SEARCH

SEARCH BY CITATION

References

  • Abanes-De Mello A, Sun YL, Aung S & Pogliano K (2002) A cytoskeleton-like role for the bacterial cell wall during engulfment of the Bacillus subtilis forespore. Genes Dev 16: 32533264.
  • Ahn SJ & Burne RA (2006) The atlA operon of Streptococcus mutans: role in autolysin maturation and cell surface biogenesis. J Bacteriol 188: 68776888.
  • Antignac A, Sieradzki K & Tomasz A (2007) Perturbation of cell wall synthesis suppresses autolysis in Staphylococcus aureus: evidence for co-regulation of cell wall synthetic and hydrolytic enzymes. J Bacteriol 189: 75737580.
  • Archibald AR (1976) Cell wall assembly in Bacillus subtilis: development of bacteriophage-binding properties as a result of the pulsed incorporation of teichoic acid. J Bacteriol 127: 956960.
  • Arthur M, Depardieu F, Cabanie L, Reynolds P & Courvalin P (1998) Requirement of the VanY and VanX d,d-peptidases for glycopeptide resistance in enterococci. Mol Microbiol 30: 819830.
  • Atrih A & Foster SJ (2001) In vivo roles of the germination-specific lytic enzymes of Bacillus subtilis 168. Microbiology 147: 29252932.
  • Atrih A, Zollner P, Allmaier G & Foster SJ (1996) Structural analysis of Bacillus subtilis 168 endospore peptidoglycan and its role during differentiation. J Bacteriol 178: 61736183.
  • Atrih A, Zollner P, Allmaier G, Williamson MP & Foster SJ (1998) Peptidoglycan structural dynamics during germination of Bacillus subtilis 168 endospores. J Bacteriol 180: 46034612.
  • Atrih A, Bacher G, Allmaier G, Williamson MP & Foster SJ (1999) Analysis of peptidoglycan structure from vegetative cells of Bacillus subtilis 168 and role of PBP 5 in peptidoglycan maturation. J Bacteriol 181: 39563966.
  • Baba T & Schneewind O (1998) Targeting of muralytic enzymes to the cell division site of gram-positive bacteria: repeat domains direct autolysin to the equatorial surface ring of Staphylococcus aureus. Embo J 17: 46394646.
  • Bagyan I & Setlow P (2002) Localization of the cortex lytic enzyme CwlJ in spores of Bacillus subtilis. J Bacteriol 184: 12191224.
  • Barrett JF, Dolinger DL, Schramm VL & Shockman GD (1984) The mechanism of soluble peptidoglycan hydrolysis by an autolytic muramidase. A processive exodisaccharidase. J Biol Chem 259: 1181811827.
  • Bateman A & Bycroft M (2000) The structure of a LysM domain from E. coli membrane-bound lytic murein transglycosylase D (MltD). J Mol Biol 299: 11131119.
  • Bateman A & Rawlings ND (2003) The CHAP domain: a large family of amidases including GSP amidase and peptidoglycan hydrolases. Trends Biochem Sci 28: 234237.
  • Bera A, Herbert S, Jakob A, Vollmer W & Götz F (2005) Why are pathogenic staphylococci so lysozyme resistant? The peptidoglycan O-acetyltransferase OatA is the major determinant for lysozyme resistance of Staphylococcus aureus. Mol Microbiol 55: 778787.
  • Bernhardt TG & De Boer PA (2003) The Escherichia coli amidase AmiC is a periplasmic septal ring component exported via the twin-arginine transport pathway. Mol Microbiol 48: 11711182.
  • Bernhardt TG & De Boer PA (2004) Screening for synthetic lethal mutants in Escherichia coli and identification of EnvC (YibP) as a periplasmic septal ring factor with murein hydrolase activity. Mol Microbiol 52: 12551269.
  • Biswas R, Voggu L, Simon UK, Hentschel P, Thumm G & Götz F (2006) Activity of the major staphylococcal autolysin Atl. FEMS Microbiol Lett 259: 260268.
  • Blackburn NT & Clarke AJ (2001) Identification of four families of peptidoglycan lytic transglycosylases. J Mol Evol 52: 7884.
  • Blackman SA, Smith TJ & Foster SJ (1998) The role of autolysins during vegetative growth of Bacillus subtilis 168. Microbiology 144: 7382.
  • Bochtler M, Odintsov SG, Marcyjaniak M & Sabala I (2004) Similar active sites in lysostaphins and d-Ala-d-Ala metallopeptidases. Protein Sci 13: 854861.
  • Boland FM, Atrih A, Chirakkal H, Foster SJ & Moir A (2000) Complete spore-cortex hydrolysis during germination of Bacillus subtilis 168 requires SleB and YpeB. Microbiology 146: 5764.
  • Bourgerie S, Karamanos Y, Grard T & Julien R (1994) Purification and characterization of an endo-N-acetyl-beta-d-glucosaminidase from the culture medium of Stigmatella aurantiaca DW4. J Bacteriol 176: 61706174.
  • Brunskill EW & Bayles KW (1996) Identification of LytSR-regulated genes from Staphylococcus aureus. J Bacteriol 178: 58105812.
  • Bussiere DE, Pratt SD, Katz L, Severin JM, Holzman T & Park CH (1998) The structure of VanX reveals a novel amino-dipeptidase involved in mediating transposon-based vancomycin resistance. Mol Cell 2: 7584.
  • Calamita HG, Ehringer WD, Koch AL & Doyle RJ (2001) Evidence that the cell wall of Bacillus subtilis is protonated during respiration. Proc Natl Acad Sci USA 98: 1526015263.
  • Carballido-Lopez R & Errington J (2003) A dynamic bacterial cytoskeleton. Trends Cell Biol 13: 577583.
  • Carballido-Lopez R, Formstone A, Li Y, Ehrlich SD, Noirot P & Errington J (2006) Actin homolog MreBH governs cell morphogenesis by localization of the cell wall hydrolase LytE. Dev Cell 11: 399409.
  • Catt DM & Gregory RL (2005) Streptococcus mutans murein hydrolase. J Bacteriol 187: 78637865.
  • Charlier P, Wery JP, Dideberg O & Frere J-M (2003) Streptomyces albus G d-Ala-d-Ala carboxypeptidase. Handbook of Metalloproteins, Vol. 3 (MesserschmidtA, BodeW & CyglerM, eds), pp. 164175. Wiley, Chichester.
  • Chastanet A & Losick R (2007) Engulfment during sporulation in Bacillus subtilis is governed by a multi-protein complex containing tandemly acting autolysins. Mol Microbiol 64: 139152.
  • Cheng X, Zhang X, Pflugrath JW & Studier FW (1994) The structure of bacteriophage T7 lysozyme, a zinc amidase and an inhibitor of T7 RNA polymerase. Proc Natl Acad Sci USA 91: 40344038.
  • Cheung HY & Freese E (1985) Monovalent cations enable cell wall turnover of the turnover-deficient lyt-15 mutant of Bacillus subtilis. J Bacteriol 161: 12221225.
  • Cheung HY, Vitkovic L & Freese E (1983) Rates of peptidoglycan turnover and cell growth of Bacillus subtilis are correlated. J Bacteriol 156: 10991106.
  • Chirakkal H, O'Rourke M, Atrih A, Foster SJ & Moir A (2002) Analysis of spore cortex lytic enzymes and related proteins in Bacillus subtilis endospore germination. Microbiology 148: 23832392.
  • Clarke AJ & Dupont C (1992) O-acetylated peptidoglycan: its occurrence, pathobiological significance, and biosynthesis. Can J Microbiol 38: 8591.
  • Clausen VA, Bae W, Throup J, Burnham MK, Rosenberg M & Wallis NG (2003) Biochemical characterization of the first essential two-component signal transduction system from Staphylococcus aureus and Streptococcus pneumoniae. J Mol Microbiol Biotechnol 5: 252260.
  • Claverys JP & Havarstein LS (2007) Cannibalism and fratricide: mechanisms and raisons d'etre. Nat Rev Microbiol 5: 219229.
  • Cleveland RF, Wicken AJ, Daneo-Moore L & Shockman GD (1976) Inhibition of wall autolysis in Streptococcus faecalis by lipoteichoic acid and lipids. J Bacteriol 126: 192197.
  • Costerton JW, Cheng KJ, Geesey GG, Ladd TI, Nickel JC, Dasgupta M & Marrie TJ (1987) Bacterial biofilms in nature and disease. Annu Rev Microbiol 41: 435464.
  • Courtin P, Miranda G, Guillot A et al. (2006) Peptidoglycan structure analysis of Lactococcus lactis reveals the presence of an l,d-carboxypeptidase involved in peptidoglycan maturation. J Bacteriol 188: 52935298.
  • Dagkessamanskaia A, Moscoso M, Henard V et al. (2004) Interconnection of competence, stress and CiaR regulons in Streptococcus pneumoniae: competence triggers stationary phase autolysis of ciaR mutant cells. Mol Microbiol 51: 10711086.
  • Daniel RA & Errington J (2003) Control of cell morphogenesis in bacteria: two distinct ways to make a rod-shaped cell. Cell 113: 767776.
  • Davies C, White SW & Nicholas RA (2001) Crystal structure of a deacylation-defective mutant of penicillin-binding protein 5 at 2.3-A resolution. J Biol Chem 276: 616623.
  • De Boer WR, Kruyssen FJ & Wouters JT (1981) Cell wall turnover in batch and chemostat cultures of Bacillus subtilis. J Bacteriol 145: 5060.
  • De Boer WR, Meyer PD, Jordens CG, Kruyssen FJ & Wouters JT (1982) Cell wall turnover in growing and nongrowing cultures of Bacillus subtilis. J Bacteriol 149: 977984.
  • De Las Rivas B, Garcia JL, Lopez R & Garcia P (2002) Purification and polar localization of pneumococcal LytB, a putative endo-beta-N-acetylglucosaminidase: the chain-dispersing murein hydrolase. J Bacteriol 184: 49885000.
  • Demchick P & Koch AL (1996) The permeability of the wall fabric of Escherichia coli and Bacillus subtilis. J Bacteriol 178: 768773.
  • Denome SA, Elf PK, Henderson TA, Nelson DE & Young KD (1999) Escherichia coli mutants lacking all possible combinations of eight penicillin binding proteins: viability, characteristics, and implications for peptidoglycan synthesis. J Bacteriol 181: 39813993.
  • Desvaux M, Dumas E, Chafsey I & Hebraud M (2006) Protein cell surface display in gram-positive bacteria: from single protein to macromolecular protein structure. FEMS Microbiol Lett 256: 115.
  • Dhalluin A, Bourgeois I, Pestel-Caron M et al. (2005) Acd, a peptidoglycan hydrolase of Clostridium difficile with N-acetylglucosaminidase activity. Microbiology 151: 23432351.
  • Downing KJ, Mischenko VV, Shleeva MO et al. (2005) Mutants of Mycobacterium tuberculosis lacking three of the five rpf-like genes are defective for growth in vivo and for resuscitation in vitro. Infect Immun 73: 30383043.
  • Draft MJ, Burnham JC & Yamamoto Y (1985) Lysis of Phormidium iridum by Myxococcus fulvus in continuous flow cultures. J Appl Bacteriol 59: 7380.
  • Dubrac S & Msadek T (2004) Identification of genes controlled by the essential YycG/YycF two-component system of Staphylococcus aureus. J Bacteriol 186: 11751181.
  • Dziarski R (2003) Recognition of bacterial peptidoglycan by the innate immune system. Cell Mol Life Sci 60: 17931804.
  • Dziarski R & Gupta D (2005) Peptidoglycan recognition in innate immunity. J Endotoxin Res 11: 304310.
  • Dziarski R & Gupta D (2006) The peptidoglycan recognition proteins (PGRPs). Genome Biol 7: 232.
  • Eckert C, Lecerf M, Dubost L, Arthur M & Mesnage S (2006) Functional analysis of AtlA, the major N-acetylglucosaminidase of Enterococcus faecalis. J Bacteriol 188: 85138519.
  • Ehlert K, Höltje J-V & Templin MF (1995) Cloning and expression of a murein hydrolase lipoprotein from Escherichia coli. Mol Microbiol 16: 761768.
  • Ellermeier CD, Hobbs EC, Gonzalez-Pastor JE & Losick R (2006) A three-protein signaling pathway governing immunity to a bacterial cannibalism toxin. Cell 124: 549559.
  • Engel H, Van Leeuwen A, Dijkstra A & Keck W (1992) Enzymatic preparation of 1,6-anhydro-muropeptides by immobilized murein hydrolases from Escherichia coli fused to staphylococcal protein A. Appl Microbiol Biotechnol 37: 772783.
  • Errington J (2003) Regulation of endospore formation in Bacillus subtilis. Nat Rev Microbiol 1: 117126.
  • Fabret C & Hoch JA (1998) A two-component signal transduction system essential for growth of Bacillus subtilis: implications for anti-infective therapy. J Bacteriol 180: 63756383.
  • Fernandez-Tornero C, Lopez R, Garcia E, Gimenez-Gallego G & Romero A (2001) A novel solenoid fold in the cell wall anchoring domain of the pneumococcal virulence factor LytA. Nat Struct Biol 8: 10201024.
  • Fernandez-Tornero C, Garcia E, Lopez R, Gimenez-Gallego G & Romero A (2002) Two new crystal forms of the choline-binding domain of the major pneumococcal autolysin: insights into the dynamics of the active homodimer. J Mol Biol 321: 163173.
  • Firczuk M & Bochtler M (2007) Mutational analysis of peptidoglycan amidase MepA. Biochemistry 46: 120128.
  • Firczuk M, Mucha A & Bochtler M (2005) Crystal structures of active LytM. J Mol Biol 354: 578590.
  • Fischer W, Rosel P & Koch HU (1981) Effect of alanine ester substitution and other structural features of lipoteichoic acids on their inhibitory activity against autolysins of Staphylococcus aureus. J Bacteriol 146: 467475.
  • Fonze E, Vermeire M, Nguyen-Disteche M, Brasseur R & Charlier P (1999) The crystal structure of a penicilloyl-serine transferase of intermediate penicillin sensitivity. The DD-transpeptidase of Streptomyces K15. J Biol Chem 274: 2185321860.
  • Foster SJ (1992) Analysis of the autolysins of Bacillus subtilis 168 during vegetative growth and differentiation by using renaturing polyacrylamide gel electrophoresis. J Bacteriol 174: 464470.
  • Foster SJ (1995) Molecular characterization and functional analysis of the major autolysin of Staphylococcus aureus 8325/4. J Bacteriol 177: 57235725.
  • Foster SJ & Johnstone K (1988) Germination-specific cortex-lytic enzyme is activated during triggering of Bacillus megaterium KM spore germination. Mol Microbiol 2: 727733.
  • Foster SJ & Johnstone K (1990) Pulling the trigger: the mechanism of bacterial spore germination. Mol Microbiol 4: 137141.
  • Foster SJ & Popham DL (2002) Structure and synthesis of cell wall, spore cortex, teichoic acids, S-layers and capsules. Bacillus subtilis and its Closest Relatives: from Genes to Cells (SonensheinAL, HochJA & LosickR, eds), pp. 2141. ASM Press, Washington, DC.
  • Fukushima T, Yamamoto H, Atrih A, Foster SJ & Sekiguchi J (2002) A polysaccharide deacetylase gene (pdaA) is required for germination and for production of muramic delta-lactam residues in the spore cortex of Bacillus subtilis. J Bacteriol 184: 60076015.
  • Fukushima T, Afkham A, Kurosawa S, Tanabe T, Yamamoto H & Sekiguchi J (2006) A new d,l-endopeptidase gene product, YojL (renamed CwlS), plays a role in cell separation with LytE and LytF in Bacillus subtilis. J Bacteriol 188: 55415550.
  • Fukushima T, Yao Y, Kitajima T, Yamamoto H & Sekiguchi J (2007) Characterization of new l,d-endopeptidase gene product CwlK (previous YcdD) that hydrolyzes peptidoglycan in Bacillus subtilis. Mol Genet Genomics 278: 371383.
  • Gallant CV, Daniels C, Leung JM, Ghosh AS, Young KD, Kotra LP & Burrows LL (2005) Common beta-lactamases inhibit bacterial biofilm formation. Mol Microbiol 58: 10121024.
  • Garcia DL & Dillard JP (2006) AmiC functions as an N-acetylmuramyl-l-alanine amidase necessary for cell separation and can promote autolysis in Neisseria gonorrhoeae. J Bacteriol 188: 72117221.
  • Garcia P, Paz Gonzalez M, Garcia E, Garcia JL & Lopez R (1999a) The molecular characterization of the first autolytic lysozyme of Streptococcus pneumoniae reveals evolutionary mobile domains. Mol Microbiol 33: 128138.
  • Garcia P, Gonzalez MP, Garcia E, Lopez R & Garcia JL (1999b) LytB, a novel pneumococcal murein hydrolase essential for cell separation. Mol Microbiol 31: 12751277.
  • Ghuysen JM (1968) Use of bacteriolytic enzymes in determination of wall structure and their role in cell metabolism. Bacteriol Rev 32 (suppl): 425464.
  • Gilbert HJ (2007) Cellulosomes: microbial nanomachines that display plasticity in quaternary structure. Mol Microbiol 63: 15681576.
  • Gilmore ME, Bandyopadhyay D, Dean AM, Linnstaedt SD & Popham DL (2004) Production of muramic δ-lactam in Bacillus subtilis spore peptidoglycan. J Bacteriol 186: 8089.
  • Gittins JR, Phoenix DA & Pratt JM (1994) Multiple mechanisms of membrane anchoring of Escherichia coli penicillin-binding proteins. FEMS Microbiol Rev 13: 112.
  • Goffin C & Ghuysen JM (1998) Multimodular penicillin-binding proteins: an enigmatic family of orthologs and paralogs. Microbiol Mol Biol Rev 62: 10791093.
  • Gonzalez-Pastor JE, Hobbs EC & Losick R (2003) Cannibalism by sporulating bacteria. Science 301: 510513.
  • Goodell EW (1985) Recycling of murein by Escherichia coli. J Bacteriol 163: 305310.
  • Goodell EW & Schwarz U (1983) Cleavage and resynthesis of peptide cross bridges in Escherichia coli murein. J Bacteriol 156: 136140.
  • Goodell EW & Schwarz U (1985) Release of cell wall peptides into culture medium by exponentially growing Escherichia coli. J Bacteriol 162: 391397.
  • Goodell EW, Lopez R & Tomasz A (1976) Suppression of lytic effect of beta lactams on Escherichia coli and other bacteria. Proc Natl Acad Sci USA 73: 32933297.
  • Guinane CM, Cotter PD, Ross RP & Hill C (2006) Contribution of penicillin-binding protein homologs to antibiotic resistance, cell morphology, and virulence of Listeria monocytogenes EGDe. Antimicrob Agents Chemother 50: 28242828.
  • Guiral S, Mitchell TJ, Martin B & Claverys J-P (2005) Competence-programmed predation of noncompetent cells in the human pathogen Streptococcus pneumoniae: genetic requirements. Proc Natl Acad Sci USA 102: 87108715.
  • Harris F, Brandenburg K, Seydel U & Phoenix D (2002) Investigations into the mechanisms used by the C-terminal anchors of Escherichia coli penicillin-binding proteins 4, 5, 6 and 6b for membrane interaction. Eur J Biochem 269: 58215829.
  • Heidrich C, Templin MF, Ursinus A et al. (2001) Involvement of N-acetylmuramyl-l-alanine amidases in cell separation and antibiotic-induced autolysis of Escherichia coli. Mol Microbiol 41: 167178.
  • Heidrich C, Ursinus A, Berger J, Schwarz H & Höltje J-V (2002) Effects of multiple deletions of murein hydrolases on viability, septum cleavage, and sensitivity to large toxic molecules in Escherichia coli. J Bacteriol 184: 60936099.
  • Heilmann C, Hussain M, Peters G & Götz F (1997) Evidence for autolysin-mediated primary attachment of Staphylococcus epidermidis to a polystyrene surface. Mol Microbiol 24: 10131024.
  • Heinrich P, Rosenstein R, Bohmer M, Sonner P & Götz F (1987) The molecular organization of the lysostaphin gene and its sequences repeated in tandem. Mol Gen Genet 209: 563569.
  • Henderson TA, Templin M & Young KD (1995) Identification and cloning of the gene encoding penicillin-binding protein 7 of Escherichia coli. J Bacteriol 177: 20742079.
  • Herbold DR & Glaser L (1975a) Interaction of N-acetylmuramic acid l-alanine amidase with cell wall polymers. J Biol Chem 250: 72317238.
  • Herbold DR & Glaser L (1975b) Bacillus subtilis N-acetylmuramic acid l-alanine amidase. J Biol Chem 250: 16761682.
  • Heymer B & Schmidt WC (1975) Purification and characterization of a Streptomyces albus endo-N-acetylmuramidase lytic for group A and other beta haemolytic streptococci. Microbios 12: 5166.
  • Höltje J-V (1995) From growth to autolysis: the murein hydrolases in Escherichia coli. Arch Microbiol 164: 243254.
  • Höltje J-V (1996a) A hypothetical holoenzyme involved in the replication of the murein sacculus of Escherichia coli. Microbiology 142: 19111918.
  • Höltje J-V (1996b) Bacterial lysozymes. Lysozymes: Model Enzymes in Biochemistry and Biology (JollesP, ed), pp. 6574. Birkhäuser Verlag, Basel, Switzerland.
  • Höltje J-V (1996c) Molecular interplay of murein synthases and murein hydrolases in Escherichia coli. Microb Drug Resist 2: 99103.
  • Höltje J-V (1998) Growth of the stress-bearing and shape-maintaining murein sacculus of Escherichia coli. Microbiol Mol Biol Rev 62: 181203.
  • Höltje J-V & Tomasz A (1975) Lipoteichoic acid: a specific inhibitor of autolysin activity in pneumococcus. Proc Natl Acad Sci USA 72: 16901694.
  • Höltje J-V & Tuomanen EI (1991) The murein hydrolases of Escherichia coli: properties, functions and impact on the course of infections in vivo. J Gen Microbiol 137: 441454.
  • Höltje J-V, Mirelman D, Sharon N & Schwarz U (1975) Novel type of murein transglycosylase in Escherichia coli. J Bacteriol 124: 10671076.
  • Höltje J-V, Kopp U, Ursinus A & Wiedemann B (1994) The negative regulator of beta-lactamase induction AmpD is a N-acetyl-anhydromuramyl-l-alanine amidase. FEMS Microbiol Lett 122: 159164.
  • Horsburgh GJ, Atrih A & Foster SJ (2003a) Characterization of LytH, a differentiation-associated peptidoglycan hydrolase of Bacillus subtilis involved in endospore cortex maturation. J Bacteriol 185: 38133820.
  • Horsburgh GJ, Atrih A, Williamson MP & Foster SJ (2003b) LytG of Bacillus subtilis is a novel peptidoglycan hydrolase: the major active glucosaminidase. Biochemistry 42: 257264.
  • Hourdou ML, Duez C, Joris B, Vacheron MJ, Guinand M, Michel G & Ghuysen JM (1992) Cloning and nucleotide sequence of the gene encoding the gamma-d-glutamyl-l-diamino acid endopeptidase II of Bacillus sphaericus. FEMS Microbiol Lett 70: 165170.
  • Hourdou ML, Guinand M, Vacheron MJ et al. (1993) Characterization of the sporulation-related gamma-d-glutamyl-(l)meso-diaminopimelic-acid-hydrolysing peptidase I of Bacillus sphaericus NCTC 9602 as a member of the metallo(zinc) carboxypeptidase A family. Modular design of the protein. Biochem J 292: 563570.
  • Howell A, Dubrac S, Andersen KK, Noone D, Fert J, Msadek T & Devine K (2003) Genes controlled by the essential YycG/YycF two-component system of Bacillus subtilis revealed through a novel hybrid regulator approach. Mol Microbiol 49: 16391655.
  • Huard C, Miranda G, Wessner F, Bolotin A, Hansen J, Foster SJ & Chapot-Chartier MP (2003) Characterization of AcmB, an N-acetylglucosaminidase autolysin from Lactococcus lactis. Microbiology 149: 695705.
  • Huard C, Miranda G, Redko Y, Wessner F, Foster SJ & Chapot-Chartier MP (2004) Analysis of the peptidoglycan hydrolase complement of Lactococcus lactis: identification of a third N-acetylglucosaminidase, AcmC. Appl Environ Microbiol 70: 34933499.
  • Hughes RC, Tanner PJ & Stokes E (1970) Cell-wall thickening in Bacillus subtilis. Comparison of thickened and normal walls. Biochem J 120: 159170.
  • Ishikawa S, Yamane K & Sekiguchi J (1998) Regulation and characterization of a newly deduced cell wall hydrolase gene (cwlJ) which affects germination of Bacillus subtilis spores. J Bacteriol 180: 13751380.
  • Jacobs C, Joris B, Jamin M et al. (1995) AmpD, essential for both beta-lactamase regulation and cell wall recycling, is a novel cytosolic N-acetylmuramyl-l-alanine amidase. Mol Microbiol 15: 553559.
  • Jacobs C, Frere JM & Normark S (1997) Cytosolic intermediates for cell wall biosynthesis and degradation control inducible beta-lactam resistance in gram-negative bacteria. Cell 88: 823832.
  • Jolles P (1996) Lysozymes: Model Enzymes in Biochemistry and Biology. Birkhäuser, Basel.
  • Jolliffe LK, Doyle RJ & Streips UN (1981) The energized membrane and cellular autolysis in Bacillus subtilis. Cell 25: 753763.
  • Jones LJ, Carballido-Lopez R & Errington J (2001) Control of cell shape in bacteria: helical, actin-like filaments in Bacillus subtilis. Cell 104: 913922.
  • Joris B, Englebert S, Chu CP, Kariyama R, Daneo-Moore L, Shockman GD & Ghuysen JM (1992) Modular design of the Enterococcus hirae muramidase-2 and Streptococcus faecalis autolysin. FEMS Microbiol Lett 70: 257264.
  • Kaiser D (2003) Coupling cell movement to multicellular development in myxobacteria. Nat Rev Microbiol 1: 4554.
  • Kaiser D (2004) Signaling in myxobacteria. Annu Rev Microbiol 58: 7598.
  • Kajimura J, Fujiwara T, Yamada S et al. (2005) Identification and molecular characterization of an N-acetylmuramyl-l-alanine amidase Sle1 involved in cell separation of Staphylococcus aureus. Mol Microbiol 58: 10871101.
  • Karamanos Y (1997) Endo-N-acetyl-beta-d-glucosaminidases and their potential substrates: structure/function relationships. Res Microbiol 148: 661671.
  • Kawamura T & Shockman GD (1983) Purification and some properties of the endogenous, autolytic N-acetylmuramoylhydrolase of Streptococcus faecium, a bacterial glycoenzyme. J Biol Chem 258: 95149521.
  • Keck W & Schwarz U (1979) Escherichia coli murein-dd-endopeptidase insensitive to beta-lactam antibiotics. J Bacteriol 139: 770774.
  • Keck W, Van Leeuwen AM, Huber M & Goodell EW (1990) Cloning and characterization of mepA, the structural gene of the penicillin-insensitive murein endopeptidase from Escherichia coli. Mol Microbiol 4: 209219.
  • Keep NH, Ward JM, Cohen-Gonsaud M & Henderson B (2006) Wake up! Peptidoglycan lysis and bacterial non-growth states. Trends Microbiol 14: 271276.
  • Kishida H, Unzai S, Roper DI, Lloyd A, Park SY & Tame JR (2006) Crystal structure of penicillin binding protein 4 (dacB) from Escherichia coli, both in the native form and covalently linked to various antibiotics. Biochemistry 45: 783792.
  • Koch AL (1990) Additional arguments for the key role of “smart” autolysins in the enlargement of the wall of gram-negative bacteria. Res Microbiol 141: 529541.
  • Koch AL & Doyle RJ (1985) Inside-to-outside growth and turnover of the wall of gram-positive rods. J Theor Biol 117: 137157.
  • Koch AL, Kirchner G, Doyle RJ & Burdett ID (1985) How does a Bacillus split its septum right down the middle? Ann Inst Pasteur Microbiol 136A: 9198.
  • Komatsuzawa H, Sugai M, Nakashima S, Yamada S, Matsumoto A, Oshida T & Suginaka H (1997) Subcellular localization of the major autolysin, ATL and its processed proteins in Staphylococcus aureus. Microbiol Immunol 41: 469479.
  • Koraimann G (2003) Lytic transglycosylases in macromolecular transport systems of gram-negative bacteria. Cell Mol Life Sci 60: 23712388.
  • Korndorfer IP, Danzer J, Schmelcher M, Zimmer M, Skerra A & Loessner MJ (2006) The crystal structure of the bacteriophage PSA endolysin reveals a unique fold responsible for specific recognition of Listeria cell walls. J Mol Biol 364: 678689.
  • Korsak D, Vollmer W & Markiewicz Z (2005a) Listeria monocytogenes EGD lacking penicillin-binding protein 5 (PBP5) produces a thicker cell wall. FEMS Microbiol Lett 251: 281288.
  • Korsak D, Liebscher S & Vollmer W (2005b) Susceptibility to antibiotics and beta-lactamase induction in murein hydrolase mutants of Escherichia coli. Antimicrob Agents Chemother 49: 14041409.
  • Korza HJ & Bochtler M (2005) Pseudomonas aeruginosald-carboxypeptidase, a serine peptidase with a Ser-His-Glu triad and a nucleophilic elbow. J Biol Chem 280: 4080240812.
  • Kraft AR, Templin MF & Höltje J-V (1998) Membrane-bound lytic endotransglycosylase in Escherichia coli. J Bacteriol 180: 34413447.
  • Kraft AR, Prabhu J, Ursinus A & Höltje J-V (1999) Interference with murein turnover has no effect on growth but reduces beta-lactamase induction in Escherichia coli. J Bacteriol 181: 71927198.
  • Kuroda A & Sekiguchi J (1993) High-level transcription of the major Bacillus subtilis autolysin operon depends on expression of the sigma D gene and is affected by a sin (flaD) mutation. J Bacteriol 175: 795801.
  • Kuroda A, Asami Y & Sekiguchi J (1993) Molecular cloning of a sporulation-specific cell wall hydrolase gene of Bacillus subtilis. J Bacteriol 175: 62606268.
  • Lawrence PJ & Strominger JL (1970) Biosynthesis of the peptidoglycan of bacterial cell walls XVI. The reversible fixation of radioactive penicillin G to the d-alanine carboxypeptidase of Bacillus subtilis. J Biol Chem 245: 36603666.
  • Lazarevic V, Margot P, Soldo B & Karamata D (1992) Sequencing and analysis of the Bacillus subtilis lytRABC divergon: a regulatory unit encompassing the structural genes of the N-acetylmuramoyl-l-alanine amidase and its modifier. J Gen Microbiol 138 (Part 9): 19491961.
  • Leung AK, Duewel HS, Honek JF & Berghuis AM (2001) Crystal structure of the lytic transglycosylase from bacteriophage lambda in complex with hexa-N-acetylchitohexaose. Biochemistry 40: 56655673.
  • Lewis K (2000) Programmed death in bacteria. Microbiol Mol Biol Rev 64: 503514.
  • Liepinsh E, Genereux C, Dehareng D, Joris B & Otting G (2003) NMR structure of Citrobacter freundii AmpD, comparison with bacteriophage T7 lysozyme and homology with PGRP domains. J Mol Biol 327: 833842.
  • Loessner MJ (2005) Bacteriophage endolysins – current state of research and applications. Curr Opin Microbiol 8: 480487.
  • Loessner MJ, Wendlinger G & Scherer S (1995) Heterogeneous endolysins in Listeria monocytogenes bacteriophages: a new class of enzymes and evidence for conserved holin genes within the siphoviral lysis cassettes. Mol Microbiol 16: 12311241.
  • Lommatzsch J, Templin MF, Kraft AR, Vollmer W & Höltje J-V (1997) Outer membrane localization of murein hydrolases: MltA, a third lipoprotein lytic transglycosylase in Escherichia coli. J Bacteriol 179: 54655470.
  • Lopez R, Garcia E & Ronda C (1981) Bacteriophages of Streptococcus pneumoniae. Rev Infect Dis 3: 212223.
  • Low LY, Yang C, Perego M, Osterman A & Liddington RC (2005) Structure and lytic activity of a Bacillus anthracis prophage endolysin. J Biol Chem 280: 3543335439.
  • Lu JZ, Fujiwara T, Komatsuzawa H, Sugai M & Sakon J (2006) Cell wall-targeting domain of glycylglycine endopeptidase distinguishes among peptidoglycan cross-bridges. J Biol Chem 281: 549558.
  • Marcyjaniak M, Odintsov SG, Sabala I & Bochtler M (2004) Peptidoglycan amidase MepA is a LAS metallopeptidase. J Biol Chem 279: 4398243989.
  • Margot P & Karamata D (1992) Identification of the structural genes for N-acetylmuramoyl-l-alanine amidase and its modifier in Bacillus subtilis 168: inactivation of these genes by insertional mutagenesis has no effect on growth or cell separation. Mol Gen Genet 232: 359366.
  • Margot P, Mauel C & Karamata D (1994) The gene of the N-acetylglucosaminidase, a Bacillus subtilis 168 cell wall hydrolase not involved in vegetative cell autolysis. Mol Microbiol 12: 535545.
  • Margot P, Pagni M & Karamata D (1999) Bacillus subtilis 168 gene lytF encodes a gamma-d-glutamate-meso-diaminopimelate muropeptidase expressed by the alternative vegetative sigma factor, sigmaD. Microbiology 145: 5765.
  • Markiewicz Z, Glauner B & Schwarz U (1983) Murein structure and lack of dd- and ld-carboxypeptidase activities in Caulobacter crescentus. J Bacteriol 156: 649655.
  • Martin PK, Li T, Sun D, Biek DP & Schmid MB (1999) Role in cell permeability of an essential two-component system in Staphylococcus aureus. J Bacteriol 181: 36663673.
  • Meador-Parton J & Popham DL (2000) Structural analysis of Bacillus subtilis spore peptidoglycan during sporulation. J Bacteriol 182: 44914499.
  • Meberg BM, Paulson AL, Priyadarshini R & Young KD (2004) Endopeptidase penicillin-binding proteins 4 and 7 play auxiliary roles in determining uniform morphology of Escherichia coli. J Bacteriol 186: 83268336.
  • Meisel U, Höltje J-V & Vollmer W (2003) Overproduction of inactive variants of the murein synthase PBP1B causes lysis in Escherichia coli. J Bacteriol 185: 53425348.
  • Mengin-Lecreulx D & Lemaitre B (2005) Structure and metabolism of peptidoglycan and molecular requirements allowing its detection by the Drosophila innate immune system. J Endotoxin Res 11: 105111.
  • Mengin-Lecreulx D, Van Heijenoort J & Park JT (1996) Identification of the mpl gene encoding UDP-N-acetylmuramate: l-alanyl-gamma-d-glutamyl-meso-diaminopimelate ligase in Escherichia coli and its role in recycling of cell wall peptidoglycan. J Bacteriol 178: 53475352.
  • Mercier C, Durrieu C, Briandet R, Domakova E, Tremblay J, Buist G & Kulakauskas S (2002) Positive role of peptidoglycan breaks in lactococcal biofilm formation. Mol Microbiol 46: 235243.
  • Milohanic E, Jonquieres R, Cossart P, Berche P & Gaillard JL (2001) The autolysin Ami contributes to the adhesion of Listeria monocytogenes to eukaryotic cells via its cell wall anchor. Mol Microbiol 39: 12121224.
  • Monterroso B, Lopez-Zumel C, Garcia JL, Saiz JL, Garcia P, Campillo NE & Menendez M (2005) Unravelling the structure of the pneumococcal autolytic lysozyme. Biochem J 391: 4149.
  • Moriyama R, Fukuoka H, Miyata S et al. (1999) Expression of a germination-specific amidase, SleB, of Bacilli in the forespore compartment of sporulating cells and its localization on the exterior side of the cortex in dormant spores. J Bacteriol 181: 23732378.
  • Morlot C, Noirclerc-Savoye M, Zapun A, Dideberg O & Vernet T (2004) The d,d-carboxypeptidase PBP3 organizes the division process of Streptococcus pneumoniae. Mol Microbiol 51: 16411648.
  • Morlot C, Pernot L, Le Gouellec A, Di Guilmi AM, Vernet T, Dideberg O & Dessen A (2005) Crystal structure of a peptidoglycan synthesis regulatory factor (PBP3) from Streptococcus pneumoniae. J Biol Chem 280: 1598415991.
  • Moscoso M & Claverys JP (2004) Release of DNA into the medium by competent Streptococcus pneumoniae: kinetics, mechanism and stability of the liberated DNA. Mol Microbiol 54: 783794.
  • Mukamolova GV, Kaprelyants AS, Young DI, Young M & Kell DB (1998) A bacterial cytokine. Proc Natl Acad Sci USA 95: 89168921.
  • Mukamolova GV, Murzin AG, Salina EG, Demina GR, Kell DB, Kaprelyants AS & Young M (2006) Muralytic activity of Micrococcus luteus Rpf and its relationship to physiological activity in promoting bacterial growth and resuscitation. Mol Microbiol 59: 8498.
  • Mulder L, Lefebvre B, Cullimore J & Imberty A (2006) LysM domains of Medicago truncatula NFP protein involved in Nod factor perception. Glycosylation state, molecular modeling and docking of chitooligosaccharides and Nod factors. Glycobiology 16: 801809.
  • Nambu T, Minamino T, Macnab RM & Kutsukake K (1999) Peptidoglycan-hydrolyzing activity of the FlgJ protein, essential for flagellar rod formation in Salmonella typhimurium. J Bacteriol 181: 15551561.
  • Nelson DE & Young KD (2001) Contributions of PBP 5 and dd-carboxypeptidase penicillin binding proteins to maintenance of cell shape in Escherichia coli. J Bacteriol 183: 30553064.
  • Ng WL, Robertson GT, Kazmierczak KM, Zhao J, Gilmour R & Winkler ME (2003) Constitutive expression of PcsB suppresses the requirement for the essential VicR (YycF) response regulator in Streptococcus pneumoniae R6. Mol Microbiol 50: 16471663.
  • Ng WL, Kazmierczak KM & Winkler ME (2004) Defective cell wall synthesis in Streptococcus pneumoniae R6 depleted for the essential PcsB putative murein hydrolase or the VicR (YycF) response regulator. Mol Microbiol 53: 11611175.
  • Nicholas RA, Krings S, Tomberg J, Nicola G & Davies C (2003) Crystal structure of wild-type penicillin-binding protein 5 from Escherichia coli: implications for deacylation of the acyl-enzyme complex. J Biol Chem 278: 5282652833.
  • Nugroho FA, Yamamoto H, Kobayashi Y & Sekiguchi J (1999) Characterization of a new sigma-K-dependent peptidoglycan hydrolase gene that plays a role in Bacillus subtilis mother cell lysis. J Bacteriol 181: 62306237.
  • Odintsov SG, Sabala I, Marcyjaniak M & Bochtler M (2004) Latent LytM at 1.3A resolution. J Mol Biol 335: 775785.
  • Ohnishi R, Ishikawa S & Sekiguchi J (1999) Peptidoglycan hydrolase LytF plays a role in cell separation with CwlF during vegetative growth of Bacillus subtilis. J Bacteriol 181: 31783184.
  • Oliver JD (2005) The viable but nonculturable state in bacteria. J Microbiol 43: 93100.
  • Oshida T, Sugai M, Komatsuzawa H, Hong YM, Suginaka H & Tomasz A (1995) A Staphylococcus aureus autolysin that has an N-acetylmuramoyl-l-alanine amidase domain and an endo-beta-N-acetylglucosaminidase domain: cloning, sequence analysis, and characterization. Proc Natl Acad Sci USA 92: 285289.
  • Paidhungat M, Ragkousi K & Setlow P (2001) Genetic requirements for induction of germination of spores of Bacillus subtilis by Ca(2+)-dipicolinate. J Bacteriol 183: 48864893.
  • Park JT (1995) Why does Escherichia coli recycle its cell wall peptides? Mol Microbiol 17: 421426.
  • Park JT (1996) The convergence of murein recycling research with beta-lactamase research. Microb Drug Resist 2: 105112.
  • Patton TG, Yang SJ & Bayles KW (2006) The role of proton motive force in expression of the Staphylococcus aureus cid and lrg operons. Mol Microbiol 59: 13951404.
  • Pei J & Grishin NV (2005) COG3926 and COG5526: a tale of two new lysozyme-like protein families. Protein Sci 14: 25742581.
  • Piggot PJ & Hilbert DW (2004) Sporulation of Bacillus subtilis. Curr Opin Microbiol 7: 579586.
  • Ponting CP, Aravind L, Schultz J, Bork P & Koonin EV (1999) Eukaryotic signalling domain homologues in archaea and bacteria. Ancient ancestry and horizontal gene transfer. J Mol Biol 289: 729745.
  • Pooley HM (1976) Turnover and spreading of old wall during surface growth of Bacillus subtilis. J Bacteriol 125: 11271138.
  • Pooley HM & Shockman GD (1970) Relationship between the location of autolysin, cell wall synthesis, and the development of resistance to cellular autolysis in Streptococcus faecalis after inhibition of protein synthesis. J Bacteriol 103: 457466.
  • Popham DL, Helin J, Costello CE & Setlow P (1996) Muramic lactam in peptidoglycan of Bacillus subtilis spores is required for spore outgrowth but not for spore dehydration or heat resistance. Proc Natl Acad Sci USA 93: 1540515410.
  • Popham DL, Gilmore ME & Setlow P (1999) Roles of low-molecular-weight penicillin-binding proteins in Bacillus subtilis spore peptidoglycan synthesis and spore properties. J Bacteriol 181: 126132.
  • Powell AJ, Liu ZJ, Nicholas RA & Davies C (2006) Crystal structures of the lytic transglycosylase MltA from N. gonorrhoeae and E. coli: insights into interdomain movements and substrate binding. J Mol Biol 359: 122136.
  • Priyadarshini R, Popham DL & Young KD (2006) Daughter cell separation by penicillin-binding proteins and peptidoglycan amidases in Escherichia coli. J Bacteriol 188: 53455355.
  • Rashid MH, Mori M & Sekiguchi J (1995) Glucosaminidase of Bacillus subtilis: cloning, regulation, primary structure and biochemical characterization. Microbiology 141: 23912404.
  • Rau A, Hogg T, Marquardt R & Hilgenfeld R (2001) A new lysozyme fold. Crystal structure of the muramidase from Streptomyces coelicolor at 1.65 A resolution. J Biol Chem 276: 3199431999.
  • Reichenbach H (1999) The ecology of the myxobacteria. Environ Microbiol 1: 1521.
  • Reid CW, Blackburn NT, Legaree BA, Auzanneau FI & Clarke AJ (2004) Inhibition of membrane-bound lytic transglycosylase B by NAG-thiazoline. FEBS Lett 574: 7379.
  • Rice KC & Bayles KW (2003) Death's toolbox: examining the molecular components of bacterial programmed cell death. Mol Microbiol 50: 729738.
  • Romeis T & Höltje J-V (1994a) Penicillin-binding protein 7/8 of Escherichia coli is a DD-endopeptidase. Eur J Biochem 224: 597604.
  • Romeis T & Höltje J-V (1994b) Specific interaction of penicillin-binding proteins 3 and 7/8 with soluble lytic transglycosylase in Escherichia coli. J Biol Chem 269: 2160321607.
  • Romeis T, Vollmer W & Höltje J-V (1993) Characterization of three different lytic transglycosylases in Escherichia coli. FEMS Microbiol Lett 111: 141146.
  • Rosenbluh A & Rosenberg E (1993) Developmental lysis and auticides. Myxobacteria II (DworkinM & KaiserD, eds), pp. 213233. American Society for Microbioloy, Washington, DC.
  • Sauvage E, Herman R, Petrella S, Duez C, Bouillenne F, Frere JM & Charlier P (2005) Crystal structure of the Actinomadura R39 DD-peptidase reveals new domains in penicillin-binding proteins. J Biol Chem 280: 3124931256.
  • Sauvage E, Duez C, Herman R et al. (2007) Crystal structure of the Bacillus subtilis penicillin-binding protein 4a, and its complex with a peptidoglycan mimetic peptide. J Mol Biol 371: 528539.
  • Sauvage E, Charlier P, Terrak M & Ayala JA (2008) The penicillin-binding proteins: structure and role in peptidoglycan biosynthesis. FEMS Microbiol Rev 32: 234258.
  • Scheurwater E, Reid CW & Clarke AJ (2007) Lytic transglycosylases: bacterial space-making autolysins. Int J Biochem Cell Biol, doi: DOI: 10.1016/j.biocel.2007.03.018
  • Schmidt DM, Hubbard BK & Gerlt JA (2001) Evolution of enzymatic activities in the enolase superfamily: functional assignment of unknown proteins in Bacillus subtilis and Escherichia coli as l-Ala-d/l-Glu epimerases. Biochemistry 40: 1570715715.
  • Schuster C, Dobrinski B & Hakenbeck R (1990) Unusual septum formation in Streptococcus pneumoniae mutants with an alteration in the d,d-carboxypeptidase penicillin-binding protein 3. J Bacteriol 172: 64996505.
  • Scott JR & Barnett TC (2006) Surface proteins of gram-positive bacteria and how they get there. Annu Rev Microbiol 60: 397423.
  • Sekiguchi J, Akeo K, Yamamoto H, Khasanov FK, Alonso JC & Kuroda A (1995) Nucleotide sequence and regulation of a new putative cell wall hydrolase gene, cwlD, which affects germination in Bacillus subtilis. J Bacteriol 177: 55825589.
  • Serizawa M, Yamamoto H, Yamaguchi H, Fujita Y, Kobayashi K, Ogasawara N & Sekiguchi J (2004) Systematic analysis of SigD-regulated genes in Bacillus subtilis by DNA microarray and Northern blotting analyses. Gene 329: 125136.
  • Seto H & Tomasz A (1975) Protoplast formation and leakage of intramembrane cell components: induction by the competence activator substance of pneumococci. J Bacteriol 121: 344353.
  • Shockman GD (1992) The autolytic (‘suicidase’) system of Enterococcus hirae: from lysine depletion autolysis to biochemical and molecular studies of the two muramidases of Enterococcus hirae ATCC 9790. FEMS Microbiol Lett 79: 261267.
  • Shockman GD & Höltje J-V (1994) Microbial peptidoglycan (murein) hydrolases. Bacterial Cell Wall (GhuysenJ-M & HakenbeckR, eds), pp. 131166. Elsevier, Amsterdam.
  • Shockman GD, Daneo-Moore L, Kariyama R & Massidda O (1996) Bacterial walls, peptidoglycan hydrolases, autolysins, and autolysis. Microb Drug Resist 2: 9598.
  • Singh BN (1947) Myxobacteria in soils and compost; their distribution, number and lytic action on bacteria. J Gen Microbiol 1: 110.
  • Smith TJ & Foster SJ (1995) Characterization of the involvement of two compensatory autolysins in mother cell lysis during sporulation of Bacillus subtilis 168. J Bacteriol 177: 38553862.
  • Smith TJ, Blackman SA & Foster SJ (2000) Autolysins of Bacillus subtilis: multiple enzymes with multiple functions. Microbiology 146: 249262.
  • Sogaard-Andersen L (2004) Cell polarity, intercellular signalling and morphogenetic cell movements in Myxococcus xanthus. Curr Opin Microbiol 7: 587593.
  • Steen A, Buist G, Horsburgh GJ, Venema G, Kuipers OP, Foster SJ & Kok J (2005) AcmA of Lactococcus lactis is an N-acetylglucosaminidase with an optimal number of LysM domains for proper functioning. Febs J 272: 28542868.
  • Stefanova ME, Tomberg J, Olesky M, Holtje JV, Gutheil WG & Nicholas RA (2003) Neisseria gonorrhoeae penicillin-binding protein 3 exhibits exceptionally high carboxypeptidase and beta-lactam binding activities. Biochemistry 42: 1461414625.
  • Steinmoen H, Teigen A & Havarstein LS (2003) Competence-induced cells of Streptococcus pneumoniae lyse competence-deficient cells of the same strain during cocultivation. J Bacteriol 185: 71767183.
  • Strynadka NCJ & James MNG (1996) Lysozyme: a model enzyme in protein crystallography. Lysozymes: Model Enzymes in Biochemistry and Biology (JollesP, ed), pp. 185222. Birkhäuser Verlag, Basel.
  • Stubbs KA, Balcewich M, Mark BL & Vocadlo DJ (2007) Small molecule inhibitors of a glycoside hydrolase attenuate inducible AmpC mediated beta-lactam resistance. J Biol Chem 282: 2138221391.
  • Sudo S & Dworkin M (1972) Bacteriolytic enzymes produced by Myxococcus xanthus. J Bacteriol 110: 236245.
  • Takahashi J, Komatsuzawa H, Yamada S et al. (2002) Molecular characterization of an atl null mutant of Staphylococcus aureus. Microbiol Immunol 46: 601612.
  • Templin MF, Ursinus A & Höltje J-V (1999) A defect in cell wall recycling triggers autolysis during the stationary growth phase of Escherichia coli. EMBO J 18: 41084117.
  • Thunnissen AM, Dijkstra AJ, Kalk KH, Rozeboom HJ, Engel H, Keck W & Dijkstra BW (1994) Doughnut-shaped structure of a bacterial muramidase revealed by X-ray crystallography. Nature 367: 750753.
  • Thunnissen AM, Isaacs NW & Dijkstra BW (1995a) The catalytic domain of a bacterial lytic transglycosylase defines a novel class of lysozymes. Proteins 22: 245258.
  • Thunnissen AM, Rozeboom HJ, Kalk KH & Dijkstra BW (1995b) Structure of the 70-kDa soluble lytic transglycosylase complexed with bulgecin A. Implications for the enzymatic mechanism. Biochemistry 34: 1272912737.
  • Tomasz A (1974) The role of autolysins in cell death. Ann N Y Acad Sci 235: 439447.
  • Tomasz A (1979a) From penicillin-binding proteins to the lysis and death of bacteria: a 1979 view. Rev Infect Dis 1: 434467.
  • Tomasz A (1979b) The mechanism of the irreversible antimicrobial effects of penicillins: how the beta-lactam antibiotics kill and lyse bacteria. Annu Rev Microbiol 33: 113137.
  • Tomasz A (1980) On the mechanism of the irreversible antimicrobial effects of beta-lactams. Philos Trans R Soc Lond B Biol Sci 289: 303308.
  • Uehara T & Park JT (2003) Identification of MpaA, an amidase in Escherichia coli that hydrolyzes the gamma-d-glutamyl-meso-diaminopimelate bond in murein peptides. J Bacteriol 185: 679682.
  • Uehara T & Park JT (2004) The N-acetyl-d-glucosamine kinase of Escherichia coli and its role in murein recycling. J Bacteriol 186: 72737279.
  • Uehara T & Park JT (2007) An anhydro-N-acetylmuramyl-l-alanine amidase with broad specificity tethered to the outer membrane of Escherichia coli. J Bacteriol 189: 56345641.
  • Uehara T, Suefuji K, Valbuena N, Meehan B, Donegan M & Park JT (2005) Recycling of the anhydro-N-acetylmuramic acid derived from cell wall murein involves a two-step conversion to N-acetylglucosamine-phosphate. J Bacteriol 187: 36433649.
  • Uehara T, Suefuji K, Jaeger T, Mayer C & Park JT (2006) MurQ Etherase is required by Escherichia coli in order to metabolize anhydro-N-acetylmuramic acid obtained either from the environment or from its own cell wall. J Bacteriol 188: 16601662.
  • Ursinus A & Höltje J-V (1994) Purification and properties of a membrane-bound lytic transglycosylase from Escherichia coli. J Bacteriol 176: 338343.
  • Ursinus A, Van Den Ent F, Brechtel S, De Pedro M, Höltje J-V, Löwe J & Vollmer W (2004) Murein (peptidoglycan) binding property of the essential cell division protein FtsN from Escherichia coli. J Bacteriol 186: 67286737.
  • Van Asselt EJ, Thunnissen AM & Dijkstra BW (1999a) High resolution crystal structures of the Escherichia coli lytic transglycosylase Slt70 and its complex with a peptidoglycan fragment. J Mol Biol 291: 877898.
  • Van Asselt EJ, Dijkstra AJ, Kalk KH, Takacs B, Keck W & Dijkstra BW (1999b) Crystal structure of Escherichia coli lytic transglycosylase Slt35 reveals a lysozyme-like catalytic domain with an EF-hand. Structure Fold Des 7: 11671180.
  • Van Asselt EJ, Kalk KH & Dijkstra BW (2000) Crystallographic studies of the interactions of Escherichia coli lytic transglycosylase Slt35 with peptidoglycan. Biochemistry 39: 19241934.
  • Van Straaten KE, Dijkstra BW, Vollmer W & Thunnissen AM (2005) Crystal structure of MltA from Escherichia coli reveals a unique lytic transglycosylase fold. J Mol Biol 352: 10681080.
  • Van Straaten KE, Barends TR, Dijkstra BW & Thunnissen AM (2007) Structure of Escherichia coli Lytic Transglycosylase MltA with bound Chitohexaose: implications for peptidoglycan-binding and cleavage. J Biol Chem 282: 2119721205.
  • Vazquez-Laslop N, Lee H, Hu R & Neyfakh AA (2001) Molecular sieve mechanism of selective release of cytoplasmic proteins by osmotically shocked Escherichia coli. J Bacteriol 183: 23992404.
  • Vollmer W (2007) Structural variation in the glycan strands of bacterial peptidoglycan. FEMS Microbiol Rev 32: 287306.
  • Vollmer W & Bertsche U (2007) Murein (peptidoglycan) structure, architecture and biosynthesis in Escherichia coli. Biochimica et Biophysica Acta (BBA) – Biomembranes, doi: DOI: 10.1016/j.bbamem.2007.06.007
  • Vollmer W & Höltje J-V (2001) Morphogenesis of Escherichia coli. Curr Opin Microbiol 4: 625633.
  • Vollmer W, Pilsl H, Hantke K, Höltje J-V & Braun V (1997) Pesticin displays muramidase activity. J Bacteriol 179: 15801583.
  • Vollmer W, Von Rechenberg M & Höltje J-V (1999) Demonstration of molecular interactions between the murein polymerase PBP1B, the lytic transglycosylase MltA, and the scaffolding protein MipA of Escherichia coli. J Biol Chem 274: 67266734.
  • Vollmer W, Blanot D & De Pedro MA (2008) Peptidoglycan structure and architecture. FEMS Microbiol Rev 32: 149167.
  • Von Rechenberg M, Ursinus A & Höltje J-V (1996) Affinity chromatography as a means to study multienzyme complexes involved in murein synthesis. Microb Drug Resist 2: 155157.
  • Vötsch W & Templin MF (2000) Characterization of a beta-N-acetylglucosaminidase of Escherichia coli and elucidation of its role in muropeptide recycling and beta-lactamase induction. J Biol Chem 275: 3903239038.
  • Weidel W & Pelzer H (1964) Bagshaped macromolecules – a new outlook on bacterial cell walls. Advances in Enzymology 26: 193232.
  • Whisstock JC & Lesk AM (1999) SH3 domains in prokaryotes. Trends Biochem Sci 24: 132133.
  • Wuenscher MD, Kohler S, Bubert A, Gerike U & Goebel W (1993) The iap gene of Listeria monocytogenes is essential for cell viability, and its gene product, p60, has bacteriolytic activity. J Bacteriol 175: 34913501.
  • Yamada S, Sugai M, Komatsuzawa H, Nakashima S, Oshida T, Matsumoto A & Suginaka H (1996) An autolysin ring associated with cell separation of Staphylococcus aureus. J Bacteriol 178: 15651571.
  • Yamaguchi H, Furuhata K, Fukushima T, Yamamoto H & Sekiguchi J (2004) Characterization of a new Bacillus subtilis peptidoglycan hydrolase gene, yvcE (named cwlO), and the enzymatic properties of its encoded protein. J Biosci Bioeng 98: 174181.
  • Yamamoto H, Kurosawa S & Sekiguchi J (2003) Localization of the vegetative cell wall hydrolases LytC, LytE, and LytF on the Bacillus subtilis cell surface and stability of these enzymes to cell wall-bound or extracellular proteases. J Bacteriol 185: 66666677.
  • Yang JC, Van Den Ent F, Neuhaus D, Brevier J & Löwe J (2004) Solution structure and domain architecture of the divisome protein FtsN. Mol Microbiol 52: 651660.
  • Young R (1992) Bacteriophage lysis: mechanism and regulation. Microbiol Rev 56: 430481.
  • Zahrl D, Wagner M, Bischof K et al. (2005) Peptidoglycan degradation by specialized lytic transglycosylases associated with type III and type IV secretion systems. Microbiology 151: 34553467.