SEARCH

SEARCH BY CITATION

References

  • Abo-Ghalia M, Michaud C, Blanot D & Van Heijenoort J (1985) Specificity of the uridine-diphosphate-N-acetylmuramyl-l-alanyl-d-glutamate: meso-2,6-diaminopimelate synthetase from Escherichia coli. Eur J Biochem 153: 8187.
  • Abo-Ghalia M, Flegel M, Blanot D & Van Heijenoort J (1988) Synthesis of inhibitors of the meso-diaminopimelate-adding enzyme from Escherichia coli. Int J Peptide Protein Res 32: 208222.
  • Adams B, Lowpetch K, Thorndycroft F, Whyte SM & Young DW (2005) Stereochemistry of reactions of the inhibitor/substrates l- and d-β-chloroalanine with β-mercaptoethanol catalysed by l-aspartate aminotransferase and d-amino acid aminotransferase respectively. Org Biomol Chem 3: 33573364.
  • Al-Bar OAM, O'Connor CD, Giles IG & Akhtar M (1992) d-alanine : d-alanine ligase of Escherichia coli. Expression, purification and inhibitory studies on the cloned enzyme. Biochem J 282: 747752.
  • Allen JG, Atherton FR, Hall MJ, Hassall CH, Holmes SW, Lambert RW, Nisbet LJ & Ringrose PS (1978) Phosphonopeptides, a new class of synthetic antibacterial agents. Nature 272: 5658.
  • Anderson MS, Eveland SS, Onishi HR & Pompliano DL (1996) Kinetic mechanism of the Escherichia coli UDPMurNAc-tripeptide d-alanyl-d-alanine-adding enzyme: use of a glutathione S-transferase fusion. Biochemistry 35: 1626416269.
  • Andres CJ, Bronson JJ, D'Andrea SV et al. (2000) 4-Thiazolidinones: novel inhibitors of the bacterial enzyme MurB. Bioorg Med Chem Lett 10: 715717.
  • Antane S, Caufield CE, Hu W et al. (2006) Pulvinones as bacterial cell wall biosynthesis inhibitors. Bioorg Med Chem Lett 16: 176180.
  • Anwar RA & Vlaovic M (1986) UDP-N-acetylmuramoyl-l-alanyl-d-glutamyl-l-lysine synthetase from Bacillus sphaericus: activation by potassium phosphate. Biochem Cell Biol 64: 297303.
  • Ashiuchi M & Misono H (2002) Biochemistry and molecular genetics of poly-γ-glutamate synthesis. Appl Microbiol Biotechnol 59: 914.
  • Ashiuchi M, Yoshimura T, Esaki N, Ueno H & Soda K (1993) Inactivation of glutamate racemase of Pediococcus pentosaceus by l-serine-O-sulfate. Biosci Biotechnol Biochem 57: 19781979.
  • Ashiuchi M, Tani K, Soda K & Misono H (1998) Properties of glutamate racemase from Bacillus subtilis IFO 3336 producing poly-γ-glutamate. J Biochem (Tokyo) 123: 11561163.
  • Ashiuchi M, Soda K & Misono H (1999) Characterization of yrpC gene product of Bacillus subtilis IFO 3336 as glutamate racemase isozyme. Biosci Biotechnol Biochem 63: 792798.
  • Ashiuchi M, Kuwana E, Yamamoto T, Komatsu K, Soda K & Misono H (2002) Glutamate racemase is an endogenous DNA gyrase inhibitor. J Biol Chem 277: 3907039073.
  • Ashiuchi M, Kuwana E, Komatsu K, Soda K & Misono H (2003) Differences in effects on DNA gyrase activity between two glutamate racemases of Bacillus subtilis, the poly-γ-glutamate synthesis-linking Glr enzyme and the YrpC (MurI) isozyme. FEMS Microbiol Lett 223: 221225.
  • Ashiuchi M, Nishikawa Y, Matsunaga K, Yamamoto M, Shimanouchi K & Misono H (2007) Genetic design of conditional d-glutamate auxotrophy for Bacillus subtilis: use of a vector-borne poly-γ-glutamate synthetic system. Biochem Biophys Res Commun 362: 646650.
  • Atherton FR, Hall MJ, Hassall CH, Lambert RW & Ringrose PS (1979a) Phosphonopeptides as antibacterial agents: rationale, chemistry, and structure-activity relationships. Antimicrob Agents Chemother 15: 677683.
  • Atherton FR, Hall MJ, Hassall CH, Lambert RW, Lloyd WJ & Ringrose PS (1979b) Phosphonopeptides as antibacterial agents: mechanism of action of alaphosphin. Antimicrob Agents Chemother 15: 696705.
  • Atherton FR, Hall MJ, Hassall CH, Lambert RW, Lloyd WJ, Ringrose PS & Westmacott D (1982) Antibacterial activity and mechanism of action of phosphonopeptides based on aminomethylphosphonic acid. Antimicrob Agents Chemother 22: 571578.
  • Auger G, Van Heijenoort J, Blanot D & Deprun C (1995) Synthesis of N-acetylmuramic acid derivatives as potential inhibitors of the d-glutamic acid-adding enzyme. J Prakt Chem 337: 351357.
  • Auger G, Van Heijenoort J, Vederas JC & Blanot D (1996) Effect of analogues of diaminopimelic acid on the meso-diaminopimelate-adding enzyme from Escherichia coli. FEBS Lett 391: 171174.
  • Auger G, Martin L, Bertrand J, Ferrari P, Fanchon E, Vaganay S, Pétillot Y, Van Heijenoort J, Blanot D & Dideberg O (1998) Large-scale preparation, purification, and crystallization of UDP-N-acetylmuramoyl-l-alanine: d-glutamate ligase from Escherichia coli. Protein Expr Purif 13: 2329.
  • Axelsson BS, Floss HG, Lee SG, Saeed A, Spencer PA & Young DW (1994) Stereochemistry of conversion of the suicide substrates β-chloro-d-alanine and d- and l-serine O-sulfates into pyruvate by d-amino acid aminotransferase and by l-aspartate aminotransferase. J Chem Soc Perkin Trans 1 21372142.
  • Azzolina BA, Yuan X, Anderson MS & El-Sherbeini M (2001) The cell wall and cell division gene cluster in the mra operon of Pseudomonas aeruginosa: cloning, production, and purification of active enzymes. Protein Expr Purif 21: 393400.
  • Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL & Mori H (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2: 111.
  • Babič A & Pečar S (2007) An improved total synthesis of UDP-N-acetyl-muramic acid. Tetrahedron Lett 48: 44034405.
  • Babič A, Patin D, Boniface A, Hervé M, Mengin-Lecreulx D, Pečar S, Gobec S & Blanot D (2007) Chemoenzymatic synthesis of the nucleotide substrates of the Mur ligases. 5th Joint Meeting on Medicinal Chemistry, June 17–21, Portorož, Slovenia, (Kikelj D, ed.), pp. 1–4. Medimond Srl, Bologna, Italy.
  • Bachelier A, Mayer R & Klein CD (2006) Sesquiterpene lactones are potent and irreversible inhibitors of the antibacterial target enzyme MurA. Bioorg Med Chem Lett 16: 56055609.
  • Badet B & Walsh C (1985) Purification of an alanine racemase from Streptococcus faecalis and analysis of its inactivation by (1-aminoethyl)phosphonic acid enantiomers. Biochemistry 24: 13331341.
  • Badet B, Roise D & Walsh CT (1984) Inactivation of the dadB Salmonella typhimurium alanine racemase by D and L isomers of β-substituted alanines: kinetics, stoichiometry, active site peptide sequencing, and reaction mechanism. Biochemistry 23: 51885194.
  • Badet B, Inagaki K, Soda K & Walsh CT (1986) Time-dependent inhibition of Bacillus stearothermophilus alanine racemase by (1-aminoethyl)phosphonate isomers by isomerization to noncovalent slowly dissociating enzyme-(1-aminoethyl)phosphonate complexes. Biochemistry 25: 32753282.
  • Badet B, Vermoote P, Haumont PY, Lederer F & Le Goffic F (1987) Glucosamine synthetase from Escherichia coli: purification, properties, and glutamine-utilizing site location. Biochemistry 26: 19401948.
  • Badet B, Vermoote P & Le Goffic F (1988) Glucosamine synthetase from Escherichia coli: kinetic mechanism and inhibition by N3-fumaroyl-l-2,3-diaminopropionic derivatives. Biochemistry 27: 22822287.
  • Badet-Denisot MA, René L & Badet B (1993) Mechanistic investigations on glucosamine-6-phosphate synthase. Bull Soc Chim Fr 130: 249255.
  • Badet-Denisot MA, Leriche C, Massière F & Badet B (1995) Nitrogen transfer in E. coli glucosamine-6-phosphate synthase investigations using substrate and bisubstrate analogs. Bioorg Med Chem Lett 5: 815820.
  • Badet-Denisot MA, Fernandez-Herrero LA, Berenguer J, Ooi T & Badet B (1997) Characterization of l-glutamine: d-fructose-6-phosphate amidotransferase from an extreme thermophile Thermus thermophilus HB8. Arch Biochem Biophys 337: 129136.
  • Barbosa MDFS, Yang G, Fang J, Kurilla MG & Pompliano DL (2002) Development of a whole-cell assay for peptidoglycan biosynthesis inhibitors. Antimicrob Agents Chemother 46: 943946.
  • Baum EZ, Montenegro DA, Licata L, Turchi I, Webb GC, Foleno BD & Bush K (2001) Identification and characterization of new inhibitors of the Escherichia coli MurA enzyme. Antimicrob Agents Chemother 45: 31823188.
  • Baum EZ, Crespo-Carbone SM, Abbanat D, Foleno B, Maden A, Goldschmidt R & Bush K (2006) Utility of muropeptide ligase for identification of inhibitors of the cell wall biosynthesis enzyme MurF. Antimicrob Agents Chemother 50: 230236.
  • Bearne SL (1996) Active site-directed inactivation of Escherichia coli glucosamine-6-phosphate synthase. Determination of the fructose 6-phosphate binding constant using a carbohydrate-based inactivator. J Biol Chem 271: 30523057.
  • Bearne SL & Blouin C (2000) Inhibition of Escherichia coli glucosamine-6-phosphate synthase by reactive intermediate analogues. The role of the 2-amino function in catalysis. J Biol Chem 275: 135140.
  • Benson TE, Marquardt JL, Marquardt AC, Etzkorn FA & Walsh CT (1993) Overexpression, purification, and mechanistic study of UDP-N-acetylenolpyruvylglucosamine reductase. Biochemistry 32: 20242030.
  • Benson TE, Filman DJ, Walsh CT & Hogle JM (1995) An enzyme-substrate complex involved in bacterial cell wall biosynthesis. Nat Struct Biol 2: 644653.
  • Benson TE, Walsh CT & Hogle JM (1996) The structure of the substrate-free form of MurB, an essential enzyme for the synthesis of bacterial cell walls. Structure 4: 4754.
  • Benson TE, Walsh CT & Hogle JM (1997a) X-ray crystal structures of the S229A mutant and wild-type MurB in the presence of the substrate enolpyruvyl-UDP-N-acetylglucosamine at 1.8-Å resolution. Biochemistry 36: 806811.
  • Benson TE, Walsh CT & Massey V (1997b) Kinetic characterization of wild-type and S229A mutant of MurB: evidence for the role of Ser 229 as a general catalyst. Biochemistry 36: 796805.
  • Benson TE, Harris MS, Choi GH, Cialdella JI, Herberg JT, Martin JP Jr & Baldwin ET (2001) A structural variation for MurB: X-ray crystal structure of Staphylococcus aureus UDP-N-acetylenolpyruvylglucosamine reductase (MurB). Biochemistry 40: 23402350.
  • Berger BJ, English S, Chan G & Knodel MH (2003) Methionine regeneration and aminotransferases in Bacillus subtilis, Bacillus cereus, and Bacillus anthracis. J Bacteriol 185: 24182431.
  • Berlyn KB, Low KB & Rudd KE (1996) Linkage map of Escherichia coli K-12, edition 9. Escherichia coli and Salmonella: Cellular and Molecular Biology, Vol. 2 (NeidhardtFC, CurtissRIII, IngrahamJL, LinECC, LowKB, MagasanikB, ReznikoffWS, RileyM, SchaechterM & UmbargerHE, eds), pp. 17151902. ASM Press, Washington, DC.
  • Bertrand JA, Auger G, Fanchon E, Martin L, Blanot D, Van Heijenoort J & Dideberg O (1997) Crystal structure of UDP-N-acetylmuramoyl-l-alanine: d-glutamate ligase from Escherichia coli. EMBO J 16: 34163425.
  • Bertrand JA, Auger G, Martin L, Fanchon E, Blanot D, Le Beller D, Van Heijenoort J & Dideberg O (1999) Determination of the MurD mechanism through crystallographic analysis of enzymes complexes. J Mol Biol 289: 579590.
  • Bertrand JA, Fanchon E, Martin L, Chantalat L, Auger G, Blanot D, Van Heijenoort J & Dideberg O (2001) ‘Open’ structures of MurD: domain movements and structural similarities with folylpolyglutamate synthetase. J Mol Biol 301: 12571266.
  • Besong GE, Bostock JM, Stubbings W, Chopra I, Roper DI, Lloyd AJ, Fishwick CW & Johnson AP (2005) A de novo designed inhibitor of d-Ala-d-Ala ligase from E. coli. Angew Chem Int Ed Engl 44: 64036406.
  • Blanot D, Auger G, Liger D & Van Heijenoort J (1994) Synthesis of α and β anomers of UDP-N-acetylmuramic acid. Carbohydr Res 252: 107115.
  • Blewett AM, Lloyd AJ, Echalier A, Fülöp V, Dowson CG, Bugg TDH & Roper DI (2004) Expression, purification, crystallization and preliminary characterization of uridine 5′-diphospho-N-acetylmuramoyl l-alanyl-d-glutamate: lysine ligase (MurE) from Streptococcus pneumoniae 110K/70. Acta Cryst D60: 359361.
  • Boisvert W, Cheung KS, Lerner SA & Johnston M (1986) Mechanisms of action of chloroalanyl antibacterial peptides. Identification of the intracellular enzymes inactivated on treatment of Escherichia coli JSR-O with the dipeptide βCl-lAla-βCl-lAla. J Biol Chem 261: 78717878.
  • Boniface A (2007). Etude des relations structure-activité au sein de la famille des Mur synthétases, enzymes de la voie de biosynthèse du peptidoglycane. Ph.D. Thesis, Université Paris-Sud, Orsay, France.
  • Boniface A, Bouhss A, Mengin-Lecreulx D & Blanot D (2006) The MurE synthetase from Thermotoga maritima is endowed with an unusual d-lysine adding activity. J Biol Chem 281: 1568015686.
  • Born TL & Blanchard JS (1999) Structure/function studies on enzymes in the diaminopimelate pathway of bacterial cell wall biosynthesis. Curr Opin Chem Biol 3: 603613.
  • Bouhss A, Mengin-Lecreulx D, Blanot D, Van Heijenoort J & Parquet C (1997) Invariant amino acids in the Mur peptide synthetases of bacterial peptidoglycan synthesis and their modification by site-directed mutagenesis in the UDP-MurNAc: l-alanine ligase from Escherichia coli. Biochemistry 36: 1155611563.
  • Bouhss A, Dementin S, Van Heijenoort J, Parquet C & Blanot D (1999a) Formation of adenosine 5′-tetraphosphate from the acyl phosphate intermediate: a difference between the MurC and MurD synthetases of Escherichia coli. FEBS Lett 453: 1519.
  • Bouhss A, Dementin S, Parquet C, Mengin-Lecreulx D, Bertrand JA, Le Beller D, Dideberg O, Van Heijenoort J & Blanot D (1999b) Role of the ortholog and paralog amino acid invariants in the active site of the UDP-MurNAc-l-alanine: d-glutamate ligase (MurD). Biochemistry 38: 1224012247.
  • Bouhss A, Dementin S, Van Heijenoort J, Parquet C & Blanot D (2002) MurC and MurD synthetases of peptidoglycan biosynthesis: borohydride trapping of acyl-phosphate intermediates. Methods Enzymol 354: 189196.
  • Bouhss A, Crouvoisier M, Blanot D & Mengin-Lecreulx D (2004) Purification and characterization of the bacterial MraY translocase catalyzing the first membrane step of peptidoglycan biosynthesis. J Biol Chem 279: 2997429980.
  • Bouhss A, Trunkfield AE, Bugg TDH & Mengin-Lecreulx D (2008) The biosynthesis of peptidoglycan lipid-linked intermediates. FEMS Microbiol Rev, doi: DOI: 10.1111/j.1574-6976.2007.00089.x
  • Bronson JJ, DenBleyker KL, Falk PJ, Mate RA, Ho HT, Pucci MJ & Snyder LB (2003) Discovery of the first antibacterial small molecule inhibitors of MurB. Bioorg Med Chem Lett 13: 873875.
  • Broschat KO, Gorka C, Page JD, Martin-Berger CL, Davies MS, Huang H, Gulve EA, Salsgiver WJ & Kasten TP (2002) Kinetic characterization of human glutamine-fructose-6-phosphate amidotransferase I. Potent feedback inhibition by glucosamine 6-phosphate. J Biol Chem 277: 1476414770.
  • Brown ED, Marquardt JL, Lee JP, Walsh CT & Anderson KS (1994) Detection and characterization of a phospholactoyl-enzyme adduct in the reaction catalyzed by UDP-N-acetylglucosamine enolpyruvoyl transferase, MurZ. Biochemistry 33: 1063810645.
  • Brown ED, Vivas EI, Walsh CT & Kolter R (1995) MurA (MurZ), the enzyme that catalyzes the first committed step in peptidoglycan biosynthesis, is essential in Escherichia coli. J Bacteriol 177: 41944197.
  • Brown K, Pompeo F, Dixon S, Mengin-Lecreulx D, Cambillau C & Bourne Y (1999) Crystal structure of the bifunctional N-acetylglucosamine 1-phosphate uridyltransferase from Escherichia coli: a paradigm for the related pyrophosphorylase superfamily. EMBO J 18: 40964107.
  • Bugg TDH & Walsh CT (1992) Intracellular steps of bacterial cell wall peptidoglycan biosynthesis: enzymology, antibiotics, and antibiotic resistance. Nat Prod Rep 9: 199215.
  • Bugg TDH, Wright GD, Dutka-Malen S, Arthur M, Courvalin P & Walsh CT (1991) Molecular basis of vancomycin resistance in Enterococcus faecium BM4147: biosynthesis of depsipeptide peptidoglycan precursor by vancomycin resistance proteins VanH and VanA. Biochemistry 30: 1040810415.
  • Burton E, Gawande PV, Yakandawala N, LoVetri K, Zhanel GG, Romeo T, Friesen AD & Madhyastha S (2006) Antibiofilm activity of GlmU enzyme inhibitors against catheter-associated uropathogens. Antimicrob Agents Chemother 50: 18351840.
  • Byczynski B, Mizyed S & Berti PJ (2003) Nonenzymatic breakdown of the tetrahedral (α-carboxyketal phosphate) intermediates of MurA and AroA, two carboxyvinyl transferases. Protonation of different functional groups controls the rate and fate of breakdown. J Am Chem Soc 125: 1254112550.
  • Candela T & Fouet A (2006) Poly-gamma-glutamate in bacteria. Mol Microbiol 60: 10911098.
  • Chakravarty PK, Greenlee WJ, Parsons WH, Patchett AA, Combs P, Roth A, Busch RD & Mellin TN (1989) (3-Amino-2-oxoalkyl)phosphonic acids and their analogues as novel inhibitors of d-alanine : d-alanine ligase. J Med Chem 32: 18861890.
  • Cheung KS, Wasserman SA, Dudek E, Lerner SA & Johnston M (1983) Chloralanyl and propargylglycyl dipeptides. Suicide substrate containing antibacterials. J Med Chem 26: 17331741.
  • Cheung KS, Boisvert W, Lerner SA & Johnston M (1986) Chloroalanyl antibiotic peptides: antagonism of their antimicrobial effects by l-alanine and l-alanyl peptides in Gram-negative bacteria. J Med Chem 29: 20602068.
  • Chmara H, Zähner H & Borowski E (1984) Anticapsin, an active-site directed irreversible inhibitor of glucosamine 6-phosphate synthetase from Escherichia coli. J Antibiotics 37: 10381043.
  • Chmara H, Andruszkiewicz R & Borowski E (1985) Inactivation of glucosamine-6-phosphate synthetase from Salmonella typhimurium LT2 by fumaroyl diaminopropanoic acid derivatives, a novel group of glutamine analogs. Biochim Biophys Acta 870: 357366.
  • Choi SY, Esaki N, Ashiuchi M, Yoshimura T & Soda K (1994) Bacterial glutamate racemase has high sequence similarity with myoglobins and forms an equimolar inactive complex with hemin. Proc Natl Acad Sci USA 91: 1014410147.
  • Chopra I, Storey C, Falla JT & Pearce JH (1998) Antibiotics, peptidoglycan synthesis and genomics: the chlamydial anomaly revisited. Microbiology 144: 26732678.
  • Comess KM, Schurdak ME, Voorbach MJ et al. (2006) An ultraefficient affinity-based high-throughout screening process: application to bacterial cell wall biosynthesis enzyme MurF. J Biomol Screen 11: 743754.
  • Constantine KL, Mueller L, Goldfarb V, Wittekind M, Metzler WJ, Yanchunas J Jr, Robertson JG, Malley MF, Friedrichs MS & Farmer II BT (1997) Characterization of NADP+ binding to perdeuterated MurB: backbone atom NMR assignments and chemical-shift changes. J Mol Biol 267: 12231246.
  • Copié V, Faraci SW, Walsh CT & Griffin RG (1988) Inhibition of alanine racemase by alanine phosphonate: detection of an imine linkage to pyridoxal 5′-phosphate in the enzyme-inhibitor complex by solid-state 15N nuclear magnetic resonance. Biochemistry 27: 49664970.
  • Cox RJ (1996) The DAP pathway of lysine as a target for antimicrobial agents. Nat Prod Rep 13: 2943.
  • Cox RJ, Sutherland A & Vederas JC (2000) Bacterial diaminopimelate metabolism as a target for antibiotic design. Bioorg Med Chem 8: 843871.
  • Dai HJ, Parker CN & Bao JJ (2002) Characterization and inhibition study of MurA enzyme by capillary electrophoresis. J Chromatogr B Analyt Technol Biomed Life Sci 766: 123132.
  • Dai JB, Liu Y, Ray WJ Jr & Konno M (1992) The crystal structure of muscle phosphoglucomutase refined at 2.7 angstrom resolution. J Biol Chem 267: 63226337.
  • Daniel RA & Errington J (1993) DNA sequence of the murE-murD region of Bacillus subtilis 168. J Gen Microbiol 139: 361370.
  • Daub E, Zawadzke LE, Botstein D & Walsh CT (1988) Isolation, cloning, and sequencing of the Salmonella typhimurium ddlA gene with purification and characterization of its product, d-alanine : d-alanine ligase (ADP forming). Biochemistry 27: 37013708.
  • De Dios A, Prieto L, Martin JA et al. (2002) 4-Substituted d-glutamic acid analogues: the first potent inhibitors of glutamate racemase (MurI) enzyme with antibacterial activity. J Med Chem 45: 45594570.
  • De Smet KA, Kempsell KE, Gallagher A, Duncan K & Young DB (1999) Alteration of a single amino acid residue reverses fosfomycin resistance of recombinant MurA from Mycobacterium tuberculosis. Microbiology 145: 31773184.
  • Dementin S (2001) Etude du mécanisme réactionnel des Mur synthétases, enzymes impliquées dans la biosynthèse du peptidoglycane bactérien. Ph.D. Thesis, Université Paris-Sud, Orsay, France.
  • Dementin S, Bouhss A, Auger G, Parquet C, Mengin-Lecreulx D, Dideberg O, Van Heijenoort J & Blanot D (2001) Evidence of a functional requirement for a carbamoylated lysine residue in MurD, MurE and MurF synthetases as established by chemical rescue experiments. Eur J Biochem 268: 58005807.
  • Deva T, Baker EN, Squire CJ & Smith CA (2006) Structure of Escherichia coli UDP-N-acetylmuramoyl: l-alanine ligase (MurC). Acta Cryst D62: 14661474.
  • DeVito JA, Mills JA, Liu VG et al. (2002) An array of target-specific screening strains for antibacterial discovery. Nat Biotechnol 20: 478483.
  • Dhalla AM, Yanchunas J Jr, Ho HT, Falk PJ, Villafranca JJ & Robertson JG (1995) Steady-state kinetic mechanism of Escherichia coli UDP-N-acetylenolpyruvylglucosamine reductase. Biochemistry 34: 53905402.
  • Dini C, Drochon N, Ferrari P & Aszodi J (2000) Multi gram synthesis of UDP-N-acetylmuramic acid. Bioorg Med Chem Lett 10: 143145.
  • Dodd D, Reese JG, Louer CR, Ballard JD, Spies MA & Blanke SR (2007) Functional comparison of the two Bacillus anthracis glutamate racemases. J Bacteriol 189: 52655275.
  • Doublet P, Van Heijenoort J, Bohin J-P & Mengin-Lecreulx D (1993) The murI gene of Escherichia coli is an essential gene that encodes a glutamate racemase activity. J Bacteriol 175: 29702979.
  • Doublet P, Van Heijenoort J & Mengin-Lecreulx D (1994) The glutamate racemase activity from Escherichia coli is regulated by peptidoglycan precursor UDP-N-acetylmuramoyl-l-alanine. Biochemistry 33: 52855290.
  • Doublet P, Van Heijenoort J & Mengin-Lecreulx D (1996) Regulation of the glutamate racemase of Escherichia coli investigated by site-directed mutagenesis. Microb Drug Resist 2: 4349.
  • Du W, Brown JR, Sylvester DR, Huang J, Chalker AF, So SY, Holmes DJ, Payne DJ & Wallis NG (2000) Two active forms of UDP-N-acetylglucosamine enolpyruvyl transferase in Gram-positive bacteria. J Bacteriol 182: 41464152.
  • Duncan K & Walsh CT (1988) ATP-dependent inactivation and slow binding inhibition of Salmonella typhimuriumd-alanine : d-alanine ligase (ADP) by (aminoalkyl)phosphinate and aminophosphonate analogues of d-alanine. Biochemistry 27: 37093714.
  • Duncan K, Faraci WS, Matteson DS & Walsh CT (1989) (1-Aminoethyl)boronic acid: a novel inhibitor for Bacillus stearothermophilus alanine racemase and Salmonella typhimuriumd-alanine : d-alanine ligase (ADP-forming). Biochemistry 28: 35413549.
  • Duncan K, Van Heijenoort J & Walsh CT (1990) Purification and characterization of the d-alanyl-d-alanine-adding enzyme from Escherichia coli. Biochemistry 29: 23792386.
  • Ehmann DE, Demeritt JE, Hull KG & Fisher SL (2004) Biochemical characterization of an inhibitor of Escherichia coli UDP-N-acetylmuramyl-l-alanine ligase. Biochim Biophys Acta 1698: 167174.
  • Ellsworth BA, Tom NJ & Bartlett PA (1996) Synthesis and evaluation of inhibitors of bacterial d-alanine : d-alanine ligases. Chem Biol 3: 3744.
  • El Zoeiby A, Sanschagrin F, Lamoureux J, Darveau A & Levesque RC (2000) Cloning, over-expression and purification of Pseudomonas aeruginosa murC encoding uridine diphosphate N-acetylmuramate: l-alanine ligase. FEMS Microbiol Lett 183: 281288.
  • El Zoeiby A, Sanschagrin F, Havugimana PC, Garnier A & Levesque RC (2001) In vitro reconstruction of the biosynthetic pathway of peptidoglycan cytoplasmic precursor in Pseudomonas aeruginosa. FEMS Microbiol Lett 201: 229235.
  • El Zoeiby A, Sanschagrin F & Levesque RC (2003a) Structure and function of the Mur enzymes: development of novel inhibitors. Mol Microbiol 47: 112.
  • El Zoeiby A, Sanschagrin F, Darveau A, Brisson J-R & Levesque RC (2003b) Identification of novel inhibitors of Pseudomonas aeruginosa MurC enzyme derived from phage-displayed peptide libraries. J Antimicrob Chemother 51: 531543.
  • Emanuele JJ Jr, Jin H, Jacobson BL, Chang CY, Einspahr HM & Villafranca JJ (1996) Kinetic and crystallographic studies of Escherichia coli UDP-N-acetylmuramate: l-alanine ligase. Prot Sci 5: 25662574.
  • Emanuele JJ Jr, Jin H, Yanchunas J & Villafranca JJ (1997) Evaluation of the kinetic mechanism of Escherichia coli uridine diphosphate-N-acetylmuramate: l-alanine ligase. Biochemistry 36: 72647271.
  • Erion MD & Walsh CT (1987) 1-Aminocyclopropanephosphonate: time-dependent inactivation of 1-aminocyclopropanecarboxylate deaminase and Bacillus stearothermophilus alanine racemase by slow dissociation behavior. Biochemistry 26: 34173425.
  • Esaki N & Walsh CT (1986) Biosynthetic alanine racemase of Salmonella typhimurium: purification and characterization of the enzyme encoded by the alr gene. Biochemistry 25: 32613267.
  • Eschenburg S & Schönbrunn E (2000) Comparative X-ray analysis of the un-liganded fosfomycin-target murA. Proteins 40: 290298.
  • Eschenburg S, Kabsch W, Healy ML & Schönbrunn E (2003) A new view of the mechanisms of UDP-N-acetylglucosamine enolpyruvyl transferase (MurA) and 5-enolpyruvylshikimate-3-phosphate synthase (AroA) derived from X-ray structures of their tetrahedral reaction intermediate states. J Biol Chem 278: 4921549222.
  • Eschenburg S, Priestman M & Schönbrunn E (2005a) Evidence that the fosfomycin target Cys115 in UDP-N-acetylglucosamine enolpyruvyl transferase (MurA) is essential for product release. J Biol Chem 280: 37573763.
  • Eschenburg S, Priestman MA, Abdul-Latif FA, Delachaume C & Fassy FE (2005b) A novel inhibitor that suspends the induced fit mechanism of UDP-N-acetylglucosamine enolpyruvyl transferase (MurA). J Biol Chem 280: 1407014075.
  • Eveland SS, Pompliano DL & Anderson MS (1997) Conditionally lethal Escherichia coli murein mutants contain point defects that map to regions conserved among murein and folyl poly-γ-glutamate ligases: identification of a ligase superfamily. Biochemistry 36: 62236229.
  • Falk PJ, Ervin KM, Volk KS & Ho H-T (1996) Biochemical evidence for the formation of a covalent acyl-phosphate linkage between UDP-N-acetylmuramate and ATP in the Escherichia coli UDP-N-acetylmuramate: l-alanine ligase-catalyzed reaction. Biochemistry 35: 14171422.
  • Fan C, Moews PC, Walsh CT & Knox JR (1994) Vancomycin resistance: structure of d-alanine : d-alanine ligase at 2.3 Å resolution. Science 266: 439443.
  • Fan C, Park IS, Walsh CT & Knox JR (1997) d-alanine : d-alanine ligase: phosphonate and phosphinate intermediates with wild type and the Y216F mutant. Biochemistry 36: 25312538.
  • Faraci WS & Walsh CT (1989) Mechanism of inactivation of alanine racemase by β, β, β-trifluoroalanine. Biochemistry 28: 431437.
  • Farmer II BT, Constantine KL, Goldfarb V, Friedrichs MS, Wittekind M, Yanchunas J Jr, Robertson JG & Mueller L (1996) Localizing the NADP+ binding site on the MurB enzyme by NMR. Nat Struct Biol 3: 995997.
  • Fenn TD, Stamper GF, Morollo AA & Ringe D (2003) A side reaction of alanine racemase: transamination of cycloserine. Biochemistry 42: 57755783.
  • Fenn TD, Holyoak T, Stamper GF & Ringe D (2005) Effect of a Y265F mutant on the transamination-based cycloserine inactivation of alanine racemase. Biochemistry 44: 53175327.
  • Floquet N, Mouilleron S, Daher R, Maigret B, Badet B & Badet-Denisot MA (2007a) Ammonia channeling in bacterial glucosamine-6-phosphate synthase (Glms): molecular dynamics simulations and kinetic studies of protein mutants. FEBS Lett 581: 29812987.
  • Floquet N, Richez C, Durand P, Maigret B, Badet B & Badet-Denisot MA (2007b) Discovering new inhibitors of bacterial glucosamine-6P synthase (GlmS) by docking simulations. Bioorg Med Chem Lett 17: 19661970.
  • Flouret B, Mengin-Lecreulx D & Van Heijenoort J (1981) Reverse-phase high-pressure liquid chromatography of uridine diphosphate N-acetylmuramyl peptide precursors of bacterial cell wall peptidoglycan. Anal Biochem 114: 5963.
  • Fotheringham IG, Bledig SA & Taylor PP (1998) Characterization of the genes encoding d-amino acid transaminase and glutamate racemase, two d-glutamate biosynthetic enzymes of Bacillus sphaericus ATCC 10208. J Bacteriol 180: 43194323.
  • Francisco GD, Li Z, Albright JD et al. (2004) Phenyl thiazolyl urea and carbamate derivatives as new inhibitors of bacterial cell-wall biosynthesis. Bioorg Med Chem Lett 14: 235238.
  • Gallo KA & Knowles JR (1993) Purification, cloning, and cofactor independence of glutamate racemase from Lactobacillus. Biochemistry 32: 39813990.
  • Gallo KA, Tanner ME & Knowles JR (1993) Mechanism of the reaction catalyzed by glutamate racemase. Biochemistry 32: 39913997.
  • Galperin MY & Koonin EV (1997) A diverse superfamily of enzymes with ATP-dependent carboxylate-amine/thiol ligase activity. Protein Sci 6: 26392643.
  • Gegnas LD, Waddell ST, Chabin RM, Reddy S & Wong KK (1998) Inhibitors of the bacterial cell wall biosynthesis enzyme MurD. Bioorg Med Chem Lett 8: 16431648.
  • Gehring AM, Lees WJ, Mindiola DJ, Walsh CT & Brown ED (1996) Acetyltransfer precedes uridylyltransfer in the formation of UDP-N-acetylglucosamine in separable active sites of the bifunctional GlmU protein of Escherichia coli. Biochemistry 35: 579585.
  • Girardin SE, Travassos LH, Hervé M, Blanot D, Boneca IG, Philpott DJ, Sansonetti PJ & Mengin-Lecreulx D (2003) Peptidoglycan molecular requirements allowing detection by Nod1 and Nod2. J Biol Chem 278: 4170241708.
  • Glanzmann P, Gustafson J, Komatsuzawa H, Ohta K & Berger-Bächi B (1999) glmM operon and methicillin-resistant glmM suppressor mutants in Staphylococcus aureus. Antimicrob Agents Chemother 43: 240245.
  • Glavas S & Tanner ME (1997) The inhibition of glutamate racemase by D-N-hydroxyglutamate. Bioorg Med Chem Lett 7: 22652270.
  • Glavas S & Tanner ME (1999) Catalytic acid/base residues of glutamate racemase. Biochemistry 38: 41064113.
  • Glavas S & Tanner ME (2001) Active site residues of glutamate racemase. Biochemistry 40: 61996204.
  • Gobec S, Urleb U, Auger G & Blanot D (2001) Synthesis and biochemical evaluation of some novel N-acyl phosphono- and phosphinoalanine derivatives as potential inhibitors of the d-glutamic acid-adding enzyme. Pharmazie 56: 295297.
  • Golinelli-Pimpaneau B, Le Goffic F & Badet B (1989) Glucosamine-6-phosphate synthase from Escherichia coli: mechanism of the reaction at the fructose 6-phosphate binding site. J Am Chem Soc 111: 30293034.
  • Gordon E, Flouret B, Chantalat L, Van Heijenoort J, Mengin-Lecreulx D & Dideberg O (2001) Crystal structure of the UDP-N-acetylmuramoyl-l-alanyl-d-glutamate: meso-diaminopimelate ligase from Escherichia coli. J Biol Chem 276: 1099911006.
  • Gu YG, Florjancic AS, Clark RF et al. (2004) Structure-activity relationships of novel potent MurF inhibitors. Bioorg Med Chem Lett 14: 267270.
  • Gubler M, Appoldt Y & Keck W (1996) Overexpression, purification, and characterization of UDP-N-acetylmuramyl: l-alanine ligase from Escherichia coli. J Bacteriol 178: 906910.
  • Hammes WP, Neukam R & Kandler O (1977) On the specificity of the uridine diphospho-N-acetylmuramyl-alanyl-d-glutamic acid: diamino acid ligase of Bifidobacterium globosum. Arch Microbiol 115: 95102.
  • Healy VL, Lessard IA, Roper DI, Knox JR & Walsh CT (2000a) Vancomycin resistance in enterococci: reprogramming of the d-Ala-d-Ala ligases in bacterial peptidoglycan biosynthesis. Chem Biol 7: R109R119.
  • Healy VL, Mullins LS, Li X, Hall SE, Raushel FM & Walsh CT (2000b) d-Ala-d-X ligases: evaluation of d-alanyl phosphate intermediate by MIX, PIX and rapid quench studies. Chem Biol 7: 505514.
  • Hervé M, Boniface A, Gobec S, Blanot D & Mengin-Lecreulx D (2007) Biochemical characterization and physiological properties of Escherichia coli UDP-N-acetylmuramate: l-alanyl-γ-d-glutamyl-meso-diaminopimelate ligase (Mpl). J Bacteriol 189: 39873995.
  • Hesse L, Bostock J, Dementin S, Blanot D, Mengin-Lecreulx D & Chopra I (2003) Functional and biochemical analysis of Chlamydia trachomatis MurC, an enzyme displaying UDP-N-acetylmuramate: amino acid ligase activity. J Bacteriol 185: 65076512.
  • Heymann H, Turdiu R, Lee BK & Barkulis SS (1968) A synthesis of uridinediphospho-N-acetylmuramic acid and its use as an acceptor of l-[14C]alanine. Biochemistry 7: 13931399.
  • Hitchcock SA, Eid CN, Aikins JA, Zia-Ebrahimi M & Blaszczak LC (1998) The first total synthesis of bacterial cell wall precursor UDP-N-acetylmuramyl-pentapeptide (Park nucleotide). J Am Chem Soc 120: 19161917.
  • Ho HT, Falk PJ, Ervin KM, Krishnan BS, Discotto LF, Dougherty TJ & Pucci MJ (1995) UDP-N-acetylmuramyl-l-alanine functions as an activator in the regulation of the Escherichia coli glutamate racemase activity. Biochemistry 34: 24642470.
  • Hofmann M, Boles E & Zimmermann FK (1994) Characterization of the essential yeast gene encoding N-acetylglucosamine-phosphate mutase. Eur J Biochem 221: 741747.
  • Horton JR, Bostock JM, Chopra I, Hesse L, Phillips SE, Adams DJ, Johnson AP & Fishwick CW (2003) Macrocyclic inhibitors of the bacterial cell wall biosynthesis enzyme MurD. Bioorg Med Chem Lett 13: 15571560.
  • Hove-Jensen B (1992) Identification of tms-26 as an allele of the gcaD gene, which encodes N-acetylglucosamine 1-phosphate uridyltransferase in Bacillus subtilis. J Bacteriol 174: 68526856.
  • Huber R, Langworthy TA, König H, Thomm M, Woese CR, Sleytr UB & Stetter KO (1986) Thermotoga maritima sp. nov. represents a new genus of unique extremely thermophylic eubacteria growing up to 90 °C. Arch Microbiol 144: 324333.
  • Humljan J, Kotnik M, Boniface A, Šolmajer T, Urleb U, Blanot D & Gobec S (2006) A new approach towards peptidosulfonamides: synthesis of potential inhibitors of bacterial peptidoglycan biosynthesis enzymes MurD and MurE. Tetrahedron 62: 1098010988.
  • Hutton CA, Perugini MA & Gerrard JA (2007) Inhibition of lysine biosynthesis: an evolving antibiotic strategy. Mol BioSyst 3: 458465.
  • Huynh QK, Gulve EA & Dian T (2000) Purification and characterization of glutamine: fructose 6-phosphate amidotransferase from rat liver. Arch Biochem Biophys 379: 307313.
  • Hwang KY, Cho C-S, Kim SS, Sung H-C, Yu YG & Cho Y (1999) Structure and mechanism of glutamate racemase from Aquifex pyrophilus. Nat Struct Biol 6: 422426.
  • Inagaki K, Tanizawa K, Badet B, Walsh CT, Tanaka H & Soda K (1986) Thermostable alanine racemase from Bacillus stearothermophilus: molecular cloning of the gene, enzyme purification, and characterization. Biochemistry 25: 32683274.
  • Isupov MN, Obmolova G, Butterworth S, Badet-Denisot MA, Badet B, Polikarpov I, Littlechild JA & Teplyakov A (1996) Substrate binding is required for assembly of the active conformation of the catalytic site in Ntn amidotransferases: evidence from the 1.8 Å crystal structure of the glutaminase domain of glucosamine 6-phosphate synthase. Structure 4: 801810.
  • Jin H, Emanuele JJ Jr, Fairman R, Robertson JG, Hail ME, Ho H-T, Falk PJ & Villafranca JJ (1996) Structural studies of Escherichia coli UDP-N-acetylmuramate: l-alanine ligase. Biochemistry 35: 14231431.
  • Jolly L, Wu S, Van Heijenoort J, De Lencastre H, Mengin-Lecreulx D & Tomasz A (1997) The femR315 gene from Staphylococcus aureus, the interruption of which results in reduced methicillin resistance, encodes a phosphoglucosamine mutase. J Bacteriol 179: 53215325.
  • Jolly L, Ferrari P, Blanot D, Van Heijenoort J, Fassy F & Mengin-Lecreulx D (1999) Reaction mechanism of phosphoglucosamine mutase from Escherichia coli. Eur J Biochem 262: 202210.
  • Jolly L, Pompeo F, Van Heijenoort J, Fassy F & Mengin-Lecreulx D (2000) Autophosphorylation of phosphoglucosamine mutase from Escherichia coli. J Bacteriol 182: 12801285.
  • Katz AH & Caufield CE (2003) Structure-based approaches to cell wall biosynthesis inhibitors. Curr Pharm Design 9: 857866.
  • Kenig M, Vandamme E & Abraham EP (1976) The mode of action of bacilysin and anticapsin and biochemical properties of bacilysin-resistant mutants. J Gen Microbiol 94: 4654.
  • Kim DH, Lees WJ & Walsh CT (1995) Stereochemical analysis of the tetrahedral adduct formed at the active site of UDP-GlcNAc enolpyruvyl transferase from the pseudosubstrates, (E)- and (Z)-fluorophosphoenolpyruvate, in D2O. J Am Chem Soc 117: 63806381.
  • Kim DH, Lees WJ, Kempsell KE, Lane WS, Duncan K & Walsh CT (1996) Characterization of a Cys115 to Asp substitution in the Escherichia coli cell wall biosynthetic enzyme UDP-GlcNAc enolpyruvyl transferase (MurA) that confers resistance to inactivation by the antibiotic fosfomycin. Biochemistry 35: 49234928.
  • Kim K-H, Bong Y-J, Park JK, Shin K-J, Hwang KY & Kim EE (2007) Structural basis for glutamate racamase inhibition. J Mol Biol 372: 434443.
  • Kim MG, Strych U, Krause KL, Benedik MJ & Kohn H (2003a) Evaluation of amino-substitued heterocyclic derivatives as alanine racemase inhibitors. Med Chem Res 12: 130138.
  • Kim MG, Strych U, Krause K, Benedik M & Kohn H (2003b) N(2)-substituted d,l-cycloserine derivatives: synthesis and evaluation as alanine racemase inhibitors. J Antibiot (Tokyo) 56: 160168.
  • Kim MK, Cho MK, Song HE et al. (2007) Crystal structure of UDP-N-acetylenolpyruvylglucosamine reductase (MurB) from Thermus caldophilus. Proteins 66: 751754.
  • Kim W-C, Rhee H-I, Park B-K, Suk K-H & Cha S-H (2000) Isolation of peptide ligands that inhibit glutamate racemase activity from a random phage display library. J Biomol Screen 5: 435440.
  • Kimura K, Tran LS & Itoh Y (2004) Roles and regulation of the glutamate racemase isogenes, racE and yrpC, in Bacillus subtilis. Microbiology 150: 29112920.
  • Kobayashi K, Ehrlich SD, Albertini A et al. (2003) Essential Bacillus subtilis genes. Proc Natl Acad Sci USA 100: 46784683.
  • Kobayashi N & Go N (1997) ATP binding proteins with different folds share a common ATP-binding structural motif. Nat Struct Biol 4: 67.
  • Kollonitsch J, Barash L, Kahan FM & Kropp H (1973) New antibacterial agent via photofluorination of a bacterial cell wall constituent. Nature 243: 346347.
  • Komatsuzawa H, Fujiwara T, Nishi H, Yamada S, Ohara M, McCallum N, Berger-Bächi B & Sugai M (2004) The gate controlling cell wall synthesis in Staphylococcus aureus. Mol Microbiol 53: 12211231.
  • Kong D-X, Zhu W-L, Wu D-L, Shen X & Jiang H-L (2007) Comparison of 3D-QSAR methods using a novel class of MurF inhibitors. J Theor Comput Chem 6: 6380.
  • Kostrewa D, D'Arcy A, Takacs B & Kamber M (2001) Crystal structures of Streptococcus pneumoniae N-acetylglucosamine-1-phosphate uridyltransferase, GlmU, in apo form at 2.33 Å resolution and in complex with UDP-N-acetylglucosamine and Mg2+ at 1.96 Å resolution. J Mol Biol 305: 279289.
  • Kotnik M, Oblak M, Humljan J, Gobec S, Urleb U & Šolmajer T (2004) Quantitative structure-activity relationships of Streptococcus pneumoniae MurD transition-state inhibitors. QSAR Comb Sci 23: 399405.
  • Kotnik M, Štefanič Anderluh P & Preželj A (2007a) Development of novel inhibitors targeting intracellular steps of peptidoglycan biosynthesis. Curr Pharm Des 13: 22832309.
  • Kotnik M, Humljan J, Contreras-Martel C et al. (2007b) Structural and functional characterization of enantiomeric glutamic acid derivatives as potential transition state analogue inhibitors of MurD ligase. J Mol Biol 370: 107115.
  • Kovač A, Majce V, Lenaršič R, Bombek S, Bostock JM, Chopra I, Polanc S & Gobec S (2007) Diazenedicarboxamides as inhibitors of d-alanine-d-alanine ligase (Ddl). Bioorg Med Chem Lett 17: 20472054.
  • Krekel F, Samland AK, Macheroux P, Amrhein N & Evans JN (2000) Determination of the pKa value of C115 in MurA (UDP-N-acetylglucosamine enolpyruvyltransferase) from Enterobacter cloacae. Biochemistry 39: 1267112677.
  • Kurosu M, Mahapatra S, Narayanasamy P & Crick DC (2007) Chemoenzymatic synthesis of Park's nucleotide: toward the development of high-throughput screening of MraY inhibitors. Tetrahedron Lett 48: 799803.
  • Kutterer KM, Davis JM, Singh G, Yang Y, Hu W, Severin A, Rasmussen BA, Krishnamurthy G, Failli A & Katz AH (2005) 4-Alkyl and 4,4′-dialkyl 1,2-bis(4-chlorophenyl)pyrazolidine-3,5-dione derivatives as new inhibitors of bacterial cell wall biosynthesis. Bioorg Med Chem Lett 15: 25272531.
  • Kuzin AP, Sun T, Jorczak-Baillass J, Healy VL, Walsh CT & Knox JR (2000) Enzymes of vancomycin resistance: the structure of d-alanine-d-lactate ligase of naturally resistant Leuconostoc mesenteroides. Structure 8: 463470.
  • Labaudiniere RF, Xiang Y, Jalluri RK & Arvanites AC (2005) Antibiotic cycloalkyltetrahydroquinolone derivatives. US Patent, application number WO2005025556 A2.
  • Lacoste A-M, Poulsen M, Cassaigne A & Neuzil E (1979) Inhibition of d-alanyl-d-alanine ligase in different bacterial species by amino phosphonic acids. Curr Microbiol 2: 113117.
  • Lacoste A-M, Chollet-Gravey A-M, Vo Quang L, Vo Quang Y & Le Goffic F (1991) Time-dependent inhibition of Streptococcus faecalisd-alanine : d-alanine ligase by α-aminophosphonamidic acids. Eur J Med Chem 26: 255260.
  • Lee JH, Na Y, Song HE et al. (2006a) Crystal structure of the apo form of d-alanine : d-alanine ligase (Ddl) from Thermus caldophilus: a basis for the substrate-induced conformational changes. Proteins 64: 10781082.
  • Lee SG, Hong SP, Song JJ, Kim SJ, Kwak MS & Sung MH (2006b) Functional and structural characterization of thermostable d-amino acid aminotransferases from Geobacillus spp. Appl Environ Microbiol 72: 15881594.
  • Lees WJ & Walsh CT (1995) Analysis of the enol ether transfer catalyzed by UDP-GlcNAc enolpyruvyl transferase using (E)- and (Z)-isomers of phosphoenolbutyrate: stereochemical, partitioning, and isotope effect studies. J Am Chem Soc 117: 73297337.
  • Lees WJ, Benson TE, Hogle JM & Walsh CT (1996) (E)-Enolbutyryl-UDP-N-acetylglucosamine as a mechanistic probe of UDP-N-acetylenolpyruvylglucosamine reductase (MurB). Biochemistry 35: 13421351.
  • LeMagueres P, Im H, Ebalunode J, Strych U, Benedik MJ, Briggs JM, Kohn H & Krause KL (2005) The 1.9 Å crystal structure of alanine racemase from Mycobacterium tuberculosis contains a conserved entryway into the active site. Biochemistry 44: 14711481.
  • Le Roux P, Blanot D, Mengin-Lecreulx D & Van Heijenoort J (1991) Peptides containing 2-aminopimelic acid. Synthesis and study of in vitro effects on bacterial cells. Int J Peptide Protein Res 37: 103111.
  • Le Roux P, Auger G, Van Heijenoort J & Blanot D (1992) Synthesis of new peptide inhibitors of the meso-diaminopimelate-adding enzyme. Eur J Med Chem 27: 899907.
  • Leung DK, Andrews PR, Craik DJ, Iskander MN & Winkler DA (1985) Design, synthesis and testing of transition state analogues of alanine racemase as antibacterials. Australian J Chem 38: 297206.
  • Li Z, Francisco GD, Hu W et al. (2003) 2-Phenyl-5,6-dihydro-2H-thieno[3,2-c]pyrazol-3-ol derivatives as new inhibitors of bacterial cell wall biosynthesis. Bioorg Med Chem Lett 13: 25912594.
  • Liger D, Blanot D & Van Heijenoort J (1991) Effect of various alanine analogues on the l-alanine-adding enzyme from Escherichia coli. FEMS Microbiol Lett 80: 111116.
  • Liger D, Masson A, Blanot D, Van Heijenoort J & Parquet C (1995) Over-production, purification and properties of the uridine-diphosphate-N-acetylmuramate: l-alanine ligase from Escherichia coli. Eur J Biochem 230: 8087.
  • Liger D, Masson A, Blanot D, Van Heijenoort J & Parquet C (1996) Study of the overproduced uridine-diphosphate-N-acetylmuramate: l-alanine ligase from Escherichia coli. Microb Drug Resist 2: 2527.
  • Liu H, Sadamoto R, Sears PS & Wong C-H (2001) An efficient chemoenzymatic strategy for the synthesis of wild-type and vancomycin-resistant bacterial cell-wall precursors: UDP-N-acetylmuramyl-peptides. J Am Chem Soc 123: 99169917.
  • Liu S, Chang JS, Herberg JT, Horng M-M, Tomich PK, Lin AH & Marotti KR (2006) Allosteric inhibition of Staphylococcus aureusd-alanine : d-alanine ligase revealed by crystallographic studies. Proc Natl Acad Sci USA 103: 1517815183.
  • Longenecker K, Stamper GF, Hajduk PJ et al. (2005) Structure of MurF from Streptococcus pneumoniae co-crystallized with a small molecule inhibitor exhibits interdomain closure. Protein Sci 14: 30393047.
  • Ludovice AM, Wu SW & De Lencastre H (1998) Molecular cloning and DNA sequencing of the Staphylococcus aureus UDP-N-acetylmuramyl tripeptide synthetase (murE) gene, essential for the optimal expression of methicillin resistance. Microb Drug Resist 4: 8590.
  • Lundqvist T, Fisher SL, Kern G, Folmer RH, Xue Y, Newton DT, Keating TA, Alm RA & De Jonge BL (2007) Exploitation of structural and regulatory diversity in glutamate racemases. Nature 447: 817822.
  • Mahapatra S, Crick DC & Brennan PJ (2000) Comparison of the UDP-N-acetylmuramate: l-alanine ligase enzymes from Mycobacterium tuberculosis and Mycobacterium leprae. J Bacteriol 182: 68276830.
  • Major DT & Gao J (2006) A combined quantum mechanical and molecular mechanical study of the reaction mechanism and α-amino acidity in alanine racemase. J Am Chem Soc 128: 1634516357.
  • Marmor S, Petersen CP, Reck F, Yang W, Gao N & Fisher SL (2001) Biochemical characterization of a phosphinate inhibitor of Escherichia coli MurC. Biochemistry 40: 1220712214.
  • Marquardt JL, Siegele DA, Kolter R & Walsh CT (1992) Cloning and sequencing of Escherichia colimurZ and purification of its product, a UDP-N-acetylglucosamine enolpyruvyl transferase. J Bacteriol 174: 57485752.
  • Marquardt JL, Brown ED, Walsh CT & Anderson KS (1993) Isolation and structural elucidation of a tetrahedral intermediate in the UDP-N-acetylglucosamine enolpyruvoyl transferase enzymatic pathway. J Am Chem Soc 115: 1039810399.
  • Marquardt JL, Brown ED, Lane WS, Haley TM, Ichikawa Y, Wong CH & Walsh CT (1994) Kinetics, stoichiometry, and identification of the reactive thiolate in the inactivation of UDP-GlcNAc enolpyruvoyl transferase by the antibiotic fosfomycin. Biochemistry 33: 1064610651.
  • Maruyama D, Nishitani Y, Nonaka T, Kita A, Fukami TA, Mio T, Yamada-Okabe H, Yamada-Okabe T & Miki K (2007) Crystal structure of uridine-diphospho-N-acetylglucosamine pyrophosphorylase from Candida albicans and catalytic reaction mechanism. J Biol Chem 282: 1722117230.
  • May M, Mehboob S, Mulhearn DC, Wang Z, Yu H, Thatcher GR, Santarsiero BD, Johnson ME & Mesecar AD (2007) Structural and functional analysis of two glutamate racemase isozymes from Bacillus anthracis and implications for inhibitor design. J Mol Biol 371: 12191237.
  • McCoy AJ & Maurelli AT (2005) Characterization of Chlamydia MurC-Ddl, a fusion protein exhibiting d-alanyl-d-alanine ligase activity involved in peptidoglycan synthesis and d-cycloserine sensitivity. Mol Microbiol 57: 4152.
  • McCoy AJ, Sandlin RC & Maurelli AT (2003) In vitro and in vivo functional activity of Chlamydia MurA, a UDP-N-acetylglucosamine enolpyruvyl transferase involved in peptidoglycan synthesis and fosfomycin resistance. J Bacteriol 185: 12181228.
  • McDermott AE, Creuzet F, Griffin RG, Zawadzke LE, Ye Q-Z & Walsh CT (1990) Rotational resonance determination of the structure of an enzyme-inhibitor complex: phosphorylation of an (aminoalkyl)phosphinate inhibitor of d-alanyl-d-alanine ligase by ATP. Biochemistry 29: 57675775.
  • Mengin-Lecreulx D & Van Heijenoort J (1993) Identification of the glmU gene encoding N-acetylglucosamine-1-phosphate uridyltransferase in Escherichia coli. J Bacteriol 175: 61506157.
  • Mengin-Lecreulx D & Van Heijenoort J (1994) Copurification of glucosamine-1-phosphate acetyltransferase and N-acetylglucosamine-1-phosphate uridyltransferase activities of Escherichia coli: characterization of the glmU gene product as a bifunctional enzyme catalyzing two subsequent steps in the pathway for UDP-N-acetylglucosamine synthesis. J Bacteriol 176: 57885795.
  • Mengin-Lecreulx D & Van Heijenoort J (1996) Characterization of the essential gene glmM encoding phosphoglucosamine mutase in Escherichia coli. J Biol Chem 271: 3239.
  • Mengin-Lecreulx D, Flouret B & Van Heijenoort J (1982) Cytoplasmic steps of peptidoglycan synthesis in Escherichia coli. J Bacteriol 151: 11091117.
  • Mengin-Lecreulx D, Michaud C, Richaud C, Blanot D & Van Heijenoort J (1988) Incorporation of ll-diaminopimelic acid into peptidoglycan of Escherichia coli mutants lacking diaminopimelate epimerase encoded by dapF. J Bacteriol 170: 20312039.
  • Mengin-Lecreulx D, Parquet C, Desviat LR, Plá J, Flouret B, Ayala JA & Van Heijenoort J (1989) Organization of the murE-murG region of Escherichia coli: identification of the murD gene encoding the d-glutamic-acid-adding enzyme. J Bacteriol 171: 61266134.
  • Mengin-Lecreulx D, Blanot D & Van Heijenoort J (1994) Replacement of diaminopimelic acid by cystathionine or lanthionine in the peptidoglycan of Escherichia coli. J Bacteriol 176: 43214327.
  • Mengin-Lecreulx D, Van Heijenoort J & Park JT (1996) Identification of the mpl gene encoding UDP-N-acetylmuramate: l-alanyl-γ-d-glutamyl-meso-diaminopimelate ligase in Escherichia coli and its role in recycling of cell wall peptidoglycan. J Bacteriol 178: 53475352.
  • Mengin-Lecreulx D, Ayala J, Bouhss A, Van Heijenoort J, Parquet C & Hara H (1998) Contribution of the Pmra promoter to expression of genes in the Escherichia coli mra cluster of cell envelope biosynthesis and cell division genes. J Bacteriol 180: 44064412.
  • Mengin-Lecreulx D, Falla T, Blanot D, Van Heijenoort J, Adams DJ & Chopra I (1999) Expression of the Staphylococcus aureus UDP-N-acetylmuramoyl-l-alanyl-d-glutamate: l-lysine ligase in Escherichia coli and effects on peptidoglycan biosynthesis and cell growth. J Bacteriol 181: 59095914.
  • Michaud C, Blanot D, Flouret B & Van Heijenoort J (1987) Partial purification and specificity studies of the d-glutamate-adding and d-alanyl-d-alanine-adding enzymes from Escherichia coli K12. Eur J Biochem 166: 631637.
  • Michaud C, Mengin-Lecreulx D, Van Heijenoort J & Blanot D (1990) Over-production, purification and properties of the uridine-diphosphate-N-acetylmuramoyl-l-alanine-d-glutamate: meso-2,6-diaminopimelate ligase from Escherichia coli. Eur J Biochem 194: 853861.
  • Milewski S, Gabriel I & Olchowy J (2006) Enzymes of UDP-GlcNAc biosynthesis in yeast. Yeast 23: 114.
  • Miller J, Hammond SM, Anderluzzi D & Bugg TDH (1998) Aminoalkylphosphinate inhibitors of d-Ala-d-Ala adding enzyme. J Chem Soc, Perkin Trans 1 131142.
  • Mio T, Yabe T, Arisawa M & Yamada-Okabe H (1998) The eukaryotic UDP-N-acetylglucosamine pyrophosphorylases: gene cloning, protein expression, and catalytic mechanism. J Biol Chem 273: 1439214397.
  • Mio T, Yamada-Okabe T, Arisawa M & Yamada-Okabe H (1999) Saccharomyces cerevisiae GNA1, an essential gene encoding a novel acetyltransferase involved in UDP-N-acetylglucosamine synthesis. J Biol Chem 274: 424429.
  • Miyakawa T, Matsuzawa H, Matsuhashi M & Sugino Y (1972) Cell wall peptidoglycan mutants of Escherichia coli K-12: existence of two clusters of genes, mra and mrb, for cell wall peptidoglycan biosynthesis. J Bacteriol 112: 950958.
  • Mizyed S, Oddone A, Byczynski B, Hughes DW & Berti PJ (2005) UDP-N-acetylmuramic acid (UDP-MurNAc) is a potent inhibitor of MurA (enolpyruvyl-UDP-GlcNAc synthase). Biochemistry 44: 40114017.
  • Möbitz H & Bruice TC (2004) Multiple substrate binding states and chiral recognition in cofactor-independent glutamate racemase: a molecular dynamics study. Biochemistry 43: 96859694.
  • Moe ST, Ala PJ & Perola E (2003) Heterocyclic compounds and uses thereof as d-alanyl-d-alanine ligase inhibitors. US Patent, application number PCT/US02/20567, WO 03/001887 A2.
  • Mol CD, Brooun A, Dougan DR, Hilgers MT, Tari LW, Wijnands RA, Knuth MW, McRee DE & Swanson RW (2003) Crystal structures of active fully assembled substrate- and product-bound complexes of UDP-N-acetylmuramic acid: l-alanine ligase (MurC) from Haemophilus influenzae. J Bacteriol 185: 41524162.
  • Molina-López J, Sanschagrin F & Levesque RC (2006) A peptide inhibitor of MurA UDP-N-acetylglucosamine enolpyruvyl transferase: the first committed step in peptidoglycan biosynthesis. Peptides 27: 31153121.
  • Morollo AA, Petsko GA & Ringe D (1999) Structure of a Michaelis complex analogue: propionate binds in the substrate carboxylate site of alanine racemase. Biochemistry 38: 32933301.
  • Moulder JW (1993) Why is Chlamydia sensitive to penicillin in the absence of peptidoglycan? Infect Agents Dis 2: 8799.
  • Mullins LS, Zawadzke LE, Walsh CT & Raushel FM (1990) Kinetic evidence for the formation of d-alanyl phosphate in the mechanism of d-alanyl-d-alanine ligase. J Biol Chem 265: 89938998.
  • Mustata GI & Briggs JM (2002) A structure-based design approach for the identification of novel inhibitors: application to an alanine racemase. J Comput Aided Mol Des 16: 935953.
  • Nakajima N, Tanizawa K, Tanaka H & Soda K (1986) Cloning and expression in Escherichia coli of the glutamate racemase gene from Pediococcus pentosaceus. Agric Biol Chem 50: 28232830.
  • Narayan RS & VanNieuwenhze MS (2007) Synthesis of substrates and biochemical probes for study of the peptidoglycan biosynthetic pathway. Eur J Org Chem 13991414.
  • Navia MA, Ala PJ, Griffith JP, Ali JA, Faerman CH, Moe ST, Magee AS, Connelly PR & Perola E (2003) Structure-based drug design methods for identifying d -Ala- d -Ala ligase inhibitors as antibacterial drugs. US Patent, application number PCT/US02/20465, WO 03/002063 A2.
  • Neuhaus FC (1962a) The enzymatic synthesis of d-alanyl-dalanine. I. Purification and properties of d-alanyl-d-alanine synthetase. J Biol Chem 237: 778786.
  • Neuhaus FC (1962b) The enzymatic synthesis of d-alanyl-d-alanine. II. Kinetic studies on d-alanyl-d-alanine synthetase. J Biol Chem 237: 31283135.
  • Neuhaus FC & Lynch JL (1964) The enzymatic synthesis of d-alanyl-d-alanine. III. On the inhibition of d-alanyl-d-alanine synthetase by the antibiotic d-cycloserine. Biochemistry 3: 471480.
  • Neuhaus FC & Struve WG (1965) Enzymatic synthesis of analogs of the cell-wall precursor. I. Kinetics and specificity of uridine diphospho-N-acetylmuramyl-l-alanyl-d-glutamyl-l-lysine :d-alanyl-d-alanine ligase (adenosine diphosphate) from Streptococcus faecalis R. Biochemistry 4: 120131.
  • Neuhaus FC & Hammes WP (1981) Inhibition of cell wall biosynthesis by analogues of alanine. Pharmac Ther 14: 265319.
  • Nishida S, Kurokawa K, Matsuo M, Sakamoto K, Ueno K, Kita K & Sekimizu K (2006) Identification and characterization of amino acid residues essential for the active site of UDP-N-acetylenolpyruvylglucosamine reductase (MurB) from Staphylococcus aureus. J Biol Chem 281: 17141724.
  • Nishitani Y, Maruyama D, Nonaka T, Kita A, Fukami TA, Mio T, Yamada-Okabe H, Yamada-Okabe T & Miki K (2006) Crystal structures of N-acetylglucosamine-phosphate mutase, a member of the a-d-phosphohexomutase superfamily, and its substrate and product complexes. J Biol Chem 281: 1974019747.
  • Nosal F, Masson A, Legrand R, Blanot D, Schoot B, Van Heijenoort J & Parquet C (1998) Site-directed mutagenesis and chemical modification of the two cysteine residues of the UDP-N-acetylmuramoyl: l-alanine ligase of Escherichia coli. FEBS Lett 426: 309313.
  • Obmolova G, Badet-Denisot MA, Badet B & Teplyakov A (1994) Crystallization and preliminary X-ray analysis of the two domains of glucosamine-6-phosphate synthase from Escherichia coli. J Mol Biol 242: 703705.
  • Oikawa T, Tauch A, Schaffer S & Fujioka T (2006) Expression of alr gene from Corynebacterium glutamicum ATCC 13032 in Escherichia coli and molecular characterization of the recombinant alanine racemase. J Biotechnol 125: 503512.
  • Olsen LR & Roderick SL (2001) Structure of the Escherichia coli GlmU pyrophosphorylase and acetyltransferase active sites. Biochemistry 40: 19131921.
  • Olsen LR, Vetting MW & Roderick SL (2007) Structure of the E. coli bifunctional GlmU acetyltransferase active site with substrates and products. Protein Sci 16: 12301235.
  • Paradis-Bleau C, Beaumont M, Boudreault L, Lloyd A, Sanschagrin F, Bugg TD & Levesque RC (2006) Selection of peptide inhibitors against the Pseudomonas aeruginosa MurD cell wall enzyme. Peptides 27: 16931700.
  • Park JT (1952) Uridine 5′-pyrophosphate derivatives. I. Isolation from Staphylococcus aureus. J Biol Chem 194: 877884.
  • Parsons WH, Patchett AA, Bull HG et al. (1988) Phosphinic acid inhibitors of d-alanyl-d-alanine ligase. J Med Chem 31: 17721778.
  • Patchett AA, Taub D, Weissberger B, Valiant ME, Gadebusch H, Thornberry NA & Bull HG (1988) Antibacterial activities of fluorovinyl- and chlorovinylglycine and several derived dipeptides. Antimicrob Agents Chemother 32: 319323.
  • Patte J-C (1983) Diaminopimelate and lysine. Amino Acids: Biosynthesis and Genetic Regulation (HerrmannKL & SomervilleRL, eds), pp. 213228. Addison-Wesley Publishing Co., Reading, MA.
  • Peisach D, Chipman DM, Van Ophem PW, Manning JM & Ringe D (1998) Crystallographic study of steps along the reaction pathway of d-amino acid aminotransferase. Biochemistry 37: 49584967.
  • Peneff C, Mengin-Lecreulx D & Bourne Y (2001a) The crystal structures of Apo and complexed Saccharomyces cerevisiae GNA1 shed light on the catalytic mechanism of an amino-sugar N-acetyltransferase. J Biol Chem 276: 1632816334.
  • Peneff C, Ferrari P, Charrier V, Taburet Y, Monnier C, Zamboni V, Winter J, Harnois M, Fassy F & Bourne Y (2001b) Crystal structures of two human pyrophosphorylase isoforms in complexes with UDPGlc(Gal)NAc: role of the alternatively spliced insert in the enzyme oligomeric assembly and active site architecture. EMBO J 20: 61916202.
  • Perdih A, Kotnik M, Hodošček M & Šolmajer T (2007) Targeted molecular dynamics simulation studies of binding and conformational changes in E. coli MurD. Proteins 68: 243254.
  • Pompeo F, Van Heijenoort J & Mengin-Lecreulx D (1998) Probing the role of cysteine residues in glucosamine-1-phosphate acetyltransferase activity of the bifunctional GlmU protein from Escherichia coli: site-directed mutagenesis and characterization of the mutant enzymes. J Bacteriol 180: 47994803.
  • Pompeo F, Bourne Y, Van Heijenoort J, Fassy F & Mengin-Lecreulx D (2001) Dissection of the bifunctional Escherichia coli N-acetylglucosamine-1-phosphate uridyltransferase enzyme into autonomously functional domains and evidence that trimerization is absolutely required for glucosamine-1-phosphate acetyltransferase activity and cell growth. J Biol Chem 276: 38333839.
  • Pratviel-Sosa F, Mengin-Lecreulx D & Van Heijenoort J (1991) Over-production, purification and properties of the uridine diphosphate N-acetylmuramoyl-l-alanine: d-glutamate ligase from Escherichia coli. Eur J Biochem 202: 11691176.
  • Pratviel-Sosa F, Acher F, Trigalo F, Blanot D, Azerad R & Van Heijenoort J (1994) Effect of various analogues of d-glutamic acid on the d-glutamate-adding enzyme from Escherichia coli. FEMS Microbiol Lett 115: 223228.
  • Pucci MJ, Thanassi JA, Ho H-T, Falk PJ & Dougherty TJ (1995) Staphylococcus haemolyticus contains two d-glutamic acid biosynthetic activities, a glutamate racemase and a d-amino acid transaminase. J Bacteriol 177: 336342.
  • Pucci MJ, Thanassi JA, Discotto LF, Kessler RE & Dougherty TJ (1997) Identification and characterization of cell wall-cell division gene clusters in pathogenic Gram-positive cocci. J Bacteriol 179: 56325635.
  • Puig E, Garcia-Viloca M, González-Lafont A, López I, Daura X & Lluch JM (2005) A molecular dynamics simulation of the binding modes of d-glutamate and d-glutamine to glutamate racemase. J Chem Theory Comput 1: 737749.
  • Puig E, Garcia-Viloca M, González-Lafont A & Lluch JM (2006) On the ionization state of the substrate in the active site of glutamate racemase. A QM/MM study about the importance of being zwitterionic. J Phys Chem A 110: 717725.
  • Raczynska J, Olchowy J, Konariev PV, Svergun DI, Milewski S & Rypniewski W (2007) The crystal and solution studies of glucosamine-6-phosphate synthase from Candida albicans. J Mol Biol 372: 672688.
  • Raetz CR & Roderick SL (1995) A left-handed parallel beta helix in the structure of UDP-N-acetylglucosamine acyltransferase. Science 270: 9971000.
  • Ramilo C, Appleyard RJ, Wanke C, Krekel F, Amrhein N & Evans JN (1994) Detection of the covalent intermediate of UDP-N-acetylglucosamine enolpyruvyl transferase by solution-state and time-resolved solid-state NMR spectroscopy. Biochemistry 33: 1507115079.
  • Ramos-Aires J, Plésiat P, Kocjancic-Curty L & Köhler T (2004) Selection of an antibiotic-hypersusceptible mutant of Pseudomonas aeruginosa: identification of the GlmR transcriptional regulator. Antimicrob Agents Chemother 48: 843851.
  • Raymond JB, Price NP & Pavelka MS Jr (2003) A method for the enzymatic synthesis and HPLC purification of the peptidoglycan precursor UDP-N-acetylmuramic acid. FEMS Microbiol Lett 229: 8389.
  • Reck F, Marmor S, Fisher S & Wuonola MA (2001) Inhibitors of the bacterial cell wall biosynthesis enzyme MurC. Bioorg Med Chem Lett 11: 14511454.
  • Reddy S, Waddell ST, Kuo DW, Wong KK & Pompliano DL (1999) Preparative enzymatic synthesis and characterization of the cytoplasmic intermediates of murein biosynthesis. J Am Chem Soc 121: 11751178.
  • Richaud C, Mengin-Lecreulx D, Pochet S, Johnson EJ, Cohen GN & Marlière P (1993) Directed evolution of biosynthetic pathways: recruitment of cysteine thioethers for constructing the cell wall of Escherichia coli. J Biol Chem 268: 2682726835.
  • Rios A, Amyes TL & Richard JP (2000) Formation and stability of organic zwitterions in aqueous solution: enolates of the amino acid glycine and its derivatives. J Am Chem Soc 122: 93739385.
  • Rogers HJ, Perkins HR & Ward JB (1980) Microbial Cell Walls and Membranes. Chapman and Hall, London, UK.
  • Roper DI, Huyton T, Vagin A & Dodson G (2000) The molecular basis of vancomycin resistance in clinically relevant Enterococci: crystal structure of d-alanyl-d-lactate ligase (VanA). Proc Natl Acad Sci USA 97: 89218925.
  • Ruzheinikov SN, Taal MA, Sedelnikova SE, Baker PJ & Rice DW (2005) Substrate-induced conformational changes in Bacillus subtilis glutamate racemase and their implications for drug discovery. Structure 13: 17071713.
  • Saito M, Nishimura K, Hasegawa Y, Shinohara T, Wakabayashi S, Kurihara T, Ishizuka M & Nagata Y (2007) Alanine racemase from Helicobacter pylori NCTC 11637: purification, characterization and gene cloning. Life Sci 80: 788794.
  • Samland AK, Amrhein N & Macheroux P (1999) Lysine 22 in UDP-N-acetylglucosamine enolpyruvyl transferase from Enterobacter cloacae is crucial for enzymatic activity and the formation of covalent adducts with the substrate phosphoenolpyruvate and the antibiotic fosfomycin. Biochemistry 38: 1316213169.
  • Samland AK, Etezady-Esfarjani T, Amrhein N & Macheroux P (2001) Asparagine 23 and aspartate 305 are essential residues in the active site of UDP-N-acetylglucosamine enolpyruvyl transferase from Enterobacter cloacae. Biochemistry 40: 15501559.
  • Sarver DW, Rogers JM & Epps DM (2002) Determination of ligand-MurB interactions by isothermal denaturation: application as a secondary assay to complement high throughput screening. J Biomol Screen 7: 2128.
  • Sato M, Kirimura K & Kino K (2005) d-Amino acid dipeptide production utilizing d-alanine-d-alanine ligases with novel substrate specificity. J Biosci Bioeng 99: 623628.
  • Sato M, Kirimura K & Kino K (2006) Substrate specificity of thermostable d-alanine-d-alanine ligase from Thermotoga maritima ATCC 43589. Biosci Biotechnol Biochem 70: 27902792.
  • Sauvage E, Charlier P, Terrak M & Ayala JA (2008) The structure of Penicillin-Binding Proteins and their role in peptidoglycan biosynthesis. FEMS Microbiol Rev, doi: DOI: 10.1111/j.1574-6976.2008.00105.x
  • Sawada S, Tanaka Y, Hayashi S, Ryu M, Hasegawa T, Yamamoto Y, Esaki N, Soda K & Takahashi S (1994) Kinetics of thermostable alanine racemase of Bacillus stearothermophilus. Biosci Biotechnol Biochem 58: 807811.
  • Schleifer KH & Kandler O (1972) Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36: 407477.
  • Schönbrunn E, Sack S, Eschenburg S, Perrakis A, Krekel F, Amrhein N & Mandelkow E (1996) Crystal structure of UDP-N-acetylglucosamine enolpyruvyltransferase, the target of the antibiotic fosfomycin. Structure 4: 10651075.
  • Schönbrunn E, Svergun DI, Amrhein N & Koch MH (1998) Studies on the conformational changes in the bacterial cell wall biosynthetic enzyme UDP-N-acetylglucosamine enolpyruvyltransferase (MurA). Eur J Biochem 253: 406412.
  • Schönbrunn E, Eschenburg S, Luger K, Kabsch W & Amrhein N (2000a) Structural basis for the interaction of the fluorescence probe 8-anilino-1-naphthalene sulfonate (ANS) with the antibiotic target MurA. Proc Natl Acad Sci USA 97: 63456349.
  • Schönbrunn E, Eschenburg S, Krekel F, Luger K & Amrhein N (2000b) Role of the loop containing residue 115 in the induced-fit mechanism of the bacterial cell wall biosynthetic enzyme MurA. Biochemistry 39: 21642173.
  • Schouten JA, Bagga S, Lloyd AJ, De Pascale G, Dowson CG, Roper DI & Bugg TD (2006) Fluorescent reagents for in vitro studies of lipid-linked steps of bacterial peptidoglycan biosynthesis: derivatives of UDPMurNAc-pentapeptide containing d-cysteine at position 4 or 5. Mol Biosyst 2: 484491.
  • Seebeck FP & Hilvert D (2003) Conversion of a PLP-dependent racemase into an aldolase by a single active site mutation. J Am Chem Soc 125: 1015810159.
  • Sengupta S, Shah M & Nagaraja V (2006) Glutamate racemase from Mycobacterium tuberculosis inhibits DNA gyrase by affecting its DNA-binding. Nucleic Acids Res 34: 55675576.
  • Seow TK, Inagaki K, Tamura T, Soda K & Tanaka H (1998) Alanine racemase from an acidophile, Acidiphilium organovorum: purification and characterisation. Biosci Biotechnol Biochem 62: 242247.
  • Seow TK, Inagaki K, Nakamura T, Maeda R, Tamura T & Tanaka H (2000) Purification and some characteristics of a monomeric alanine racemase from an extreme thermophile, Thermus thermophilus. J Biosci Bioeng 90: 344346.
  • Shatalin KY & Neyfakh AA (2005) Efficient gene inactivation in Bacillus anthracis. FEMS Microbiol Lett 245: 315319.
  • Shaw JP, Petsko GA & Ringe D (1997) Determination of the structure of alanine racemase from Bacillus stearothermophilus at 1.9-Å resolution. Biochemistry 36: 13291342.
  • Sheng Y, Sun X, Shen Y, Bognar AL, Baker EN & Smith CA (2000) Structural and functional similarities in the ADP-forming amide bond ligase superfamily: implications for a substrate-induced conformational change in folylpolyglutamate synthetase. J Mol Biol 302: 427440.
  • Sim MM, Ng SB, Buss AD, Crasta SC, Goh KL & Lee SK (2002) Benzylidene rhodanines as novel inhibitors of UDP-N-acetylmuramate/l-alanine ligase. Bioorg Med Chem Lett 12: 697699.
  • Skarzynski T, Mistry A, Wonacott A, Hutchinson SE, Kelly VA & Duncan K (1996) Structure of UDP-N-acetylglucosamine enolpyruvyl transferase, an enzyme essential for the synthesis of bacterial peptidoglycan, complexed with substrate UDP-N-acetylglucosamine and the drug fosfomycin. Structure 4: 14651474.
  • Skarzynski T, Kim DH, Lees WJ, Walsh CT & Duncan K (1998) Stereochemical course of enzymatic enolpyruvyl transfer and catalytic conformation of the active site revealed by the crystal structure of the fluorinated analogue of the reaction tetrahedral intermediate bound to the active site of the C115A mutant of MurA. Biochemistry 37: 25722577.
  • Smith CA (2006) Structure, function and dynamics in the mur family of bacterial cell wall ligases. J Mol Biol 362: 640655.
  • Snyder NJ, Tebbe MJ, Victor F et al. (1999) Synthesis and evaluation of Streptococcus pneumoniae MurD transition state inhibitors. Abstracts of the 39th Interscience Conference on Antimicrobial Agents and Chemotherapy, September 26–29, San Francisco, USA, p. 330.
  • Spraggon G, Schwarzenbacher R, Kreusch A et al. (2004) Crystal structure of an Udp-N-acetylmuramate-alanine ligase MurC (TM0231) from Thermotoga maritima at 2.3 Å resolution. Proteins 55: 10781081.
  • Stamper GF, Morollo AA & Ringe D (1998) Reaction of alanine racemase with 1-aminoethylphosphonic acid forms a stable external aldimine. Biochemistry 37: 1043810445.
  • Stamper GF, Longenecker K, Fry EH et al. (2006) Structure-based optimization of MurF inhibitors. Chem Biol Drug Res 67: 5865.
  • Štrancar K, Blanot D & Gobec S (2006) Design, synthesis and structure-activity relationships of new phosphinate inhibitors of MurD. Bioorg Med Chem Lett 16: 343348.
  • Štrancar K, Boniface A, Blanot D & Gobec S (2007) Phosphinate inhibitors of UDP-N-acetylmuramoyl-l-alanyl-d-glutamate: l-lysine ligase (MurE). Arch Pharm Chem Life Sci 340: 127134.
  • Strominger JL, Ito E & Threnn RH (1960) Competitive inhibition of enzymatic reactions by oxamycin. J Am Chem Soc 82: 998999.
  • Strych U & Benedik MJ (2002) Mutant analysis shows that alanine racemases from Pseudomonas aeruginosa and Escherichia coli are dimeric. J Bacteriol 184: 43214325.
  • Strych U, Huang HC, Krause KL & Benedik MJ (2000) Characterization of the alanine racemases from Pseudomonas aeruginosa PAO1. Curr Microbiol 41: 290294.
  • Strych U, Penland RL, Jimenez M, Krause KL & Benedik MJ (2001) Characterization of the alanine racemases from two mycobacteria. FEMS Microbiol Lett 196: 9398.
  • Sugio S, Petsko GA, Manning JM, Soda K & Ringe D (1995) Crystal structure of a d-amino acid aminotransferase: how the protein controls stereoselectivity. Biochemistry 34: 96619669.
  • Sugio S, Kashima A, Kishimoto K, Peisach D, Petsko GA, Ringe D, Yoshimura T & Esaki N (1998) Crystal structures of L201A mutant of d-amino acid aminotransferase at 2.0 Å resolution: implication of the structural role of Leu201 in transamination. Protein Eng 11: 613619.
  • Sulzenbacher G, Gal L, Peneff C, Fassy F & Bourne Y (2001) Crystal structure of Streptococcus pneumoniae N-acetylglucosamine-1-phosphate uridyltransferase bound to acetyl-coenzyme A reveals a novel active site architecture. J Biol Chem 276: 1184411851.
  • Sun S & Toney MD (1999) Evidence for a two-base mechanism involving tyrosine-265 from arginine-219 mutants of alanine racemase. Biochemistry 38: 40584065.
  • Sun X, Cross JA, Bognar AL, Baker EN & Smith CA (2001) Folate-binding triggers the activation of folylpolyglutamate synthetase. J Mol Biol 310: 10671078.
  • Szumilo T, Zeng Y, Pastuszak I, Drake R, Szumilo H & Elbein AD (1996) Purification to homogeneity and properties of UDP-GlcNAc (GalNAc) pyrophosphorylase. J Biol Chem 271: 1314713154.
  • Tanizawa K, Masu Y, Asano S, Tanaka H & Soda K (1989) Thermostable d-amino acid aminotransferase from a thermophilic Bacillus species. Purification, characterization, and active site sequence determination. J Biol Chem 264: 24452449.
  • Tanner ME (2002) Understanding nature's strategies for enzyme-catalyzed racemization and epimerization. Acc Chem Res 35: 237246.
  • Tanner ME & Miao S (1994) The synthesis and stability of aziridino-glutamate, an irreversible inhibitor of glutamate racemase. Tetrahedron Lett 35: 40734076.
  • Tanner ME, Vaganay S, Van Heijenoort J & Blanot D (1996) Phosphinate inhibitors of the d-glutamic acid-adding enzyme of peptidoglycan biosynthesis. J Org Chem 61: 17561760.
  • Tavares IM, Jolly L, Pompeo F, Leitão JH, Fialho AM, Sá-Correia I & Mengin-Lecreulx D (2000) Identification of the Pseudomonas aeruginosaglmM gene, encoding phosphoglucosamine mutase. J Bacteriol 182: 44534457.
  • Tayeh MA, Dotson GD, Clemens JC & Woodard RW (1995) Overproduction and one-step purification of Escherichia coli UDP-N-acetylglucosamine enolpyruvyl reductase. Protein Expr Purif 6: 757762.
  • Taylor PP & Fortheringham IG (1997) Nucleotide sequence of the Bacillus licheniformis ATTC 10716 dat gene and comparison of the predicted amino acid sequence with those of other bacterial species. Biochim Biophys Acta 1350: 3840.
  • Teplyakov A, Obmolova G, Badet-Denisot MA, Badet B & Polikarpov I (1998) Involvement of the C terminus in intramolecular nitrogen channeling in glucosamine 6-phosphate synthase: evidence from a 1.6 Å crystal structure of the isomerase domain. Structure 6: 10471055.
  • Teplyakov A, Obmolova G, Badet B & Badet-Denisot MA (2001) Channeling of ammonia in glucosamine-6-phosphate synthase. J Mol Biol 313: 10931102.
  • Thompson RJ, Bouwer HG, Portnoy DA & Frankel FR (1998) Pathogenicity and immunogenicity of a Listeria monocytogenes strain that requires d-alanine for growth. Infect Immun 66: 35523561.
  • Thornberry NA, Bull HG, Taub D, Greenlee WJ, Patchett AA & Cordes EH (1987) 3-Halovinylglycines. Efficient irreversible inhibitors of E. coli alanine racemase. J Am Chem Soc 109: 75437544.
  • Thornberry NA, Bull HG, Taub D, Wilson KE, Gimenez-Gallego G, Rosegay A, Soderman DD & Patchett AA (1991) Mechanism-based inactivation of alanine racemase by 3-halovinylglycines. J Biol Chem 266: 2165721665.
  • Traxinger RR & Marshall S (1991) Coordinated regulation of glutamine: fructose-6-phosphate amidotransferase activity by insulin, glucose, and glutamine. Role of hexosamine biosynthesis in enzyme regulation. J Biol Chem 266: 1014810154.
  • Ueda T, Feng F, Sadamoto R, Niikura K, Monde K & Nishimura S-I (2004) Synthesis of 4-fluorinated UDP-MurNAc pentapeptide as an inhibitor of bacterial growth. Org Lett 6: 17531756.
  • Vaara M (1992) Eight bacterial proteins, including UDP-N-acetylglucosamine acyltransferase (LpxA) and three other transferases of Escherichia coli, consist of a six-residue periodicity theme. FEMS Microbiol Lett 76: 249254.
  • Vaganay S, Tanner ME, Van Heijenoort J & Blanot D (1996) Study of the reaction mechanism of the d-glutamic acid-adding enzyme from Escherichia coli. Microb Drug Resist 2: 5154.
  • Van Assche I, Soroka M, Haemers A, Hooper M, Blanot D & Van Heijenoort J (1991) Synthesis and antiobacterial evaluation of phosphonic acid analogues of diaminopimelic acid. Eur J Med Chem 26: 505515.
  • Van Heijenoort J (2001) Recent advances in the formation of the bacterial peptidoglycan monomer subunit. Nat Prod Rep 18: 503519.
  • Van Ophem PW, Peisach D, Erickson SD, Soda K, Ringe D & Manning JM (1999) Effects of the E177K mutation in d-amino acid transaminase. Studies on an essential coenzyme anchoring group that contributes to stereochemical fidelity. Biochemistry 38: 13231331.
  • Victor F, Tebbe MJ, Birch GM, Smith MC, Letourneau DL & Wu CE (1999) d-Glutamic acid analogs as Streptococcus pneumoniae UDP-N-acetyl muramoyl-alanine:d-glutamate ligase (MurD) inhibitors. Abstracts of the 39th Interscience Conference on Antimicrobial Agents and Chemotherapy, September 26–29, San Francisco, USA, p. 330.
  • Volkman BF, Zhang Q, Debabov DV, Rivera E, Kresheck GC & Neuhaus FC (2001) Biosynthesis of d-alanyl-lipoteichoic acid: the tertiary structure of apo-d-alanyl carrier protein. Biochemistry 40: 79647972.
  • Vollmer W, Blanot D & De Pedro MA (2008) Peptidoglycan structure and architecture. FEMS Microbiol Rev, doi: DOI: 10.1111/j.1574-6976.2007.00094.x
  • Vo-Quang Y, Carniato D, Vo-Quang L, Lacoste AM, Neuzil E & Le Goffic F (1986a) (β-Chloro-α-aminoethyl)phosphonic acids as inhibitors of alanine racemase and d-alanine :d-alanine ligase. J Med Chem 29: 148151.
  • Vo-Quang Y, Carniato D, Vo-Quang L, Lacoste AM, Neuzil E & Le Goffic F (1986b) (1-Amino-2-propenyl) phosphonic acid, an inhibitor of alanine racemase and d-alanine : d-alanine ligase. J Med Chem 29: 579581.
  • Walker B, Brown MF, Lynas JF, Martin SL, McDowell A, Badet B & Hill AJ (2000) Inhibition of Escherichia coli glucosamine synthetase by novel electrophilic analogues of glutamine – comparison with 6-diazo-5-oxo-norleucine. Bioorg Med Chem Lett 10: 27952798.
  • Walsh CT (1989) Enzymes of the d-alanine branch of bacterial cell wall peptidoglycan assembly. J Biol Chem 264: 23932396.
  • Walsh CT, Benson TE, Kim DH & Lees WJ (1996) The versatility of phosphoenolpyruvate and its vinyl ether products in biosynthesis. Chem Biol 3: 8391.
  • Walsh AW, Falk PJ, Thanassi J, Discotto L, Pucci MJ & Ho H-T (1999) Comparison of the d-glutamate-adding enzymes from selected Gram-positive and Gram-negative bacteria. J Bacteriol 181: 53955401.
  • Wang E & Walsh C (1978) Suicide substrates for the alanine racemase of Escherichia coli B. Biochemistry 17: 13131321.
  • Wang EA & Walsh C (1981) Characteristics of β,β-difluoroalanine and β,β,β-trifluoroalanine as suicide substrates of Escherichia coli B alanine racemase. Biochemistry 20: 75397546.
  • Wanke C & Amrhein N (1993) Evidence that the reaction of the UDP-N-acetylglucosamine 1-carboxyvinyltransferase proceeds through the O-phosphothioketal of pyruvic acid bound to Cys115 of the enzyme. Eur J Biochem 218: 861870.
  • Wanke C, Falchetto R & Amrhein N (1992) The UDP-N-acetylglucosamine 1-carboxyvinyl-transferase of Enterobacter cloacae. Molecular cloning, sequencing of the gene and overexpression of the enzyme. FEBS Lett 301: 271276.
  • Ward JB (1984) Biosynthesis of peptidoglycan: points of attack of wall inhibitors. Pharmac Ther 25: 327369.
  • Wasserman SA, Daub E, Grisafi P, Botstein D & Walsh CT (1984) Catabolic alanine racemase from Salmonella typhimurium: DNA sequence, enzyme purification, and characterization. Biochemistry 23: 51825187.
  • Watanabe A, Yoshimura T, Mikami B & Esaki N (1999a) Tyrosine 265 of alanine racemase serves as a base abstracting α-hydrogen from l-alanine: the counterpart residue to lysine 39 specific to d-alanine. J Biochem (Tokyo) 126: 781786.
  • Watanabe A, Kurokawa Y, Yoshimura T, Kurihara T, Soda K & Esaki N (1999b) Role of lysine 39 of alanine racemase from Bacillus stearothermophilus that binds pyridoxal 5′-phosphate. Chemical rescue studies of Lys39[RIGHTWARDS ARROW]Ala mutant. J Biol Chem 274: 41894194.
  • Watanabe A, Yoshimura T, Mikami B, Hayashi H, Kagamiyama H & Esaki N (2002) Reaction mechanism of alanine racemase from Bacillus stearothermophilus: X-ray crystallographic studies of the enzyme bound with N-(5′-phosphopyridoxyl)alanine. J Biol Chem 277: 1916619172.
  • Watzele G & Tanner W (1989) Cloning of the glutamine: fructose-6-phosphate amidotransferase gene from yeast. Pheromonal regulation of its transcription. J Biol Chem 264: 87538758.
  • Wild J, Hennig J, Łobocka M, Walczak W & Kłopotowski T (1985) Identification of the dadX gene coding for the predominant isozyme of alanine racemase in Escherichia coli K12. Mol Gen Genet 198: 315322.
  • Winterburn PJ & Phelps CF (1971) The binding of substrates and modifiers to glucosamine synthetase. Biochem J 121: 721730.
  • Wipat A, Carter N, Brignell SC, Guy BJ, Piper K, Sanders J, Emmerson PT & Harwood CR (1996) The dnaB-pheA (256 degrees–240 degrees) region of the Bacillus subtilis chromosome containing genes responsible for stress responses, the utilization of plant cell walls and primary metabolism. Microbiology 142: 30673078.
  • Wong KK, Kuo DW, Chabin RM, Fournier C, Gegnas LD, Waddell ST, Marsilio F, Leiting B & Pompliano DL (1998) Engineering a cell-free murein biosynthetic pathway: combinatorial enzymology in drug discovery. J Am Chem Soc 120: 1352713528.
  • Yamashita T, Ashiuchi M, Ohnishi K, Kato S, Nagata S & Misono H (2003) Molecular characterization of alanine racemase from Bifidobacterium bifidum. J Mol Catal B Enzymatic 23: 213222.
  • Yan Y, Munshi S, Leiting B, Anderson MS, Chrzas J & Chen Z (2000) Crystal structure of Escherichia coli UDPMurNAc-tripeptide d-alanyl-d-alanine-adding enzyme (MurF) at 2.3 Å resolution. J Mol Biol 304: 435445.
  • Yang Y, Severin A, Chopra R et al. (2006) 3,5-Dioxopyrazolidines, novel inhibitors of UDP-N-acetylenolpyruvylglucosamine reductase (MurB) with activity against Gram-positive bacteria. Antimicrob Agents Chemother 50: 556564.
  • Yokoigawa K, Hirasawa R, Ueno H, Okubo Y, Umesako S & Soda K (2001) Gene cloning and characterization of alanine racemases from Shigella dysenteriae, Shigella boydii, Shigella flexneri and Shigella sonnei. Biochem Biophys Res Commun 288: 676684.
  • Yoshimura T & Esaki N (2003) Amino acid racemases: functions and mechanisms. J Biosci Bioeng 96: 103109.
  • Zawadzke LE, Bugg TDH & Walsh CT (1991) Existence of two d-alanine : d-alanine ligases in Escherichia coli: cloning and sequencing of the ddlA gene and purification and characterization of the DdlA and DdlB enzymes. Biochemistry 30: 16731682.
  • Zboińska E, Sztajer H, Lejczak B & Kafarski P (1990) Antibacterial activity of phosphono dipeptides based on 1-amino-1-methylethanephosphonic acid. FEMS Microbiol Lett 58: 2328.
  • Zeng B, Wong KK, Pompliano DL, Reddy S & Tanner ME (1998) A phosphinate inhibitor of the meso-diaminopimelic acid-adding enzyme (MurE) of peptidoglycan biosynthesis. J Org Chem 63: 1008110086.
  • Zentz F, Valla A, Le Guillou R, Labia R, Mathot AG & Sirot D (2002) Synthesis and antimicrobial activities of N-substituted imides. Farmaco 57: 421426.
  • Ziegler K, Diener A, Herpin C, Richter R, Deutzmann R & Lockau W (1998) Molecular characterization of cyanophycin synthetase, the enzyme catalyzing the biosynthesis of the cyanobacterial reserve material multi-l-arginyl-poly-l-aspartate (cyanophycin). Eur J Biochem 254: 154159.