliana– key enzymes in biosynthesis of the plant hormone indole-3-acetic acid. Proc Natl Acad Sci USA 91: 60216025.
  • Bashan Y & Holguin G (1997) Azospirillum–plant relationships: environmental and physiological advances (1990–1996). Can J Microbiol 43: 103121.
  • Basu PS & Ghosh AC (1998) Indole acetic acid and its metabolism in root nodules of a monocotyledonous tree Roystonea regia. Curr Microbiol 37: 137140.
  • Bean RC, Shepherd WC & Chan H (1968) Permeability of lipid bilayer membranes to organic solutes. J Gen Physiol 52: 495508.
  • Beyeler M, Keel C, Michaux P & Haas D (1999) Enhanced production of indole-3-acetic acid by a genetically modified strain of Pseudomonas fluorescens CHA0 affects root growth of cucumber, but does not improve protection of the plant against Pythium root rot. FEMS Microbiol Ecol 28: 225233.
  • Bianco C, Imperlini E, Calogero R, Senatore B, Amoresano A, Carpentieri A, Pucci P & Defez R (2006a) Indole-3-acetic acid improves Escherichia coli's defences to stress. Arch Microbiol 185: 373382.
  • Bianco C, Imperlini E, Calogero R, Senatore B, Pucci P & Defez R (2006b) Indole-3-acetic acid regulates the central metabolic pathways in Escherichia coli. Microbiol-Sgm 152: 24212431.
  • Blaha D, Sanguin H, Robe P, Nalin R, Bally R & Moenne-Loccoz Y (2005) Physical organization of phytobeneficial genes nifH and ipdC in the plant growth-promoting rhizobacterium Azospirillum lipoferum 4V(I). FEMS Microbiol Lett 244: 157163.
  • Boot KJM, Van Brussel AAN, Tak T, Spaink HP & Kijne JW (1999) Lipochitin oligosaccharides from Rhizobium leguminosarum bv. viciae reduce auxin transport capacity in Vicia sativa subsp nigra roots. Mol Plant–Microbe Interact 12: 839844.
  • Braeken K, Moris M, Daniels R, Vanderleyden J & Michiels J (2006) New horizons for (p)ppGpp in bacterial and plant physiology. Trends Microbiol 14: 4554.
  • Brandl MT & Lindow SE (1996) Cloning and characterization of a locus encoding an indolepyruvate decarboxylase involved in indole-3-acetic acid synthesis in Erwinia herbicola. Appl Environ Microbiol 62: 41214128.
  • Brandl MT & Lindow SE (1997) Environmental signals modulate the expression of an indole-3-acetic acid biosynthetic gene in Erwinia herbicola. Mol Plant–Microbe Interact 10: 499505.
  • Brandl MT, Quinones B & Lindow SE (2001) Heterogeneous transcription of an indoleacetic acid biosynthetic gene in Erwinia herbicola on plant surfaces. Proc Natl Acad Sci USA 98: 34543459.
  • Buell CR, Joardar V, Lindeberg M et al. (2003) The complete genome sequence of the Arabidopsis and tomato pathogen Pseudomonas syringae pv. tomato DC3000. Proc Natl Acad Sci USA 100: 1018110186.
  • Bunt JS (1961) Isolation of bacteria-free cultures from hormogone-producing blue-green algae. Nature 192: 12751276.
  • Burdman S, Volpin H, Kigel J, Kapulnik Y & Okon Y (1996) Promotion of nod gene inducers and nodulation in common bean (Phaseolus vulgaris) roots inoculated with Azospirillum brasilense Cd. Appl Environ Microbiol 62: 30303033.
  • Camerini S, Senatore B, Imperlini E, Bianco C, Miraglia E, Lonardo E & Defez R (2004) Improve legume yield by phytohormone release from soil bacteria. Legumes for the Benefit of Agriculture, Nutrition and the Environment (European Association for Grain Legume Research, eds), pp. 127128. AEP, Dijon.
  • Cartieaux F, Thibaud MC, Zimmerli L, Lessard P, Sarrobert C, David P, Gerbaud A, Robaglia C, Somerville S & Nussaume L (2003) Transcriptome analysis of Arabidopsis colonized by a plant-growth promoting rhizobacterium reveals a general effect on disease resistance. Plant J 36: 177188.
  • Chalupowicz L, Barash I, Schwartz M, Aloni R & Manulis S (2006) Comparative anatomy of gall development on Gypsophila paniculata induced by bacteria with different mechanisms of pathogenicity. Planta 224: 429437.
  • Chant EL & Summers DK (2007) Indole signalling contributes to the stable maintenance of Escherichia coli multicopy plasmids. Mol Microbiol 63: 3543.
  • Chisholm ST, Coaker G, Day B & Staskawicz BJ (2006) Host–microbe interactions: shaping the evolution of the plant immune response. Cell 124: 803814.
  • Clark E, Vigodskyhaas H & Gafni Y (1989) Characteristics in tissue-culture of hyperplasias induced by Erwinia herbicola pathovar gypsophilae. Physiol Mol Plant Pathol 35: 383390.
  • Clark E, Manulis S, Ophir Y, Barash I & Gafni Y (1993) Cloning and characterization of iaaM and iaaH from Erwinia herbicola pathovar gypsophilae. Phytopathology 83: 234240.
  • Cohen JD & Bandurski RS (1982) Chemistry and physiology of the bound auxins. Annu Rev Plant Physiol 33: 403430.
  • Costacurta A & Vanderleyden J (1995) Synthesis of phytohormones by plant-associated bacteria. Crit Rev Microbiol 21: 118.
  • Costacurta A, Keijers V & Vanderleyden J (1994) Molecular cloning and sequence analysis of an Azospirillum brasilense indole-3-pyruvate decarboxylase gene. Mol Gen Genet 243: 463472.
  • Costacurta A, Mazzafera P & Rosato YB (1998) Indole-3-acetic acid biosynthesis by Xanthomonas axonopodis pv. citri is increased in the presence of plant leaf extracts. FEMS Microbiol Lett 159: 215220.
  • Darwin C & Darwin F (1880) The Power of Movement in Plants. John Murray, London.
  • De Billy F, Grosjean C, May S, Bennett M & Cullimore JV (2001) Expression studies on AUX1-like genes in Medicago truncatula suggest that auxin is required at two steps in early nodule development. Mol Plant–Microbe Interact 14: 267277.
  • Delbarre A, Muller P, Imhoff V & Guern J (1996) Comparison of mechanisms controlling uptake and accumulation of 2,4-dichlorophenoxy acetic acid, naphthalene-1-acetic acid, and indole-3-acetic acid in suspension-cultured tobacco cells. Planta 198: 532541.
  • Dharmasiri N, Dharmasiri S & Estelle M (2005) The F-box protein TIR1 is an auxin receptor. Nature 435: 441445.
  • Dobbelaere S, Croonenborghs A, Thys A, Vande Broek A & Vanderleyden J (1999) Phytostimulatory effect of Azospirillum brasilense wild type and mutant strains altered in IAA production on wheat. Plant Soil 212: 155164.
  • Domergue R, Castano I, Las Penas A, Zupancic M, Lockatell V, Hebel JR, Johnson D & Cormack BP (2005) Nicotinic acid limitation regulates silecing of Candida adhesins during UTI. Science 308: 866870.
  • Domka J, Lee J & Wood TK (2006) YliH (BssR) and YceP (BssS) regulate Escherichia coli K-12 biofilm formation by influencing cell signaling. Appl Environ Microbiol 72: 24492459.
  • Dubeikovsky AN, Mordukhova EA, Kochetkov VV, Polikarpova FY & Boronin AM (1993) Growth promotion of black currant softwood cuttings by recombinant strain Pseudomonas fluorescens Bsp53A synthesizing an increased amount of indole-3-acetic acid. Soil Biol Biochem 25: 12771281.
  • Dullaart J & Duba L (1970) Presence of gibberellin-like substances and their possible role in auxin bioproduction in root nodules and roots of Lupinus luteus L. Acta Bot Neerl 19: 290297.
  • Egebo LA, Nielsen SVS & Jochimsen BU (1991) Oxygen dependent catabolism of indole-3-acetic acid in Bradyrhizobium japonicum. J Bacteriol 173: 48974901.
  • Fallik E, Sarig S & Okon Y (1994) Morphology and physiology of plant roots associated with Azospirillum. Azospirillum–Plant Associations (OkonY, ed), pp. 7785. CRC Press, Boca Raton.
  • Ferro N, Gallegos A, Bultinck P, Jacobsen HJ, Carbo-Dorca R & Reinard T (2006) Coulomb and overlap self-similarities: a comparative selectivity analysis of structure–function relationships for auxin-like molecules. J Chem Inf Model 46: 17511762.
  • Ferro N, Gallegos A, Bultinck P, Jacobsen HJ, Carbo-Dorca R & Reinard T (2007) Unrevealed structural requirements for auxin-like molecules by theoretical and experimental evidences. Phytochemistry 68: 237250.
  • Fleming AJ (2006) Plant signalling: the inexorable rise of auxin. Trends Cell Biol 16: 397402.
  • Fouts DE, Abramovitch RB & Alfano JR (2002) Genomewide identification of Pseudomonas syringae pv. tomato DC3000 promoters controlled by the HrpL alternative sigma factor. Proc Natl Acad Sci USA 99: 22752280.
  • Geisler M & Murphy AS (2006) The ABC of auxin transport: the role of p-glycoproteins in plant development. FEBS Lett 580: 10941102.
  • Ghosh S & Basu PS (2006) Production and metabolism of indole acetic acid in roots and root nodules of Phaseolus mungo. Microbiol Res 161: 362366.
  • Glass NL & Kosuge T (1986) Cloning of the gene for indoleacetic acid-lysine synthetase from Pseudomonas syringae subsp savastanoi. J Bacteriol 166: 598603.
  • Glick BR (2005) Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiol Lett 251: 17.
  • Glick BR, Penrose DM & Li JP (1998) A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J Theor Biol 190: 6368.
  • Glickmann E, Gardan L, Jacquet S, Hussain S, Elasri M, Petit A & Dessaux Y (1998) Auxin production is a common feature of most pathovars of Pseudomonas syringae. Mol Plant–Microbe Interact 11: 156162.
  • Gruen HW (1959) Auxin and fungi. Annu Rev Plant Physiol 10: 405440.
  • Gutknecht J & Walter A (1980) Transport of auxin (indoleacetic acid) through lipid bilayer membranes. J Membr Biol 56: 6572.
  • Gysegom P (2005) Study of the transcriptional regulation of a key gene in indole-3-acetic acid biosynthesis in Azospirillum brasilense. PhD thesis, K.U. Leuven.
  • Haas D & Keel C (2003) Regulation of antibiotic production in root-colonizing Pseudomonas spp. and relevance for biological control of plant disease. Annu Rev Phytopathol 41: 117153.
  • Hartmann A & Zimmer W (1994) Physiology of Azospirillum. Azospirillum/Plant Associations (OkonY, ed), pp. 1539. CRC Press, Boca Raton.
  • Hartmann A, Singh M & Klingmüller W (1983) Isolation and characterization of Azospirillum mutants excreting high amounts of indoleacetic acid. Can J Microbiol 29: 916923.
  • He SY, Nomura K & Whittam TS (2004) Type III protein secretion mechanism in mammalian and plant pathogens. BBA-Mol Cell Res 1694: 181206.
  • Hinsinger P, Plassard C, Tang CX & Jaillard B (2003) Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints: a review. Plant Soil 248: 4359.
  • Hirsch AM, Bhuvaneswari TV, Torrey JG & Bisseling T (1989) Early nodulin genes are induced in alfalfa root outgrowths elicited by auxin transport inhibitors. Proc Natl Acad Sci USA 86: 12441248.
  • Hunter WJ (1989) Indole-3-acetic acid production by bacteroids from soybean root nodules. Physiol Plant 76: 3136.
  • Hutcheson SW & Kosuge T (1985) Regulation of 3-indoleacetic acid production in Pseudomonas syringae pv savastanoi– purification and properties of tryptophan 2-monooxygenase. J Biol Chem 260: 62816287.
  • Jensen JB, Egsgaard H, Vanonckelen H & Jochimsen BU (1995) Catabolism of indole-3-acetic-acid and 4-chloroindole-3-acetic and 5-chloroindole-3-acetic acid in Bradyrhizobium japonicum. J Bacteriol 177: 57625766.
  • Jin QL, Thilmony R, Zwiesler-Vollick J & He SY (2003) Type III protein secretion in Pseudomonas syringae. Microbes Infect 5: 301310.
  • Jones JDG & Dangl JL (2006) The plant immune system. Nature 444: 323329.
  • Jouanneau JP, Lapous D & Guern J (1991) In plant protoplasts, the spontaneous expression of defense reactions and the responsiveness to exogenous elicitors are under auxin control. Plant Physiol 96: 459466.
  • Kaneshiro T & Kwolek WF (1985) Stimulated nodulation of soybeans by Rhizobium japonicum mutant (B-14075) that catabolizes the conversion of tryptophan to indol-3yl-acetic acid. Plant Sci 42: 141146.
  • Kang BR, Yang KY, Cho BH, Han TH, Kim IS, Lee MC, Anderson AJ & Kim YC (2006) Production of indole-3-acetic acid in the plant-beneficial strain Pseudomonas chlororaphis O6 is negatively regulated by the global sensor kinase GacS. Curr Microbiol 52: 473476.
  • Kaper JM & Veldstra H (1958) On the metabolism of tryptophan by Agrobacterium tumefaciens. Biochim Biophys Acta 30: 401420.
  • Kawano T, Kawano N, Hosoya H & Lapeyrie F (2001) Fungal auxin antagonist hypaphorine competitively inhibits indole-3-acetic acid-dependent superoxide generation by horseradish peroxidase. Biochem Biophys Res Commun 288: 546551.
  • Kepinski S & Leyser O (2005) The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature 435: 446451.
  • Khalid A, Tahir S, Arshad M & Zahir ZA (2004) Relative efficiency of rhizobacteria for auxin biosynthesis in rhizosphere and non-rhizosphere soils. Aust J Soil Res 42: 921926.
  • Kitagawa W, Takami S, Miyauchi K, Masai E, Kamagata Y, Tiedje JM & Fukuda M (2002) Novel 2,4-dichlorophenoxyacetic acid degradation genes from oligotrophic Bradyrhizobium sp strain HW13 isolated from a pristine environment. J Bacteriol 184: 509518.
  • Klement Z (1982) Hypersensitivity. Phytopathogenic Prokaryotes (MountMS & LacyGH, eds), pp. 149177. Academic Press, New York.
  • Kobayashi M, Izui H, Nagasawa T & Yamada H (1993) Nitrilase in biosynthesis of the plant hormone indole-3-acetic acid from indole-3-acetonitrile – cloning of the Alcaligenes gene and site-directed mutagenesis of cysteine residues. Proc Natl Acad Sci USA 90: 247251.
  • Kobayashi M, Suzuki T, Fujita T, Masuda M & Shimizu S (1995) Occurrence of enzymes involved in biosynthesis of indole-3-acetic acid from indole-3-acetonitrile in plant-associated bacteria, Agrobacterium and Rhizobium. Proc Natl Acad Sci USA 92: 714718.
  • Koga J, Adachi T & Hidaka H (1991) Molecular cloning of the gene for indolepyruvate decarboxylase from Enterobacter cloacae. Mol Gen Genet 226: 1016.
  • Kögl F & Kostermans DGFR (1934) Hetero-auxin als Stoffwechselprodukt niederer pflanzlicher Organismen. XIII. Isolierung aus Hefe. Z Phys Chem 228: 113121.
  • Kramer EM & Bennett MJ (2006) Auxin transport: a field in flux. Trends Plant Sci 11: 382386.
  • Kravchenko LV, Borovkov AV & Pshikril Z (1991) Possibility of auxin synthesis by association-forming nitrogen-fixing bacteria in the rhizosphere of wheat. Microbiology 60: 647650.
  • Kravchenko LV, Azarova TS, Makarova NM & Tikhonovich IA (2004) The effect of tryptophan present in plant root exudates on the phytostimulating activity of rhizobacteria. Microbiology 73: 156158.
  • Kucey RMN (1988) Plant growth altering effects of Azospirillum brasilense and Bacillus C-11-25 on 2 wheat cultivars. J Appl Bacteriol 64: 187195.
  • Lambrecht M, Vande Broek A, Dosselaere F & Vanderleyden J (1999) The ipdC promoter auxin-responsive element of Azospirillum brasilense, a prokaryotic ancestral form of the plant AuxRE? Mol Microbiol 32: 889891.
  • Lambrecht M, Okon Y, Vande Broek A & Vanderleyden J (2000) Indole-3-acetic acid: a reciprocal signalling molecule in bacteria–plant interactions. Trends Microbiol 8: 298300.
  • Last RL, Bissinger PH, Mahoney DJ, Radwanski ER & Fink GR (1991) Tryptophan mutants in Arabidopsis– the consequences of duplicated tryptophan synthase beta genes. Plant Cell 3: 345358.
  • Leveau JH & Lindow SE (2005) Utilization of the plant hormone indole-3-acetic acid for growth by Pseudomonas putida strain 1290. Appl Environ Microbiol 71: 23652371.
  • Leveau JHJ, Zehnder AJB & Van Der Meer JR (1998) The tfdK gene product facilitates uptake of 2,4-dichlorophenoxyacetate by Ralstonia eutropha JMP134(pJP4). J Bacteriol 180: 22372243.
  • Li JS, Yang HB, Peer WA et al. (2005) Arabidopsis H+-PPase AVP1 regulates auxin-mediated organ development. Science 310: 121125.
  • Libbert E, Fiscer E, Drawert A & Schröuder R (1970) Pathways of IAA production from tryptophan by plants and by their epiphytic bacteria: a comparison II. Establishment of the tryptophan metabolites, effects of a native inhibitor. Physiol Plant 23: 278286.
  • Link GKK & Eggers V (1941) Hyperauxiny in crown gall of tomato. Bot Gaz 103: 87106.
  • Liu P & Nester EW (2006) Indoleacetic acid, a product of transferred DNA, inhibits vir gene expression and growth of Agrobacterium tumefaciens C58. Proc Natl Acad Sci USA 103: 46584662.
  • Manulis S & Barash I (2003) The molecular basis for transformation of an epiphyte into a gall-forming pathogen as exemplified by Erwinia herbicola pv. gypsophilae. Plant–Microbe Interactions (StaceyG & KeenN, eds), pp. 1952. American Phytopathological Society, St. Paul.
  • Manulis S, Haviv-Chesner A, Brandl MT, Lindow SE & Barash I (1998) Differential involvement of indole-3-acetic acid biosynthetic pathways in pathogenicity and epiphytic fitness of Erwinia herbicola pv. gypsophilae. Mol Plant–Microbe Interact 11: 634642.
  • Mark GL, Dow JM, Kiely PD et al. (2005) Transcriptome profiling of bacterial responses to root exudates identifies genes involved in microbe–plant interactions. Proc Natl Acad Sci USA 102: 1745417459.
  • Marlow JL & Kosuge T (1972) Tryptophan and indoleacetic acid transport in olive and oleander knot organism Pseudomonas savastanoi (e F Smith) Stevens. J Gen Microbiol 72: 211.
  • Mathesius U, Schlaman HRM, Spaink HP, Sautter C, Rolfe BG & Djordjevic MA (1998) Auxin transport inhibition precedes root nodule formation in white clover roots and is regulated by flavonoids and derivatives of chitin oligosaccharides. Plant J 14: 2334.
  • Mathesius U, Mulders S, Gao M, Teplitski M, Caetano-Anolles G, Rolfe BG & Bauer WD (2003) Extensive and specific responses of a eukaryote to bacterial quorum-sensing signals. Proc Natl Acad Sci USA 100: 14441449.
  • Mazzola M & White FF (1994) A mutation in the indole-3-acetic-acid biosynthesis pathway of Pseudomonas syringae pv syringae affects growth in Phaseolus vulgaris and syringomycin production. J Bacteriol 176: 13741382.
  • Mino Y (1970) Studies on the destruction of indole-3-acetic acid by a species of Arthrobacter IV. Decomposition products. Plant Cell Physiol 11: 129138.
  • Mohammed N, Onodera R & Or-Rashid MM (2003) Degradation of tryptophan and related indolic compounds by ruminal bacteria, protozoa and their mixture in vitro. Amino Acids 24: 7380.
  • Mohnen D, Shinshi H, Felix G & Meins F (1985) Hormonal regulation of beta-1,3-glucanase messenger RNA levels in cultured tobacco tissues. EMBO J 4: 16311635.
  • Mor H, Manulis S, Zuck M, Nizan R, Coplin DL & Barash I (2001) Genetic organization of the hrp gene cluster and dspAE/BF operon in Erwinia herbicola pv. gypsophilae. Mol Plant–Microbe Interact 14: 431436.
  • Morris RO (1995) Genes specifying auxin and cytokinin biosynthesis in prokaryotes. Plant Hormones (DaviesPJ, eds), pp. 318339. Kluwer Academic Publishers, Dordrecht.
  • Muller A & Weiler EW (2000) Indolic constituents and indole-3-acetic acid biosynthesis in the wild-type and a tryptophan auxotroph mutant of Arabidopsis thaliana. Planta 211: 855863.
  • Muller RH & Hoffmann D (2006) Uptake kinetics of 2,4-dichlorophenoxyacetate by Delftia acidovorans MC1 and derivative strains: complex characteristics in response to pH and growth substrate. Biosci Biotechnol Biochem 70: 16421654.
  • Murray JD, Karas BJ, Sato S, Tabata S, Amyot L & Szczyglowski K (2007) A cytokinin perception mutant colonized by Rhizobium in the absence of nodule organogenesis. Science 315: 101104.
  • Nagasawa T, Mauger J & Yamada H (1990) A novel nitrilase, arylacetonitrilase, of Alcaligenes faecalis JM3 – purification and characterization. Eur J Biochem 194: 765772.
  • Napier RM, David KM & Perrot-Rechenmann C (2002) A short history of auxin-binding proteins. Plant Mol Biol 49: 339348.
  • Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, Estelle M, Voinnet O & Jones JDG (2006) A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312: 436439.
  • Newman T, Debruijn FJ, Green P et al. (1994) Genes galore – a summary of methods for accessing results from large-scale partial sequencing of anonymous Arabidopsis cDNA clones. Plant Physiol 106: 12411255.
  • Nizan-Koren R, Manulis S, Mor H, Iraki NM & Barash I (2003) The regulatory cascade that activates the hrp regulon in Erwinia herbicola pv. gypsophilae. Mol Plant–Microbe Interact 16: 249260.
  • Normanly J, Cohen JD & Fink GR (1993) Arabidopsis thaliana auxotrophs reveal a tryptophan-independent biosynthetic pathway for indole-3-acetic acid. Proc Natl Acad Sci USA 90: 1035510359.
  • Oberhansli T, Defago G & Haas D (1991) Indole-3-acetic-acid (IAA) synthesis in the biocontrol strain CHA0 of Pseudomonas fluorescens– role of tryptophan side-chain oxidase. J Gen Microbiol 137: 22732279.
  • O'Donnell PJ, Schmelz EA, Moussatche P, Lund ST, Jones JB & Klee HJ (2003) Susceptible to intolerance – a range of hormonal actions in a susceptible Arabidopsis pathogen response. Plant J 33: 245257.
  • Okon Y & Itzigsohn R (1995) The development of Azospirillum as a commercial inoculant for improving crop yields. Biotechnol Adv 13: 415424.
  • Olesen MR & Jochimsen BU (1996) Identification of enzymes involved in indole-3-acetic acid degradation. Plant Soil 186: 143149.
  • Omay SH, Schmidt WA & Martin P (1993) Indoleacetic acid production by the rhizosphere bacterium Azospirillum brasilense Cd under in vitro conditions. Can J Microbiol 39: 187192.
  • Ona O, Smets I, Gysegom P, Bernaerts K, Van Impe J, Prinsen E & Vanderleyden J (2003) The effect of pH on indole-3-acetic acid (IAA) biosynthesis of Azospirillum brasilense Sp7. Symbiosis 35: 199208.
  • Ona O, Van Impe J, Prinsen E & Vanderleyden J (2005) Growth and indole-3-acetic acid biosynthesis of Azospirillum brasilense Sp245 is environmentally controlled. FEMS Microbiol Lett 246: 125132.
  • Pacios-Bras C, Schlaman HRM, Boot K, Admiraal P, Langerak JM, Stougaard J & Spaink HP (2003) Auxin distribution in Lotus japonicus during root nodule development. Plant Mol Biol 52: 11691180.
  • Paponov IA, Teale WD, Trebar M, Blilou K & Palme K (2005) The PIN auxin efflux facilitators: evolutionary and functional perspectives. Trends Plant Sci 10: 170177.
  • Parry G & Estelle M (2006) Auxin receptors: a new role for F-box proteins. Curr Opin Cell Biol 18: 152156.
  • Parry G, Marchant A, May S et al. (2001) Quick on the uptake: characterization of a family of plant auxin influx carriers. J Plant Growth Regul 20: 217225.
  • Patten CL & Glick BR (1996) Bacterial biosynthesis of indole-3-acetic acid. Can J Microbiol 42: 207220.
  • Patten CL & Glick BR (2002a) Regulation of indoleacetic acid production in Pseudomonas putida GR12-2 by tryptophan and the stationary-phase sigma factor RpoS. Can J Microbiol 48: 635642.
  • Patten CL & Glick BR (2002b) Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Appl Environ Microbiol 68: 37953801.
  • Perley JW & Stowe BB (1966) On the ability of Taphrina deformans to produce indoleacetic acid from tryptophan by way of tryptamine. Plant Physiol 41: 234237.
  • Persello-Cartieaux F, David P, Sarrobert C, Thibaud MC, Achouak W, Robaglia C & Nussaume L (2001) Utilization of mutants to analyze the interaction between Arabidopsis thaliana and its naturally root-associated Pseudomonas. Planta 212: 190198.
  • Persello-Cartieaux F, Nussaume L & Robaglia C (2003) Tales from the underground: molecular plant-rhizobacteria interactions. Plant Cell Environ 26: 189199.
  • Piotrowski M, Schonfelder S & Weiler EW (2001) The Arabidopsis thaliana isogene NIT4 and its orthologs in tobacco encode beta-cyano-l-alanine hydratase/nitrilase. J Biol Chem 276: 26162621.
  • Plazinski J & Rolfe BG (1985) Azospirillum–Rhizobium interaction leading to a plant-growth stimulation without nodule formation. Can J Microbiol 31: 10261030.
  • Pollmann S, Muller A, Piotrowski M & Weiler EW (2002) Occurrence and formation of indole-3-acetamide in Arabidopsis thaliana. Planta 216: 155161.
  • Pollmann S, Neu D & Weiler EW (2003) Molecular cloning and characterization of an amidase from Arabidopsis thaliana capable of converting indole-3-acetamide into the plant growth hormone, indole-3-acetic acid. Phytochemistry 62: 293300.
  • Pollmann S, Muller A & Weiler EW (2006) Many roads lead to “auxin”: of nitrilases, synthases, and amidases. Plant Biology 8: 326333.
  • Prinsen E, Chauvaux N, Schmidt J, John M, Wieneke U, Degreef J, Schell J & Vanonckelen H (1991) Stimulation of indole-3-acetic acid production in Rhizobium by flavonoids. FEBS Lett 282: 5355.
  • Prinsen E, Costacurta A, Michiels K, Vanderleyden J & Van Onckelen H (1993) Azospirillum brasilense indole-3-acetic acid biosynthesis: evidence for a non-tryptophan dependent pathway. Mol Plant–Microbe Interact 6: 609615.
  • Proctor MH (1958) Bacterial dissimilation of indoleacetic acid: a new route of breakdown of the indole nucleus. Nature 181: 1345.
  • Prusty R, Grisafi P & Fink GR (2004) The plant hormone indoleacetic acid induces invasive growth in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 101: 41534157.
  • Rabus R (2005) Functional genomics of an anaerobic aromatic-degrading denitrifying bacterium, strain EbN1. Appl Microbiol Biot 68: 580587.
  • Rabus R, Kube M, Heider J, Beck A, Heitmann K, Widdel F & Reinhardt R (2005) The genome sequence of an anaerobic aromatic-degrading denitrifying bacterium, strain EbN1. Arch Microbiol 183: 2736.
  • Ramesh V, Frederick RO, Syed SEH, Gibson CF, Yang JC & Roberts GCK (1994) The interactions of Escherichia coli Trp repressor with tryptophan and with an operator oligonucleotide NMR studies using selectively N-15-labeled protein. Eur J Biochem 225: 601608.
  • Redman JC, Haas BJ, Tanimoto G & Town CD (2004) Development and evaluation of an Arabidopsis whole genome Affymetrix probe array. Plant J 38: 545561.
  • Remans R, Spaepen S & Vanderleyden J (2006) Auxin signaling in plant defense. Science 313: 171.
  • Robinette D & Matthysse AG (1990) Inhibition by Agrobacterium tumefaciens and Pseudomonas savastanoi of development of the hypersensitive response elicited by Pseudomonas syringae pv phaseolicola. J Bacteriol 172: 57425749.
  • Rosenblueth M & Martinez-Romero E (2006) Bacterial endophytes and their interactions with hosts. Mol Plant–Microbe Interact 19: 827837.
  • Saleh SS & Glick BR (2001) Involvement of gacS and rpoS in enhancement of the plant growth-promoting capabilities of Enterobacter cloacae CAL2 and UW4. Can J Microbiol 47: 698705.
  • Schenk PM, Kazan K, Wilson I, Anderson JP, Richmond T, Somerville SC & Manners JM (2000) Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. Proc Natl Acad Sci USA 97: 1165511660.
  • Schmelz EA, Engelberth J, Alborn HT, O'Donnell P, Sammons M, Toshima H & Tumlinson JH III (2003) Simultaneous analysis of phytohormones, phytotoxins, and volatile organic compounds in plants. Proc Natl Acad Sci USA 100: 1055210557.
  • Seidel C, Walz A, Park S, Cohen JD & Ludwig-Muller J (2006) Indole-3-acetic acid protein conjugates: novel players in auxin homeostasis. Plant Biol 8: 340345.
  • Sekine M, Watanabe K & Syono K (1989) Molecular cloning of a gene for indole-3-acetamide hydrolase from Bradyrhizobium japonicum. J Bacteriol 171: 17181724.
  • Sergeeva E, Liaimer A & Bergman B (2002) Evidence for production of the phytohormone indole-3-acetic acid by cyanobacteria. Planta 215: 229238.
  • Shiner EK, Rumbaugh KP & Williams SC (2005) Interkingdom signaling: deciphering the language of acyl homoserine lactones. FEMS Microbiol Rev 29: 935947.
  • Shinshi H, Mohnen D & Meins F (1987) Regulation of a plant pathogenesis-related enzyme – inhibition of chitinase and chitinase messenger RNA accumulation in cultured tobacco tissues by auxin and cytokinin. Proc Natl Acad Sci USA 84: 8993.
  • Smith EA & Macfarlane GT (1997) Formation of phenolic and indolic compounds by anaerobic bacteria in the human large intestine. Microb Ecol 33: 180188.
  • Somers E, Ptacek D, Gysegom P, Srinivasan M & Vanderleyden J (2005) Azospirillum brasilense produces the auxin-like phenylacetic acid by using the key enzyme for indole-3-acetic acid biosynthesis. Appl Environ Microbiol 71: 18031810.
  • Sprunck S, Jacobsen HJ & Reinard T (1995) Indole-3-lactic acid is a weak auxin analogue but not an anti-auxin. J Plant Growth Regul 14: 191197.
  • Steenhoudt O & Vanderleyden J (2000) Azospirillum a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. FEMS Microbiol Rev 24: 487506.
  • Suzuki S, He YX & Oyaizu H (2003) Indole-3-acetic acid production in Pseudomonas fluorescens HP72 and its association with suppression of creeping bentgrass brown patch. Curr Microbiol 47: 138143.
  • Taiz L & Zeiger E (1998) Plant Physiology. Sinauer Associates, Sunderland, MA.
  • Takahashi K, Kasai K & Ochi K (2004) Identification of the bacterial alarmone guanosine 5′-diphosphate 3′-diphosphate (ppGpp) in plants. Proc Natl Acad Sci USA 101: 43204324.
  • Teale WD, Paponov IA & Palme K (2006) Auxin in action: signalling, transport and the control of plant growth and development. Nat Rev Mol Cell Biol 7: 847859.
  • Theunis M (2005) IAA biosynthesis in rhizobia and its potential role in symbiosis. PhD thesis, Universiteit Antwerpen.
  • Theunis M, Kobayashi H, Broughton WJ & Prinsen E (2004) Flavonoids, NodD1, NodD2, and nod-box NB15 modulate expression of the y4wEFG locus that is required for indole-3-acetic acid synthesis in Rhizobium sp. strain NGR234. Mol Plant–Microbe Interact 17: 11531161.
  • Thilmony R, Underwood W & He SY (2006) Genome-wide transcriptional analysis of the Arabidopsis thaliana interaction with the plant pathogen Pseudomonas syringae pv. tomato DC3000 and the human pathogen Escherichia coli O157: H7. Plant J 46: 3453.
  • Tirichine L, Sandal N, Madsen LH, Radutoiu S, Albrektsen AS, Sato S, Asamizu E, Tabata S & Stougaard J (2007) A gain-of-function mutation in a cytokinin receptor triggers spontaneous root nodule organogenesis. Science 315: 104107.
  • Tsubokura S, Sakamoto Y & Ichihara K (1961) The bacterial decomposition of indoleacetic acid. J Biochem (Tokyo) 49: 3842.
  • Valls M, Genin S & Boucher C (2006) Integrated regulation of the type III secretion system and other virulence determinants in Ralstonia solanacearum. PLoS Pathog 2: 798807.
  • Van Noorden GE, Ross JJ, Reid JB, Rolfe BG & Mathesius U (2006) Defective long-distance auxin transport regulation in the Medicago truncatula super numeric nodules mutant. Plant Physiol 140: 14941506.
  • Vande Broek A, Lambrecht M, Eggermont K & Vanderleyden J (1999) Auxins upregulate expression of the indole-3-pyruvate decarboxylase gene in Azospirillum brasilense. J Bacteriol 181: 13381342.
  • Vande Broek A, Gysegom P, Ona O, Hendrickx N, Prinsen E, Van Impe J & Vanderleyden J (2005) Transcriptional analysis of the Azospirillum brasilense indole-3-pyruvate decarboxylase gene and identification of a cis-acting sequence involved in auxin responsive expression. Mol Plant–Microbe Interact 18: 311323.
  • Vandeputte O, Oden S, Mol A, Vereecke D, Goethals K, El Jaziri M & Prinsen E (2005) Biosynthesis of auxin by the gram-positive phytopathogen Rhodococcus fascians is controlled by compounds specific to infected plant tissues. Appl Environ Microbiol 71: 11691177.
  • Vasanthakumar A & McManus PS (2004) Indole-3-acetic acid-producing bacteria are associated with cranberry stem gall. Phytopathology 94: 11641171.
  • Venis MA & Napier RM (1995) Auxin receptors and auxin-binding proteins. Crit Rev Plant Sci 14: 2747.
  • Verhagen BWM, Glazebrook J, Zhu T, Chang HS, Van Loon LC & Pieterse CMJ (2004) The transcriptome of rhizobacteria-induced systemic resistance in Arabidopsis. Mol Plant–Microbe Interact 17: 895908.
  • Verstrepen KJ & Klis FM (2006) Flocculation, adhesion and biofilm formation in yeasts. Mol Microbiol 60: 515.
  • Verstrepen KJ, Reynolds TB & Fink GR (2004) Origins of variation in the fungal cell surface. Nat Rev Microbiol 2: 533540.
  • Vogel G (2006) Plant science – auxin begins to give up its secrets. Science 313: 12301231.
  • Walters M & Sperandio V (2006) Quorum sensing in Escherichia coli and Salmonella. Int J Med Microbiol 296: 125131.
  • Wang D, Ding X & Rather PN (2001) Indole can act as an extracellular signal in Escherichia coli. J Bacteriol 183: 42104216.
  • Wang YQ, Ohara Y, Nakayashiki H, Tosa Y & Mayama S (2005) Microarray analysis of the gene expression profile induced by the endophytic plant growth-promoting rhizobacteria, Pseudomonas fluorescens FPT9601-T5 in Arabidopsis. Mol Plant–Microbe Interact 18: 385396.
  • Went FW & Thimann KV (1937) Phytohormones. Macmillan, New York.
  • White PR & Braun AC (1941) Crown gall production by bacteria-free tumor tissues. Science 93: 239241.
  • White JA, Todd T, Newman T, Focks N, Girke T, De Ilarduya OM, Jaworski JG, Ohlrogge JB & Benning C (2000) A new set of Arabidopsis expressed sequence tags from developing seeds. The metabolic pathway from carbohydrates to seed oil. Plant Physiol 124: 15821594.
  • Woodward AW & Bartel B (2005) Auxin: regulation, action, and interaction. Ann Bot (London) 95: 707735.
  • Wu CF, Dickstein R, Cary AJ & Norris JH (1996) The auxin transport inhibitor N-(1-naphthyl)phthalamic acid elicits pseudonodules on nonnodulating mutants of white sweetclover. Plant Physiol 110: 501510.
  • Xie H, Pasternak JJ & Glick BR (1996) Isolation and characterization of mutants of the plant growth-promoting rhizobacterium Pseudomonas putida CR12-2 that overproduce indoleacetic acid. Curr Microbiol 32: 6771.
  • Xu GW & Gross DC (1988a) Evaluation of the role of syringomycin in plant pathogenesis by using Tn5-mutants of Pseudomonas syringae pv syringae defective in syringomycin production. Appl Environ Microbiol 54: 13451353.
  • Xu GW & Gross DC (1988b) Physical and functional analyses of the syrA gene and syrB gene involved in syringomycin production by Pseudomonas syringae pv syringae. J Bacteriol 170: 56805688.
  • Yang SH, Perna NT, Cooksey DA, Okinaka Y, Lindow SE, Ibekwe AM, Keen NT & Yang CH (2004) Genome-wide identification of plant-upregulated genes of Erwinia chrysanthemi 3937 using a GFP-based IVET leaf array. Mol Plant–Microbe Interact 17: 9991008.
  • Yang S, Zhang Q, Guo J, Charkowski AO, Glick BR, Ibekwe AM, Cooksey DA & Yang CH (2007) Global effect of indole-3-acetic acid biosynthesis on multiple virulence factors of Erwinia chrysanthemi 3937. Appl Environ Microbiol 73: 10791088.
  • Zambryski PC (1992) Chronicles from the Agrobacterium– plant cell DNA transfer story. Annu Rev Plant Physiol 43: 465490.
  • Zhao Y, Christensen SK, Fankhauser C, Cashman JR, Cohen JD, Weigel D & Chory J (2001) A role for flavin monooxygenase-like enzymes in auxin biosynthesis. Science 291: 306309.
  • Zhu T & Wang X (2000) Large-scale profiling of the Arabidopsis transcriptome. Plant Physiol 124: 14721476.
  • Zimmer W, Wesche M & Timmermans L (1998) Identification and isolation of the indole-3-pyruvate decarboxylase gene from Azospirillum brasilense Sp7: sequencing and functional analysis of the gene locus. Curr Microbiol 36: 327331.
  • Zupan J, Muth TR, Draper O & Zambryski P (2000) The transfer of DNA from Agrobacterium tumefaciens into plants: a feast of fundamental insights. Plant J 23: 1128.