SEARCH

SEARCH BY CITATION

References

  • Adediran SA, Zhang Z, Nukaga M, Palzkill T & Pratt RF (2005) The d-methyl group in beta-lactamase evolution: evidence from the Y221G and GC1 mutants of the class C beta-lactamase of Enterobacter cloacae P99. Biochemistry 44: 75437552.
  • Antignac A, Kriz P, Tzanakaki G, Alonso JM & Taha MK (2001) Polymorphism of Neisseria meningitidis penA gene associated with reduced susceptibility to penicillin. J Antimicrob Chemother 47: 285296.
  • Arbeloa A, Segal H, Hugonnet JE et al. (2004) Role of class A penicillin-binding proteins in PBP5-mediated beta-lactam resistance in Enterococcus faecalis. J Bacteriol 186: 12211228.
  • Arthur M, Depardieu F, Snaith HA, Reynolds PE & Courvalin P (1994) Contribution of VanY d,d-carboxypeptidase to glycopeptide resistance in Enterococcus faecalis by hydrolysis of peptidoglycan precursors. Antimicrob Agents Chemother 38: 18991903.
  • Atrih A, Bacher G, Allmaier G, Williamson MP & Foster SJ (1999) Analysis of peptidoglycan structure from vegetative cells of Bacillus subtilis 168 and role of PBP 5 in peptidoglycan maturation. J Bacteriol 181: 39563966.
  • Ayala J, Quesada A, Vadillo S, Criado J & Piriz S (2005) Penicillin-binding proteins of Bacteroides fragilis and their role in the resistance to imipenem of clinical isolates. J Med Microbiol 54: 10551064.
  • Barbour AG (1981) Properties of penicillin-binding proteins in Neisseria gonorrhoeae. Antimicrob Agents Chemother 19: 316322.
  • Barreteau H, Blanot D, Boniface A, Gobec S, Kovač A & Sova M (2008) Cytoplasmic steps of peptidoglycan biosynthesis. FEMS Microbiol Rev 32: 168207.
  • Barrett D, Leimkuhler C, Chen L, Walker D, Kahne D & Walker S (2005) Kinetic characterization of the glycosyltransferase module of Staphylococcus aureus PBP2. J Bacteriol 187: 22152217.
  • Barrett DS, Chen L, Litterman NK & Walker S (2004) Expression and characterization of the isolated glycosyltransferase module of Escherichia coli PBP1b. Biochemistry 43: 1237512381.
  • Bertsche U, Breukink E, Kast T & Vollmer W (2005) In vitro murein peptidoglycan synthesis by dimers of the bifunctional transglycosylase-transpeptidase PBP1B from Escherichia coli. J Biol Chem 280: 3809638101.
  • Bishop RE & Weiner JH (1993) Complementation of growth defect in an ampC deletion mutant of Escherichia coli. FEMS Microbiol Lett 114: 349354.
  • Bompard-Gilles C, Remaut H, Villeret V et al. (2000) Crystal structure of a d-aminopeptidase from Ochrobactrum anthropi, a new member of the ‘penicillin-recognizing enzyme’ family. Structure 8: 971980.
  • Born P, Breukink E & Vollmer W (2006) In vitro synthesis of cross-linked murein and its attachment to sacculi by PBP1A from Escherichia coli. J Biol Chem 281: 2698526993.
  • Bouhss A, Trunkfield AE, Bugg TDH & Mengin-Lecreulx D (2007) The biosynthesis of peptidoglycan lipid linked intermediates. FEMS Microbiol Rev 32: 208233.
  • Breukink E, Van Heusden HE, Vollmerhaus PJ et al. (2003) Lipid II is an intrinsic component of the pore induced by nisin in bacterial membranes. J Biol Chem 278: 1989819903.
  • Buchanan CE & Sowell MO (1982) Synthesis of penicillin-binding protein 6 by stationary-phase Escherichia coli. J Bacteriol 151: 491494.
  • Casadewall B, Reynolds PE & Courvalin P (2001) Regulation of expression of the vanD glycopeptide resistance gene cluster from Enterococcus faecium BM4339. J Bacteriol 183: 34363446.
  • Chen L, Walker D, Sun B, Hu Y, Walker S & Kahne D (2003) Vancomycin analogues active against vanA-resistant strains inhibit bacterial transglycosylase without binding substrate. Proc Natl Acad Sci USA 100: 56585663.
  • Contreras-Martel C, Job V, Di Guilmi AM, Vernet T, Dideberg O & Dessen A (2006) Crystal structure of penicillin-binding protein 1a (PBP1a) reveals a mutational hotspot implicated in beta-lactam resistance in Streptococcus pneumoniae. J Mol Biol 355: 684696.
  • Courvalin P (2006) Vancomycin resistance in gram-positive cocci. Clin Infect Dis 42 (Suppl 1): S25S34.
  • Daniel RA, Harry EJ & Errington J (2000) Role of penicillin-binding protein PBP 2B in assembly and functioning of the division machinery of Bacillus subtilis. Mol Microbiol 35: 299311.
  • Dasgupta A, Datta P, Kundu M & Basu J (2006) The serine/threonine kinase PknB of Mycobacterium tuberculosis phosphorylates PBPA, a penicillin-binding protein required for cell division. Microbiology 152: 493504.
  • Davies C, White SW & Nicholas RA (2001) Crystal structure of a deacylation-defective mutant of penicillin-binding protein 5 at 2.3-A resolution. J Biol Chem 276: 616623.
  • Den Blaauwen T, Aarsman ME, Vischer NO & Nanninga N (2003) Penicillin-binding protein PBP2 of Escherichia coli localizes preferentially in the lateral wall and at mid-cell in comparison with the old cell pole. Mol Microbiol 47: 539547.
  • Den Blaauwen T, De Pedro M, Nguyen-Distèche M & Ayala J (2008) Morphogenesis of rod-shaped sacculi. FEMS Microbiol Rev 32: 321344.
  • Denome SA, Elf PK, Henderson TA, Nelson DE & Young KD (1999) Escherichia coli mutants lacking all possible combinations of eight penicillin binding proteins: viability, characteristics, and implications for peptidoglycan synthesis. J Bacteriol 181: 39813993.
  • Di Berardino M, Dijkstra A, Stuber D, Keck W & Gubler M (1996) The monofunctional glycosyltransferase of Escherichia coli is a member of a new class of peptidoglycan-synthesising enzymes. FEBS Lett 392: 184188.
  • Di Guilmi AM, Mouz N, Andrieu JP et al. (1998) Identification, purification, and characterization of transpeptidase and glycosyltransferase domains of Streptococcus pneumoniae penicillin-binding protein 1a. J Bacteriol 180: 56525659.
  • Di Guilmi AM, Mouz N, Martin L, Hoskins J, Jaskunas SR, Dideberg O & Vernet T (1999) Glycosyltransferase domain of penicillin-binding protein 2a from Streptococcus pneumoniae is membrane associated. J Bacteriol 181: 27732781.
  • Di Guilmi AM, Dessen A, Dideberg O & Vernet T (2003a) Functional characterization of penicillin-binding protein 1b from Streptococcus pneumoniae. J Bacteriol 185: 16501658.
  • Di Guilmi AM, Dessen A, Dideberg O & Vernet T (2003b) The glycosyltransferase domain of penicillin-binding protein 2a from Streptococcus pneumoniae catalyzes the polymerization of murein glycan chains. J Bacteriol 185: 44184423.
  • Di Lallo G, Fagioli M, Barionovi D, Ghelardini P & Paolozzi L (2003) Use of a two-hybrid assay to study the assembly of a complex multicomponent protein machinery: bacterial septosome differentiation. Microbiology 149: 33533359.
  • Dive G & Dehareng D (1999) Serine peptidase catalytic machinery: cooperative one-step mechanism. Int J Quant Chem 73: 161174.
  • Dougherty TJ, Koller AE & Tomasz A (1980) Penicillin-binding proteins of penicillin-susceptible and intrinsically resistant Neisseria gonorrhoeae. Antimicrob Agents Chemother 18: 730737.
  • Dowson CG, Jephcott AE, Gough KR & Spratt BG (1989) Penicillin-binding protein 2 genes of non-beta-lactamase-producing, penicillin-resistant strains of Neisseria gonorrhoeae. Mol Microbiol 3: 3541.
  • Duez C, Zorzi W, Sapunaric F, Amoroso A, Thamm I & Coyette J (2001a) The penicillin resistance of Enterococcus faecalis JH2-2r results from an overproduction of the low-affinity penicillin-binding protein PBP4 and does not involve a psr-like gene. Microbiology 147: 25612569.
  • Duez C, Vanhove M, Gallet X, Bouillenne F, Docquier J, Brans A & Frère J (2001b) Purification and characterization of PBP4a, a new low-molecular-weight penicillin-binding protein from Bacillus subtilis. J Bacteriol 183: 15951599.
  • El Kharroubi A, Piras G, Jacques P, Szabo I, Van Beeumen J, Coyette J & Ghuysen JM (1989) Active-site and membrane topology of the dd-peptidase/penicillin-binding protein no. 6 of Enterococcus hirae (Streptococcus faecium) A.T.C.C. 9790. Biochem J 262: 457462.
  • Fonzé E, Vermeire M, Nguyen-Distèche M, Brasseur R & Charlier P (1999) The crystal structure of a penicilloyl-serine transferase of intermediate penicillin sensitivity. The dd-transpeptidase of Streptomyces K15. J Biol Chem 274: 2185321860.
  • Frère JM (2004) Streptomyces R61 d-Ala-d-Ala carboxypeptidase. Handbook of Proteolytic Enzymes. 2nd edn (BarrettAJ, RawlingsND & WoessnerJF, eds), pp. 19591962. Elsevier, London.
  • Gallant CV, Daniels C, Leung JM, Ghosh AS, Young KD, Kotra LP & Burrows LL (2005) Common beta-lactamases inhibit bacterial biofilm formation. Mol Microbiol 58: 10121024.
  • Georgopapadakou NH, Smith SA & Sykes RB (1982) Mode of action of azthreonam. Antimicrob Agents Chemother 21: 950956.
  • Ghosh AS & Young KD (2003) Sequences near the active site in chimeric penicillin binding proteins 5 and 6 affect uniform morphology of Escherichia coli. J Bacteriol 185: 21782186.
  • Ghuysen JM (1968) Use of bacteriolytic enzymes in determination of wall structure and their role in cell metabolism. Bacteriol Rev 32: 425464.
  • Ghuysen JM (1991) Serine beta-lactamases and penicillin-binding proteins. Annu Rev Microbiol 45: 3767.
  • Giesbrecht P, Wecke J & Reinicke B (1976) On the morphogenesis of the cell wall of staphylococci. Int Rev Cytol 44: 225318.
  • Gittins JR, Phoenix DA & Pratt JM (1994) Multiple mechanisms of membrane anchoring of Escherichia coli penicillin-binding proteins. FEMS Microbiol Rev 13: 112.
  • Goffin C & Ghuysen JM (1998) Multimodular penicillin-binding proteins: an enigmatic family of orthologs and paralogs. Microbiol Mol Biol Rev 62: 10791093.
  • Goffin C & Ghuysen JM (2002) Biochemistry and comparative genomics of SxxK superfamily acyltransferases offer a clue to the mycobacterial paradox: presence of penicillin-susceptible target proteins versus lack of efficiency of penicillin as therapeutic agent. Microbiol Mol Biol Rev 66: 702738, table of contents.
  • Gordon E, Mouz N, Duee E & Dideberg O (2000) The crystal structure of the penicillin-binding protein 2x from Streptococcus pneumoniae and its acyl-enzyme form: implication in drug resistance. J Mol Biol 299: 477485.
  • Granier B, Duez C, Lepage S et al. (1992) Primary and predicted secondary structures of the Actinomadura R39 extracellular dd-peptidase, a penicillin-binding protein (PBP) related to the Escherichia coli PBP4. Biochem J 282 (Part 3): 781788.
  • Guinane CM, Cotter PD, Ross RP & Hill C (2006) Contribution of penicillin-binding protein homologs to antibiotic resistance, cell morphology, and virulence of Listeria monocytogenes EGDe. Antimicrob Agents Chemother 50: 28242828.
  • Hakenbeck R (2000) Transformation in Streptococcus pneumoniae: mosaic genes and the regulation of competence. Res Microbiol 151: 453456.
  • Hara H & Suzuki H (1984) A novel glycan polymerase that synthesizes uncross-linked peptidoglycan in Escherichia coli. FEBS Lett 168: 155160.
  • Harris F, Brandenburg K, Seydel U & Phoenix D (2002) Investigations into the mechanisms used by the C-terminal anchors of Escherichia coli penicillin-binding proteins 4, 5, 6 and 6b for membrane interaction. Eur J Biochem 269: 58215829.
  • Heller H, Schaefer M & Schulten K (1993) Molecular dynamics simulation of a bilayer of 200 lipids in the gel and in the liquid-crystal phases. J Phys Chem 97: 83438360.
  • Henderson TA, Young KD, Denome SA & Elf PK (1997) AmpC and AmpH, proteins related to the class C beta-lactamases, bind penicillin and contribute to the normal morphology of Escherichia coli. J Bacteriol 179: 61126121.
  • Höltje JV (1995) From growth to autolysis: the murein hydrolases in Escherichia coli. Arch Microbiol 164: 243254.
  • Höltje JV (1998) Growth of the stress-bearing and shape-maintaining murein sacculus of Escherichia coli. Microbiol Mol Biol Rev 62: 181203.
  • Hoskins J, Matsushima P, Mullen DL et al. (1999) Gene disruption studies of penicillin-binding proteins 1a, 1b, and 2a in Streptococcus pneumoniae. J Bacteriol 181: 65526555.
  • Hotomi M, Billal DS, Shimada J, Suzumoto M, Yamauchi K, Fujihara K & Yamanaka N (2006) High prevalence of Streptococcus pneumoniae with mutations in pbp1a, pbp2x, and pbp2b genes of penicillin-binding proteins in the nasopharynx in children in Japan. ORL J Otorhinolaryngol Relat Spec 68: 139145.
  • Hujer AM, Kania M, Gerken T et al. (2005) Structure-activity relationships of different beta-lactam antibiotics against a soluble form of Enterococcus faecium PBP5, a type II bacterial transpeptidase. Antimicrob Agents Chemother 49: 612618.
  • Jamin M, Adam M, Damblon C, Christiaens L & Frere JM (1991) Accumulation of acyl-enzyme in dd-peptidase-catalysed reactions with analogues of peptide substrates. Biochem J 280 (Pt 2): 499506.
  • Judd RC, Strange JC, Pettit RK & Shafer WM (1991) Identification and characterization of a conserved outer-membrane protein of Neisseria gonorrhoeae. Mol Microbiol 5: 10911096.
  • Karimova G, Dautin N & Ladant D (2005) Interaction network among Escherichia coli membrane proteins involved in cell division as revealed by bacterial two-hybrid analysis. J Bacteriol 187: 22332243.
  • Kishida H, Unzai S, Roper DI, Lloyd A, Park SY & Tame JR (2006) Crystal structure of penicillin binding protein 4 (dacB) from Escherichia coli, both in the native form and covalently linked to various antibiotics. Biochemistry 45: 783792.
  • Korat B, Mottl H & Keck W (1991) Penicillin-binding protein 4 of Escherichia coli: molecular cloning of the dacB gene, controlled overexpression, and alterations in murein composition. Mol Microbiol 5: 675684.
  • Korsak D, Vollmer W & Markiewicz Z (2005a) Listeria monocytogenes EGD lacking penicillin-binding protein 5 (PBP5) produces a thicker cell wall. FEMS Microbiol Lett 251: 281288.
  • Korsak D, Popowska M & Markiewicz Z (2005b) Analysis of the murein of a Listeria monocytogenes EGD mutant lacking functional penicillin binding protein 5 (PBP5). Pol J Microbiol 54: 339342.
  • Kuzin AP, Liu H, Kelly JA & Knox JR (1995) Binding of cephalothin and cefotaxime to d-ala-d-ala-peptidase reveals a functional basis of a natural mutation in a low-affinity penicillin-binding protein and in extended-spectrum beta-lactamases. Biochemistry 34: 95329540.
  • Kwon DH, Dore MP, Kim JJ, Kato M, Lee M, Wu JY & Graham DY (2003) High-level beta-lactam resistance associated with acquired multidrug resistance in Helicobacter pylori. Antimicrob Agents Chemother 47: 21692178.
  • Lawrence PJ & Strominger JL (1970) Biosynthesis of the peptidoglycan of bacterial cell walls. XVI. The reversible fixation of radioactive penicillin G to the d-alanine carboxypeptidase of Bacillus subtilis. J Biol Chem 245: 36603666.
  • Lazaro S, Fernandez-Pinas F, Fernandez-Valiente E, Blanco-Rivero A & Leganes F (2001) pbpB, a gene coding for a putative penicillin-binding protein, is required for aerobic nitrogen fixation in the cyanobacterium Anabaena sp. strain PCC7120. J Bacteriol 183: 628636.
  • Lee J, Feldman AR, Delmas B & Paetzel M (2007) Crystal structure of the VP4 protease from infectious pancreatic necrosis virus reveals the acyl-enzyme complex for an intermolecular self-cleavage reaction. J Biol Chem 282: 2492824937.
  • Leganes F, Blanco-Rivero A, Fernandez-Pinas F et al. (2005) Wide variation in the cyanobacterial complement of presumptive penicillin-binding proteins. Arch Microbiol 184: 234248.
  • Leimanis S, Hoyez N, Hubert S, Laschet M, Sauvage E, Brasseur R & Coyette J (2006) PBP5 complementation of a PBP3 deficiency in Enterococcus hirae. J Bacteriol 188: 62986307.
  • Leski TA & Tomasz A (2005) Role of penicillin-binding protein 2 (PBP2) in the antibiotic susceptibility and cell wall cross-linking of Staphylococcus aureus: evidence for the cooperative functioning of PBP2, PBP4, and PBP2A. J Bacteriol 187: 18151824.
  • Lim D & Strynadka NC (2002) Structural basis for the beta lactam resistance of PBP2a from methicillin-resistant Staphylococcus aureus. Nat Struct Biol 9: 870876.
  • Liu H & Wong CH (2006) Characterization of a transglycosylase domain of Streptococcus pneumoniae PBP1b. Bioorg Med Chem 14: 71877195.
  • Lovering AL, De Castro L, Lim D & Strynadka NC (2006) Structural analysis of an “open” form of PBP1B from Streptococcus pneumoniae. Protein Sci 15: 17011709.
  • Lovering AL, De Castro LH, Lim D & Strynadka NC (2007) Structural insight into the transglycosylation step of bacterial cell-wall biosynthesis. Science 315: 14021405.
  • Lu WP, Sun Y, Bauer MD, Paule S, Koenigs PM & Kraft WG (1999) Penicillin-binding protein 2a from methicillin-resistant Staphylococcus aureus: kinetic characterization of its interactions with beta-lactams using electrospray mass spectrometry. Biochemistry 38: 65376546.
  • Macheboeuf P, Di Guilmi AM, Job V, Vernet T, Dideberg O & Dessen A (2005) Active site restructuring regulates ligand recognition in class A penicillin-binding proteins. Proc Natl Acad Sci USA 102: 577582.
  • Macheboeuf P, Contreras-Martel C, Job V, Dideberg O & Dessen A (2006) Penicillin binding proteins: key players in bacterial cell cycle and drug resistance processes. FEMS Microbiol Rev 30: 673691.
  • Matsuhashi M, Tamaki S, Curtis SJ & Strominger JL (1979) Mutational evidence for identity of penicillin-binding protein 5 in Escherichia coli with the major d-alanine carboxypeptidase IA activity. J Bacteriol 137: 644647.
  • McDonough MA, Anderson JW, Silvaggi NR, Pratt RF, Knox JR & Kelly JA (2002) Structures of two kinetic intermediates reveal species specificity of penicillin-binding proteins. J Mol Biol 322: 111122.
  • McPherson DC & Popham DL (2003) Peptidoglycan synthesis in the absence of class A penicillin-binding proteins in Bacillus subtilis. J Bacteriol 185: 14231431.
  • Meberg BM, Sailer FC, Nelson DE & Young KD (2001) Reconstruction of Escherichia coli mrcA (PBP 1a) mutants lacking multiple combinations of penicillin binding proteins. J Bacteriol 183: 61486149.
  • Meberg BM, Paulson AL, Priyadarshini R & Young KD (2004) Endopeptidase penicillin-binding proteins 4 and 7 play auxiliary roles in determining uniform morphology of Escherichia coli. J Bacteriol 186: 83268336.
  • Mercer KL & Weiss DS (2002) The Escherichia coli cell division protein FtsW is required to recruit its cognate transpeptidase, FtsI (PBP3), to the division site. J Bacteriol 184: 904912.
  • Meroueh SO, Bencze KZ, Hesek D, Lee M, Fisher JF, Stemmler TL & Mobashery S (2006) Three-dimensional structure of the bacterial cell wall peptidoglycan. Proc Natl Acad Sci USA 103: 44044409.
  • Morlot C, Noirclerc-Savoye M, Zapun A, Dideberg O & Vernet T (2004) The d,d-carboxypeptidase PBP3 organizes the division process of Streptococcus pneumoniae. Mol Microbiol 51: 16411648.
  • Morlot C, Pernot L, Le Gouellec A, Di Guilmi AM, Vernet T, Dideberg O & Dessen A (2005) Crystal structure of a peptidoglycan synthesis regulatory factor (PBP3) from Streptococcus pneumoniae. J Biol Chem 280: 1598415991.
  • Morosini MI, Ayala JA, Baquero F, Martinez JL & Blazquez J (2000) Biological cost of AmpC production for Salmonella enterica serotype Typhimurium. Antimicrob Agents Chemother 44: 31373143.
  • Mottl H, Anderluzzi D, Kraft A & Holtje J (1995) Towards the enzymology of the transglycosylase reaction: studies of the transglycosylase activity of the penicillin-binding protein 1a of Escherichia coli Abstracts of the symposium of the envelope in bacterial physiology and antibiotic action, Garda, Italy. p.70.
  • Murray T, Popham DL, Pearson CB, Hand AR & Setlow P (1998) Analysis of outgrowth of Bacillus subtilis spores lacking penicillin-binding protein 2a. J Bacteriol 180: 64936502.
  • Nelson DE & Young KD (2000) Penicillin binding protein 5 affects cell diameter, contour, and morphology of Escherichia coli. J Bacteriol 182: 17141721.
  • Nelson DE & Young KD (2001) Contributions of PBP 5 and dd-carboxypeptidase penicillin binding proteins to maintenance of cell shape in Escherichia coli. J Bacteriol 183: 30553064.
  • Nguyen-Disteche M, Leyh-Bouille M & Ghuysen JM (1982) Isolation of the membrane-bound 26 000-Mr penicillin-binding protein of Streptomyces strain K15 in the form of a penicillin-sensitive d-alanyl-d-alanine-cleaving transpeptidase. Biochem J 207: 109115.
  • Nicholas RA, Krings S, Tomberg J, Nicola G & Davies C (2003) Crystal structure of wild-type penicillin-binding protein 5 from Escherichia coli: implications for deacylation of the acyl-enzyme complex. J Biol Chem 278: 5282652833.
  • Nicola G, Peddi S, Stefanova M, Nicholas RA, Gutheil WG & Davies C (2005) Crystal structure of Escherichia coli penicillin-binding protein 5 bound to a tripeptide boronic acid inhibitor: a role for Ser-110 in deacylation. Biochemistry 44: 82078217.
  • Offant J, Michoux F, Dermiaux A, Biton J & Bourne Y (2006) Functional characterization of the glycosyltransferase domain of penicillin-binding protein 1a from Thermotoga maritima. Biochim Biophys Acta 1764: 10361042.
  • Okazaki S, Suzuki A, Komeda H, Yamaguchi S, Asano Y & Yamane T (2007) Crystal structure and functional characterization of a d-stereospecific amino acid amidase from Ochrobactrum anthropi SV3, a new member of the penicillin-recognizing proteins. J Mol Biol 368: 7991.
  • Paetzel M & Dalbey RE (1997) Catalytic hydroxyl/amine dyads within serine proteases. Trends Biochem Sci 22: 2831.
  • Palomeque-Messia P, Englebert S, Leyh-Bouille M et al. (1991) Amino acid sequence of the penicillin-binding protein/dd-peptidase of Streptomyces K15. Predicted secondary structures of the low Mr penicillin-binding proteins of class A. Biochem J 279 (Part 1): 223230.
  • Pares S, Mouz N, Petillot Y, Hakenbeck R & Dideberg O (1996) X-ray structure of Streptococcus pneumoniae PBP2x, a primary penicillin target enzyme. Nat Struct Biol 3: 284289.
  • Pereira SF, Henriques AO, Pinho MG, De Lencastre H & Tomasz A (2007) Role of PBP1 in cell division of Staphylococcus aureus. J Bacteriol 189: 35253531.
  • Piette A, Fraipont C, Den Blaauwen T, Aarsman ME, Pastoret S & Nguyen-Disteche M (2004) Structural determinants required to target penicillin-binding protein 3 to the septum of Escherichia coli. J Bacteriol 186: 61106117.
  • Pinho MG & Errington J (2003) Dispersed mode of Staphylococcus aureus cell wall synthesis in the absence of the division machinery. Mol Microbiol 50: 871881.
  • Pinho MG & Errington J (2005) Recruitment of penicillin-binding protein PBP2 to the division site of Staphylococcus aureus is dependent on its transpeptidation substrates. Mol Microbiol 55: 799807.
  • Pinho MG, De Lencastre H & Tomasz A (2000) Cloning, characterization, and inactivation of the gene pbpC, encoding penicillin-binding protein 3 of Staphylococcus aureus. J Bacteriol 182: 10741079.
  • Popham DL & Setlow P (1993) Cloning, nucleotide sequence, and regulation of the Bacillussubtilis pbpE operon, which codes for penicillin-binding protein 4* and an apparent amino acid racemase. J Bacteriol 175: 29172925.
  • Popham DL, Illades-Aguiar B & Setlow P (1995) The Bacillus subtilis dacB gene, encoding penicillin-binding protein 5*, is part of a three-gene operon required for proper spore cortex synthesis and spore core dehydration. J Bacteriol 177: 47214729.
  • Popham DL, Gilmore ME & Setlow P (1999) Roles of low-molecular-weight penicillin-binding proteins in Bacillus subtilis spore peptidoglycan synthesis and spore properties. J Bacteriol 181: 126132.
  • Priyadarshini R, Popham DL & Young KD (2006) Daughter cell separation by penicillin-binding proteins and peptidoglycan amidases in Escherichia coli. J Bacteriol 188: 53455355.
  • Reynolds PE, Ambur OH, Casadewall B & Courvalin P (2001) The VanY(D) dd-carboxypeptidase of Enterococcus faecium BM4339 is a penicillin-binding protein. Microbiology 147: 25712578.
  • Romeis T & Holtje JV (1994a) Penicillin-binding protein 7/8 of Escherichia coli is a dd-endopeptidase. Eur J Biochem 224: 597604.
  • Romeis T & Holtje JV (1994b) Specific interaction of penicillin-binding proteins 3 and 7/8 with soluble lytic transglycosylase in Escherichia coli. J Biol Chem 269: 2160321607.
  • Ropp PA, Hu M, Olesky M & Nicholas RA (2002) Mutations in ponA, the gene encoding penicillin-binding protein 1, and a novel locus, penC, are required for high-level chromosomally mediated penicillin resistance in Neisseria gonorrhoeae. Antimicrob Agents Chemother 46: 769777.
  • Santos JM, Lobo M, Matos AP, De Pedro MA & Arraiano CM (2002) The gene bolA regulates dacA (PBP5), dacC (PBP6) and ampC (AmpC), promoting normal morphology in Escherichia coli. Mol Microbiol 45: 17291740.
  • Sauvage E, Kerff F, Fonzé E et al. (2002) The 2.4-A crystal structure of the penicillin-resistant penicillin-binding protein PBP5fm from Enterococcus faecium in complex with benzylpenicillin. Cell Mol Life Sci 59: 12231232.
  • Sauvage E, Herman R, Petrella S, Duez C, Bouillenne F, Frère JM & Charlier P (2005) Crystal structure of the Actinomadura R39 dd-peptidase reveals new domains in penicillin-binding proteins. J Biol Chem 280: 3124931256.
  • Sauvage E, Duez C, Herman R et al. (2007) Crystal structure of the Bacillus subtilis penicillin-binding protein 4a, and its complex with a peptidoglycan mimetic peptide. J Mol Biol 371: 528539.
  • Scheffers DJ (2005) Dynamic localization of penicillin-binding proteins during spore development in Bacillus subtilis. Microbiology 151: 9991012.
  • Scheffers DJ & Errington J (2004) PBP1 is a component of the Bacillus subtilis cell division machinery. J Bacteriol 186: 51535156.
  • Scheffers DJ, Jones LJ & Errington J (2004) Several distinct localization patterns for penicillin-binding proteins in Bacillus subtilis. Mol Microbiol 51: 749764.
  • Schiffer G & Holtje JV (1999) Cloning and characterization of PBP 1C, a third member of the multimodular class A penicillin-binding proteins of Escherichia coli. J Biol Chem 274: 3203132039.
  • Schleifer KH & Kandler O (1972) Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36: 407477.
  • Schouten JA, Bagga S, Lloyd AJ, De Pascale G, Dowson CG, Roper DI & Bugg TD (2006) Fluorescent reagents for in vitro studies of lipid-linked steps of bacterial peptidoglycan biosynthesis: derivatives of UDPMurNAc-pentapeptide containing d-cysteine at position 4 or 5. Mol Biosyst 2: 484491.
  • Schwartz B, Markwalder JA & Wang Y (2001) Lipid II: total synthesis of the bacterial cell wall precursor and utilization as a substrate for glycosyltransfer and transpeptidation by penicillin binding protein (PBP) 1b of Escherichia coli. J Am Chem Soc 123: 1163811643.
  • Schwartz B, Markwalder JA, Seitz SP, Wang Y & Stein RL (2002) A kinetic characterization of the glycosyltransferase activity of Eschericia coli PBP1b and development of a continuous fluorescence assay. Biochemistry 41: 1255212561.
  • Shafer WM & Judd RC (1991) Gonococcal penicillin-binding protein 3 and the surface-exposed 44kDa peptidoglycan-binding protein appear to be the same molecule. Mol Microbiol 5: 10971103.
  • Silvaggi NR, Anderson JW, Brinsmade SR, Pratt RF & Kelly JA (2003) The crystal structure of phosphonate-inhibited d-Ala-d-Ala peptidase reveals an analogue of a tetrahedral transition state. Biochemistry 42: 11991208.
  • Silvaggi NR, Josephine HR, Kuzin AP, Nagarajan R, Pratt RF & Kelly JA (2005) Crystal structures of complexes between the R61 dd-peptidase and peptidoglycan-mimetic beta-lactams: a non-covalent complex with a “perfect penicillin”. J Mol Biol 345: 521533.
  • Spratt BG (1977) Temperature-sensitive cell division mutants of Escherichia coli with thermolabile penicillin-binding proteins. J Bacteriol 131: 293305.
  • Spratt BG (1988) Hybrid penicillin-binding proteins in penicillin-resistant strains of Neisseria gonorrhoeae. Nature 332: 173176.
  • Spratt BG & Cromie KD (1988) Penicillin-binding proteins of gram-negative bacteria. Rev Infect Dis 10: 699711.
  • Spratt BG & Pardee AB (1975) Penicillin-binding proteins and cell shape in E. coli. Nature 254: 516517.
  • Spratt BG & Strominger JL (1976) Identification of the major penicillin-binding proteins of Escherichia coli as d-alanine carboxypeptidase IA. J Bacteriol 127: 660663.
  • Spratt BG, Zhou J, Taylor M & Merrick MJ (1996) Monofunctional biosynthetic peptidoglycan transglycosylases. Mol Microbiol 19: 639640.
  • Stefanova ME, Tomberg J, Olesky M, Holtje JV, Gutheil WG & Nicholas RA (2003) Neisseria gonorrhoeae penicillin-binding protein 3 exhibits exceptionally high carboxypeptidase and beta-lactam binding activities. Biochemistry 42: 1461414625.
  • Stefanova ME, Tomberg J, Davies C, Nicholas RA & Gutheil WG (2004) Overexpression and enzymatic characterization of Neisseria gonorrhoeae penicillin-binding protein 4. Eur J Biochem 271: 2332.
  • Suzuki H, Nishimura Y & Hirota Y (1978) On the process of cellular division in Escherichia coli: a series of mutants of E. coli altered in the penicillin-binding proteins. Proc Natl Acad Sci USA 75: 664668.
  • Terrak M & Nguyen-Disteche M (2006) Kinetic characterization of the monofunctional glycosyltransferase from Staphylococcus aureus. J Bacteriol 188: 25282532.
  • Terrak M, Ghosh TK, Van Heijenoort J et al. (1999) The catalytic, glycosyl transferase and acyl transferase modules of the cell wall peptidoglycan-polymerizing penicillin-binding protein 1b of Escherichia coli. Mol Microbiol 34: 350364.
  • Tipper DJ & Strominger JL (1965) Mechanism of action of penicillins: a proposal based on their structural similarity to acyl-d-alanyl-d-alanine. Proc Natl Acad Sci USA 54: 11331141.
  • Van Der Linden MP, De Haan L, Hoyer MA & Keck W (1992) Possible role of Escherichia coli penicillin-binding protein 6 in stabilization of stationary-phase peptidoglycan. J Bacteriol 174: 75727578.
  • Van Heijenoort Y, Gomez M, Derrien M, Ayala J & Van Heijenoort J (1992) Membrane intermediates in the peptidoglycan metabolism of Escherichia coli: possible roles of PBP 1b and PBP 3. J Bacteriol 174: 35493557.
  • VanNieuwenhze MS, Mauldin SC, Zia-Ebrahimi M et al. (2002) The first total synthesis of lipid II: the final monomeric intermediate in bacterial cell wall biosynthesis. J Am Chem Soc 124: 36563660.
  • Vega D & Ayala JA (2006) The dd-carboxypeptidase activity encoded by pbp4B is not essential for the cell growth of Escherichia coli. Arch Microbiol 185: 2327.
  • Vicente MF, Berenguer J, De Pedro MA, Perez-Diaz JC & Baquero F (1990) Penicillin binding proteins in Listeria monocytogenes. Acta Microbiol Hung 37: 227231.
  • Vollmer W & Holtje JV (2004) The architecture of the murein (peptidoglycan) in gram-negative bacteria: vertical scaffold or horizontal layer(s)? J Bacteriol 186: 59785987.
  • Vollmer W, Blanot D & De Pedro M (2008a) Peptidoglycan structure and architecture. FEMS Microbiol Rev 32: 149167.
  • Vollmer W, Joris B, Charlier P & Foster S (2008b) Bacteria peptidoglycan (murein) hydrolases. FEMS Microbiol Rev 32: 259286.
  • Wang QM, Peery RB, Johnson RB, Alborn WE, Yeh WK & Skatrud PL (2001) Identification and characterization of a monofunctional glycosyltransferase from Staphylococcus aureus. J Bacteriol 183: 47794785.
  • Ward JM & Hodgson JE (1993) The biosynthetic genes for clavulanic acid and cephamycin production occur as a ‘super-cluster’ in three Streptomyces. FEMS Microbiol Lett 110: 239242.
  • Wei Y, Havasy T, McPherson DC & Popham DL (2003) Rod shape determination by the Bacillus subtilis class B penicillin-binding proteins encoded by pbpA and pbpH. J Bacteriol 185: 47174726.
  • Weiss DS, Chen JC, Ghigo JM, Boyd D & Beckwith J (1999) Localization of FtsI (PBP3) to the septal ring requires its membrane anchor, the Z ring, FtsA, FtsQ, and FtsL. J Bacteriol 181: 508520.
  • Welzel P (2005) Syntheses around the transglycosylation step in peptidoglycan biosynthesis. Chem Rev 105: 46104660.
  • Wyke AW, Ward JB, Hayes MV & Curtis NA (1981) A role in vivo for penicillin-binding protein-4 of Staphylococcus aureus. Eur J Biochem 119: 389393.
  • Ye XY, Lo MC, Brunner L, Walker D, Kahne D & Walker S (2001) Better substrates for bacterial transglycosylases. J Am Chem Soc 123: 31553156.
  • Yeats C, Finn RD & Bateman A (2002) The PASTA domain: a beta-lactam-binding domain. Trends Biochem Sci 27: 438.
  • Young TA, Delagoutte B, Endrizzi JA, Falick AM & Alber T (2003) Structure of Mycobacterium tuberculosis PknB supports a universal activation mechanism for Ser/Thr protein kinases. Nat Struct Biol 10: 168174.
  • Yuan Y, Barrett D, Zhang Y, Kahne D, Sliz P & Walker S (2007) Crystal structure of a peptidoglycan glycosyltransferase suggests a model for processive glycan chain synthesis. Proc Natl Acad Sci USA 104: 53485353.
  • Zapun A, Vernet T & Pinho M (2008a) The different shapes of cocci. FEMS Microbiol Rev 32: 345360.
  • Zapun A, Contreras-Martel C & Vernet T (2008b) Penicillin-binding proteins and β-lactam resistance. FEMS Microbiol Rev 32: 361385.
  • Zawadzka-Skomial J, Markiewicz Z, Nguyen-Disteche M, Devreese B, Frere JM & Terrak M (2006) Characterization of the bifunctional glycosyltransferase/acyltransferase penicillin-binding protein 4 of Listeria monocytogenes. J Bacteriol 188: 18751881.
  • Zhang QY & Spratt BG (1989) Nucleotide sequence of the penicillin-binding protein 2 gene of Neisseria meningitidis. Nucleic Acids Res 17: 5383.
  • Zorzi W, Zhou XY, Dardenne O et al. (1996) Structure of the low-affinity penicillin-binding protein 5 PBP5fm in wild-type and highly penicillin-resistant strains of Enterococcus faecium. J Bacteriol 178: 49484957.