SEARCH

SEARCH BY CITATION

References

  • Akamatsu Y, Takahashi M & Shimada M (1994) Production of oxalic acid by wood-rotting basidiomycetes grown on low and high-nitrogen culture media. Mater Organism 28: 251264.
  • Ander P & Marzullo L (1997) Sugar oxidoreductases and veratryl alcohol oxidase as related to lignin degradation. J Biotechnol 53: 115131.
  • Ayers AR, Ayers SB & Eriksson KE (1978) Cellobiose oxidase, purification and partial characterization of a hemoprotein from Sporotrichum pulverulentum. Eur J Biochem 90: 171181.
  • Bailey PJ, Liese W, Roesch R, Keilich G & Afting EG (1969) Cellulase (beta-1,4-glucan 4-glucanohydrolase) from wood-degrading fungus Polyporus schweinitzii Fr. I. Purification. Biochim Biophys Acta 185: 381391.
  • Baldrian P (2008) Enzymes of Saprotrophic Basidiomycetes. Ecology of Saprotrophic Basidiomycetes (BoddyL, FranklandJ & VanWestP, eds), pp. 1941. Academic Press, New York.
  • Baminger U, Subramaniam SS, Renganathan V & Haltrich D (2001) Purification and characterization of cellobiose dehydrogenase from the plant pathogen Sclerotium (Athelia) rolfsii. Appl Environ Microbiol 67: 17661774.
  • Bao WJ & Renganathan V (1992) Cellobiose oxidase of Phanerochaete chrysosporium enhances crystalline cellulose degradation by cellulases. FEBS Lett 302: 7780.
  • Bao WJ, Usha SN & Renganathan V (1993) Purification and characterization of cellobiose dehydrogenase, a novel extracellular hemoflavoenzyme from the white-rot fungus Phanerochaete chrysosporium. Archiv Biochem Biophys 300: 705713.
  • Bhattacharjee B, Roy A & Majumder AL (1992) Beta-glucosidase of a white-rot fungus Trametes gibbosa. Biochem Intl 28: 783793.
  • Bhattacharjee B, Roy A & Majumder AL (1993) Carboxymethylcellulase from Lenzites saepiaria, a brown-rotter. Biochem Mol Biol Intl 30: 11431152.
  • Branchaud BP (1999) Free radicals as a result of dioxygen metabolism. Metal Ions in Biological Systems, Vol. 36 (SigelA & SigelH, eds), pp. 79102. Marcel Dekker, New York.
  • Brock BJ, Rieble S & Gold MH (1995) Purification and characterization of a 1,4-benzoquinone reductase from the basidiomycete Phanerochaete chrysosporium. Appl Environ Microbiol 61: 30763081.
  • Buettner GR (1993) The pecking order of free radicals and antioxidants – lipid peroxidation, alpha tocopherol, and ascorbate. Archiv Biochem Biophys 300: 535543.
  • Burke RM & Cairney JWG (1998) Carbohydrate oxidases in ericoid and ectomycorrhizal fungi: a possible source of Fenton radicals during the degradation of lignocellulose. New Phytol 139: 637645.
  • Cai YJ, Buswell JA & Chang ST (1998) beta-Glucosidase components of the cellulolytic system of the edible straw mushroom, Volvariella volvacea. Enzyme Microb Technol 22: 122129.
  • Cai YJ, Chapman SJ, Buswell JA & Chang ST (1999) Production and distribution of endoglucanase, cellobiohydrolase, and beta-glucosidase components of the cellulolytic system of Volvariella volvacea, the edible straw mushroom. Appl Environ Microbiol 65: 553559.
  • Cao WG & Crawford DL (1993) Purification and some properties of beta-glucosidase from the ectomycorrhizal fungus Pisolithus tinctorius Strain Smf. Can J Microbiol 39: 125129.
  • Chandhoke V, Goodell B, Jellison J & Fekete FA (1992) Oxidation of 2-keto-4-thiomethylbutyric acid (KTBA) by iron-binding compounds produced by the wood-decaying fungus Gloeophyllum trabeum. FEMS Microbiol Lett 90: 263266.
  • Clausen CA (1995) Dissociation of the multienzyme complex of the brown-rot fungus Postia placenta. FEMS Microbiol Lett 127: 7378.
  • Cohen R, Jensen KA, Houtman CJ & Hammel KE (2002) Significant levels of extracellular reactive oxygen species produced by brown rot basidiomycetes on cellulose. FEBS Lett 531: 483488.
  • Cohen R, Suzuki MR & Hammel KE (2004) Differential stress-induced regulation of two quinone reductases in the brown rot basidiomycete Gloeophyllum trabeum. Appl Environ Microbiol 70: 324331.
  • Cohen R, Suzuki MR & Hammel KE (2005) Processive endoglucanase active in crystalline cellulose hydrolysis by the brown rot basidiomycete Gloeophyllum trabeum. Appl Environ Microbiol 71: 24122417.
  • Copa-Patino JL & Broda P (1994) A Phanerochaete chrysosporium beta-d-glucosidase/beta-d-xylosidase with specificity for (1[RIGHTWARDS ARROW]3)-beta-d-glucan linkages. Carbohydr Res 253: 265275.
  • Decelle B, Tsang A & Storms RK (2004) Cloning, functional expression and characterization of three Phanerochaete chrysosporium endo-1,4-beta-xylanases. Curr Genet 46: 166175.
  • Deshpande V, Eriksson KE & Pettersson B (1978) Production, purification and partial characterization of 1,4-beta-glucosidase enzymes from Sporotrichum pulverulentum. Eur J Biochem 90: 191198.
  • Ding SJ, Ge W & Buswell JA (2001) Endoglucanase I from the edible straw mushroom, Volvariella volvacea– Purification, characterization, cloning and expression. Eur J Biochem 268: 56875695.
  • Ding SJ, Ge W & Buswell JA (2002) Secretion, purification and characterisation of a recombinant Volvariella volvacea endoglucanase expressed in the yeast Pichia pastoris. Enzyme Microb Technol 31: 621626.
  • Dutton MV, Evans CS, Atkey PT & Wood DA (1993) Oxalate production of basidiomycetes including the white rot species Coriolus versicolor and Phanerochaete chrysosporium. Appl Microbiol Biotechnol 39: 510.
  • Ek M, Gierer J & Jansbo K (1989) Study on the selectivity of bleaching with oxygen-containing species. Holzforschung 43: 391396.
  • Enoki A, Tanaka H & Fuse G (1989) Relationship between degradation of wood and production of H2O2-producing or one-electron oxidases by brown-rot fungi. Wood Sci Technol 23: 112.
  • Enoki A, Hirano T & Tanaka H (1992) Extracellular substance from the brown rot basidiomycete Gloeophyllum trabeum that produces and reduces hydrogen peroxide. Mater Organism 27: 247261.
  • Enoki A, Tanaka H & Itakura S (2003) Physical and chemical characteristics of glycopeptide from wood decay fungi. Wood Deterioration and Preservation (GoodellB, NicholasDD & SchultzTP, eds), pp. 140153. Oxford University Press, Washington, DC.
  • Eriksson KE & Pettersson B (1975a) Extracellular enzyme system utilized by fungus Sporotrichum pulverulentum (Chrysosporium lignorum) for breakdown of cellulose. 1. Separation, purification and physicochemical characterization of 5 endo-1,4-beta-glucanases. Eur J Biochem 51: 193206.
  • Eriksson KE & Pettersson B (1975b) Extracellular enzyme system utilized by fungus Sporotrichum pulverulentum (Chrysosporium lignorum) for breakdown of cellulose. 3. Purification and physico-chemical characterization of an exo-1,4-beta-glucanase. Eur J Biochem 51: 213218.
  • Espejo E & Agosin E (1991) Production and degradation of oxalic acid by brown rot fungi. Appl Environ Microbiol 57: 19801986.
  • Evans CS (1985) Properties of the beta-d-glucosidase (cellobiase) from the wood-rotting fungus, Coriolus versicolor. Appl Microbiol Biotechnol 22: 128131.
  • Fang J, Liu W & Gao PJ (1998) Cellobiose dehydrogenase from Schizophyllum commune: purification and study of some catalytic, inactivation, and cellulose-binding properties. Archiv Biochem Biophy 353: 3746.
  • Faulet BM, Niamke S, Gonnety JT & Kouame LP (2006) Purification and biochemical properties of a new thermostable xylanase from symbiotic fungus, Termitomyces sp. Afric J Biotechnol 5: 273282.
  • Fekete FA, Chandhoke V & Jellison J (1989) Iron binding compounds produced by wood decaying basidiomycetes. Appl Environ Microbiol 55: 27202722.
  • Ferraz A, Parra C, Freer J, Baeza J & Rodriguez J (2001) Occurrence of iron-reducing compounds in biodelignified “palo podrido” wood samples. Intl Biodeter Biodegrad 47: 203208.
  • Filley TR, Cody GD, Goodell B, Jellison J, Noser C & Ostrofsky A (2002) Lignin demethylation and polysaccharide decomposition in spruce sapwood degraded by brown rot fungi. Org Geochem 33: 111124.
  • Flournoy DS, Kirk TK & Highley TL (1991) Wood decay by brown rot fungi – changes in pore structure and cell wall volume. Holzforschung 45: 383388.
  • Garzillo AMV, Dipaolo S, Ruzzi M & Buonocore V (1994) Hydrolytic properties of extracellular cellulases from Pleurotus ostreatus. Appl Microbiol Biotechnol 42: 476481.
  • Gilad R, Rabinovich L, Yaron S, Bayer EA, Lamed R, Gilbert HJ & Shoham Y (2003) Ce1I, a noncellulosomal family 9 enzyme from Clostridium thermocellum, is a processive endoglucanase that degrades crystalline cellulose. J Bacteriol 185: 391398.
  • Goksoyr J & Eriksen J (1980) Cellulases. Microbial Enzymes and Bioconversions (RoseAH, ed), pp. 283330. Academic Press, London.
  • Goodell B (2003) Brown-rot fungal degradation of wood: our evolving view. Wood Deterior Preserv 845: 97118.
  • Goodell B, Jellison J, Liu J et al. (1997) Low molecular weight chelators and phenolic compounds isolated from wood decay fungi and their role in the fungal biodegradation of wood. J Biotechnol 53: 133162.
  • Goodell B, Qian Y, Jellison J, Richard M & Qi W (2002) Lignocellulose oxidation by low molecular weight metal-binding compounds isolated from wood degrading fungi: a comparison of brown rot and white rot systems and the potential application of chelator-mediated Fenton reactions. Progress in Biotechnology 21, Biology in the Pulp and Paper Industry (ViikariL & LanttoR, eds), pp. 3747. Elsevier, New York.
  • Goodell B, Daniel G, Jellison J & Qian YH (2006) Iron-reducing capacity of low-molecular-weight compounds produced in wood by fungi. Holzforschung 60: 630636.
  • Green F, Larsen MJ, Winandy JE & Highley TL (1991) Role of oxalic acid in incipient brown rot decay. Mater Organism 26: 191213.
  • Guillén F, Martínez AT & Martínez MJ (1990) Production of hydrogen peroxide by aryl alcohol oxidase from the ligninolytic fungus Pleurotus eryngii. Appl Microbiol Biotechnol 32: 465469.
  • Guillén F, Martínez MJ, Munoz C & Martínez AT (1997) Quinone redox cycling in the ligninolytic fungus Pleurotus eryngii leading to extracellular production of superoxide anion radical. Archiv Biochem Biophys 339: 190199.
  • Guillén F, Munoz C, Gomez-Toribio V, Martínez AT & Martínez MJ (2000) Oxygen activation during oxidation of methoxyhydroquinones by laccase from Pleurotus eryngii. Appl Environ Microbiol 66: 170175.
  • Hai PQ, Nozaki K, Amano Y & Kanda T (2000) Purification and characterization of cellobiose dehydrogenase from Irpex lacteus and its adsorption on cellulose. J Appl Glycosci 47: 311318.
  • Hallberg BM, Henriksson G, Pettersson G & Divne C (2002) Crystal structure of the flavoprotein domain of the extracellular flavocytochrome cellobiose dehydrogenase. J Mol Biol 315: 421434.
  • Halliwell B & Gutteridge JMC (1999) Free Radicals in Biology and Medicine. Oxford University Press, Oxford.
  • Halliwell G (1965) Catalytic decomposition of cellulose under biological conditions. Biochem J 95: 3541.
  • Hamada N, Ishikawa K, Fuse N et al. (1999) Purification, characterization and gene analysis of exo-cellulase II (Ex-2) from the white rot basidiomycete Irpex lacteus. J Biosci Bioeng 87: 442451.
  • Hammel KE, Kapich AN, Jensen KA & Ryan ZC (2002) Reactive oxygen species as agents of wood decay by fungi. Enzyme Microb Technol 30: 445453.
  • Henriksson G, Pettersson G, Johansson G, Ruiz A & Uzcategui E (1991) Cellobiose oxidase from Phanerochaete chrysosporium can be cleaved by papain into 2 domains. Eur J Biochem 196: 101106.
  • Henriksson G, Johansson G & Pettersson G (1993) Is cellobiose oxidase from Phanerochaete chrysosporium a one-electron reductase. Biochim Biophys Acta 1144: 184190.
  • Henriksson G, Ander P, Pettersson B & Pettersson G (1995) Cellobiose dehydrogenase (cellobiose oxidase) from Phanerochaete chrysosporium as a wood degrading enzyme – studies on cellulose, xylan and synthetic lignin. Appl Microbiol Biotechnol 42: 790796.
  • Henriksson G, Salumets A, Divne C & Pettersson G (1997) Studies of cellulose binding by cellobiose dehydrogenase and a comparison with cellobiohydrolase 1. Biochem J 324: 833838.
  • Henriksson G, Sild V, Szabo IJ, Pettersson G & Johansson G (1998) Substrate specificity of cellobiose dehydrogenase from Phanerochaete chrysosporium. Biochim Biophys Acta – Protein Struct Mol Enzymol 1383: 4854.
  • Henriksson G, Nutt A, Henriksson H, Pettersson B, Stahlberg J, Johansson G & Pettersson G (1999) Endoglucanase 28 (cel12A), a new Phanerochaete chrysosporium cellulase. Eur J Biochem 259: 8895.
  • Henriksson G, Johansson G & Pettersson G (2000) A critical review of cellobiose dehydrogenases. J Biotechnol 78: 93113.
  • Herr D, Baumer F & Dellweg H (1978a) Purification and properties of an extracellular endo-1,4-beta-glucanase from Lenzites trabea. Archiv Microbiol 117: 287292.
  • Herr D, Baumer F & Dellweg H (1978b) Purification and properties of an extracellular beta-glucosidase from Lenzites trabea. Eur J Appl Microbiol Biotechnol 5: 2936.
  • Hirano T, Tanaka H & Enoki A (1995) Extracellular substance from the brown rot basidiomycete Tyromyces palustris that reduces molecular oxygen to hydroxyl radicals and ferric iron to ferrous iron. Mokuzai Gakkaishi 41: 334341.
  • Hirano T, Tanaka H & Enoki A (1997) Relationship between production of hydroxyl radicals and degradation of wood by the brown-rot fungus, Tyromyces palustris. Holzforschung 51: 389395.
  • Hirano T, Enoki A & Tanaka H (2000) Immunogold labeling of an extracellular substance producing hydroxyl radicals in wood degraded by brown-rot fungus Tyromyces palustris. J Wood Sci 46: 4551.
  • Hishida A, Suzuki T, Iijima T & Higaki M (1997) An extracellular cellulase of the brown-rot fungus, Tyromyces palustris. Mokuzai Gakkaishi 43: 686691.
  • Hon DNS (1994) Cellulose: a random walk along its historical path. Cellulose 1: 125.
  • Hüttermann A & Volger C (1973) Cellobiose phosphorylase in Fomes annosus. Nature – New Biol 245: 64.
  • Hyde SM & Wood PM (1997) A mechanism for production of hydroxyl radicals by the brown-rot fungus Coniophora puteana: Fe(III) reduction by cellobiose dehydrogenase and Fe(II) oxidation at a distance from the hyphae. Microbiology-UK 143: 259266.
  • Idogaki H & Kitamoto Y (1992) Purification and some properties of a carboxymethyl cellulase from Coriolus versicolor. Biosci Biotechnol Biochem 56: 970971.
  • Igarashi K, Samejima M & Eriksson KEL (1998) Cellobiose dehydrogenase enhances Phanerochaete chrysosporium cellobiohydrolase I activity by relieving product inhibition. Eur J Biochem 253: 101106.
  • Igarashi K, Tani T, Kawai R & Samejima M (2003) Family 3 beta-glucosidase from cellulose-degrading culture of the white-rot fungus Phanerochaete chrysosporium is a glucan 1,3-beta-glucosidase. J Biosci Bioeng 95: 572576.
  • Ishihara H, Imamura K, Kita M, Aimi T & Kitamoto Y (2005) Enhancement of the viscometric endocellulase activity of Polyporus arcularius CMCase IIIa by cellobiose and cellooligosaccharides. Mycoscience 46: 148153.
  • Ishihara M & Shimizu K (1984) Purification and properties of two extracellular endo-cellulases from the brown-rotting fungus Tyromyces palustris. Mokuzai Gakkaishi 30: 7987.
  • Ishikawa E, Sakai T, Ikemura H, Matsumoto K & Abe H (2005) Identification, cloning, and characterization of a Sporobolomyces singularis beta-galactosidase-like enzyme involved in galacto-oligosaccharide production. J Biosci Bioeng 99: 331339.
  • Jellison J, Chandhoke V, Goodell B & Fekete FA (1991) The isolation and immunolocalization of iron-binding compounds produced by Gloeophyllum trabeum. Appl Microbiol Biotechnol 35: 805809.
  • Jensen KA, Houtman CJ, Ryan ZC & Hammel KE (2001) Pathways for extracellular Fenton chemistry in the brown rot basidiomycete Gloeophyllum trabeum. Appl Environ Microbiol 67: 27052711.
  • Jensen KA, Ryan ZC, Wymelenberg AV, Cullen D & Hammel KE (2002) An NADH: quinone oxidoreductase active during biodegradation by the brown-rot basidiomycete Gloeophyllum trabeum. Appl Environ Microbiol 68: 26992703.
  • Jimenez M, Gonzalez AE, Martinez MJ, Martinez AT & Dale BE (1991) Screening of yeasts isolated from decayed wood for lignocellulose-degrading enzyme activities. Mycolog Res 95: 12991302.
  • Kajisa T, Yoshida M, Igarashi K, Katayama A, Nishino T & Samejima M (2004) Characterization and molecular cloning of cellobiose dehydrogenase from the brown-rot fungus Coniophora puteana. J Biosci Bioeng 98: 5763.
  • Kamper J, Kahmann R, Bolker M et al. (2006) Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis. Nature 444: 97101.
  • Kanda T & Nisizawa K (1988) Exocellulase of Irpex lacteus (Polyporus tulipiferae). Methods Enzymol 160: 403408.
  • Kanda T, Wakabayashi K & Nisizawa K (1976) Purification and properties of an endocellulase of avicelase type from Irpex lacteus (Polyporus tulipiferae). J Biochem 79: 977988.
  • Kanda T, Wakabayashi K & Nisizawa K (1980) Purification and properties of a lower molecular weight endo-cellulase from Irpex lacteus (Polyporus tulipiferae). J Biochem 87: 16251634.
  • Kanda T, Yatomi H, Makishima S, Amano Y & Nisizawa K (1989) Substrate specificities of exo-type and endo-type cellulases in the hydrolysis of beta-(1[RIGHTWARDS ARROW]3)-mixed and beta-([RIGHTWARDS ARROW]4)-mixed d-glucans. J Biochem 105: 127132.
  • Kaneko S, Hirano T, Tanaka H, Itakura S & Enoki A (2004) Physical and chemical properties of an extracellular low-molecular-weight substance from the brown-rot basidiomycete Fomitopsis palustris. Biocontr Sci 9: 1115.
  • Kaneko S, Yoshitake K, Itakura S, Tanaka H & Enoki A (2005) Relationship between production of hydroxyl radicals and degradation of wood, crystalline cellulose, and a lignin-related compound or accumulation of oxalic acid in cultures of brown-rot fungi. J Wood Sci 51: 262269.
  • Keilich G, Bailey PJ, Afting EG & Liese W (1969) Cellulase (beta-I,4-glucan 4-glucanohydrolase) from wood degrading fungus Polyporus schweinitzii Fr. 2. Characterization. Biochim Biophys Acta 185: 392401.
  • Kelley RL & Reddy CA (1986) Identification of glucose oxidase activity as the primary source of hydrogen peroxide production in ligninolytic cultures of Phanerochaete chrysosporium. Archiv Microbiol 144: 248253.
  • Keppler F, Eiden R, Niedan V, Pracht J & Scholer HF (2000) Halocarbons produced by natural oxidation processes during degradation of organic matter. Nature 403: 298301.
  • Kerem Z, Jensen KA & Hammel KE (1999) Biodegradative mechanism of the brown rot basidiomycete Gloeophyllum trabeum: evidence for an extracellular hydroquinone-driven Fenton reaction. FEBS Lett 446: 4954.
  • Kersten P & Cullen D (2007) Extracellular oxidative systems of the lignin-degrading basidiomycete Phanerochaete chrysosporium. Fungal Genet Biol 44: 7787.
  • Kersten PJ & Kirk TK (1987) Involvement of a new enzyme, glyoxal oxidase, in extracellular H2O2 production by Phanerochaete chrysosporium. J Bacteriol 169: 21952201.
  • Kirk TK, Ibach R, Mozuch MD, Conner AH & Highley TL (1991) Characteristics of cotton cellulose depolymerized by a brown-rot fungus, by acid, or by chemical oxidants. Holzforschung 45: 239244.
  • Kitaoka M & Hayashi K (2002) Carbohydrate-processing phosphorolytic enzymes. Trends Glycosci Glycotechnol 14: 3550.
  • Kleman-Leyer K & Kirk TK (1994) Three native cellulose-depolymerizing endoglucanases from solid-dubstrate cultures of the brown-rot fungus Meruliporia (Serpula) incrassata. Appl Environ Microbiol 60: 28392845.
  • Koenigs JW (1974) Hydrogen peroxide and iron: a proposed system for decomposition of wood by brown-rot basidiomycetes. Wood Fiber 6: 6679.
  • Kremer SM & Wood PM (1992) Production of fenton reagent by cellobiose oxidase from cellulolytic cultures of Phanerochaete chrysosporium. Eur J Biochem 208: 807814.
  • Kubicek CP, Messner R, Gruber F, Mandels M & Kubicekpranz EM (1993) Triggering of cellulase biosynthesis by cellulose in Trichoderma reesei– Involvement of a constitutive, sophorose-inducible, glucose-inhibited beta-diglucoside permease. J Biol Chem 268: 1936419368.
  • Kubo K & Nisizawa K (1983) Purification and properties of 2 endo-type cellulases from Irpex lacteus (Polyporus tulipiferae). J Ferment Technol 61: 383389.
  • Kurek B & Gaudard F (2000) Oxidation of spruce wood sawdust by MnO2 plus oxalate: a biochemical investigation. J Agri Food Chem 48: 30583062.
  • Kusuda M, Ueda M, Konishi Y et al. (2006) Detection of β-glucosidase as saprotrophic ability from an ectomycorrhizal mushroom, Tricholoma matsutake. Mycoscience 47: 184189.
  • Lachke AH & Deshpande MV (1988) Sclerotium rolfsii– status in cellulase research. FEMS Microbiol Rev 54: 177194.
  • Lawoko M, Nutt A, Henriksson H, Gellerstedt G & Henriksson G (2000) Hemicellulase activity of aerobic fungal cellulases. Holzforschung 54: 497500.
  • Leitner C, Volc J & Haltrich D (2001) Purification and characterization of pyranose oxidase from the white rot fungus Trametes multicolor. Appl Environ Microbiol 67: 36363644.
  • Lo AC, Willick G, Bernier R & Desrochers M (1988) Purification and assay of beta-glucosidase from Schizophyllum commune. Methods Enzymol 160: 432437.
  • Loftus BJ, Fung E, Roncaglia P et al. (2005) The genome of the basidiomycetous yeast and human pathogen Cryptococcus neoformans. Science 307: 13211324.
  • Ludwig R, Salamon A, Varga J, Zamocky M, Peterbauer CK, Kulbe KD & Haltrich D (2004) Characterisation of cellobiose dehydrogenases from the white-rot fungi Trametes pubescens and Trametes villosa. Appl Microbiol Biotechnol 64: 213222.
  • Lymar ES, Li B & Renganathan V (1995) Purification and characterization of a cellulose-binding beta-glucosidase from cellulose-degrading cultures of Phanerochaete chrysosporium. Appl Environ Microbiol 61: 29762980.
  • Lynd LR, Weimer PJ, Van Zyl WH & Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66: 506577.
  • Magalhaes PO, Ferraz A & Milagres AFM (2006) Enzymatic properties of two beta-glucosidases from Ceriporiopsis subvermispora produced in biopulping conditions. J Appl Microbiol 101: 480486.
  • Maijala P, Fagerstedt KV & Raudaskoski M (1991) Detection of extracellular cellulolytic and proteolytic activity in ectomycorrhizal fungi and Heterobasidion annosum (Fr) Bref. New Phytol 117: 643648.
  • Mansfield SD, DeJong E & Saddler JN (1997) Cellobiose dehydrogenase, an active agent in cellulose depolymerization. Appl Environ Microbiol 63: 38043809.
  • Mansfield SD, Saddler JN & Gübitz GM (1998) Characterization of endoglucanases from the brown rot fungi Gloeophyllum sepiarium and Gloeophyllum trabeum. Enzyme Microb Technol 23: 133140.
  • Martinez D, Larrondo LF, Putnam N et al. (2004) Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78. Nature Biotechnol 22: 695700.
  • Micales JA & Highley TL (1991) Factors associated with decay capacity of the brown-rot fungus Postia placenta. Biodeterioration Research III (LlewllynGG & ORearCE, eds), pp. 285302. Plenum, New York.
  • Middelhoven WJ (2006) Polysaccharides and phenolic compounds as substrate for yeasts isolated from rotten wood and description of Cryptococcus fagi sp. nov. Antonie Van Leeuwenhoek Intl J Gen Mol Microbiol 90: 5767.
  • Morais H, Ramos C, Matos N et al. (2002) Liquid chromatographic and electrophoretic characterisation of extracellular beta-glucosidase of Pleurotus ostreatus grown in organic waste. J Chromatogr B – Analyt Technol Biomed Life Sci 770: 111119.
  • Morpeth FF (1985) Some properties of cellobiose oxidase from the white rot fungus Sporotrichum pulverulentum. Biochem J 228: 557564.
  • Mucha J, Dahm H, Strzelczyk E & Werner A (2006) Synthesis of enzymes connected with mycoparasitism by ectomycorrhizal fungi. Archiv Microbiol 185: 6977.
  • Muheim A, Waldner R, Leisola MSA & Fiechter A (1990) An extracellular aryl alcohol oxidase from the white rot fungus Bjerkandera adusta. Enzyme and Microbial Technology 12: 204209.
  • Munoz IG, Ubhayasekera W, Henriksson H et al. (2001) Family 7 cellobiohydrolases from Phanerochaete chrysosporium: CRYSTAL structure of the catalytic module of Cel7D (CBH58) at 1.32 angstrom resolution and homology models of the isozymes. J Mol Biol 314: 10971111.
  • Nakagame S, Furujyo A & Sugiura J (2006) Purification and characterization of cellobiose dehydrogenase from white-rot basidiomycete Trametes hirsuta. Biosci Biotechnol Biochem 70: 16291635.
  • Newcombe D, Paszczynski A, Gajewska W, Kroger M, Feis G & Crawford R (2002) Production of small molecular weight catalysts and the mechanism of trinitrotoluene degradation by several Gloeophyllum species. Enzyme Microb Technol 30: 506517.
  • Nijikken Y, Tsukada T, Igarashi K, Samejima M, Wakagi T, Shoun H & Fushinobu S (2007) Crystal structure of intracellular family 1 [beta]-glucosidase BGL1A from the basidiomycete Phanerochaete chrysosporium. FEBS Lett 581: 15141520.
  • Nutt A, Salumets A, Henriksson G, Sild V & Johansson G (1997) Conversion of O2 species by cellobiose dehydrogenase (cellobiose oxidase) and glucose oxidase – a comparison. Biotechnol Lett 19: 379383.
  • Oak J-H, Nakagawa K & Miyazawa T (2000) Synthetically prepared Amadori-glycated phosphatidylethanolamine can trigger lipid peroxidation via free radical reactions. FEBS Lett 481: 2630.
  • Ohtsuka K, Tanoh A, Ozawa O, Kanematsu T, Uchida T & Shinke R (1990) Purification and properties of a beta-galactosidase with high galactosyl transfer activity from Cryptococcus laurentii Okn-4. J Ferment Bioeng 70: 301307.
  • Oikawa T, Tsukagawa Y & Soda K (1998) Endo-beta-glucanase secreted by a psychrotrophic yeast: purification and characterization. Biosci Biotechnol Biochem 62: 17511756.
  • Onishi N & Tanaka T (1996) Purification and properties of a galacto- and gluco-oligosaccharide-producing beta-glycosidase from Rhodotorula minuta IFO879. J Ferment Bioeng 82: 439443.
  • Osore H & Okech MA (1983) The partial purification and some properties of cellulase and beta-glucosidase of Termitomyces conidiophores and fruit bodies. J Appl Biochem 5: 172179.
  • Park JSB, Wood PM, Davies MJ, Gilbert BC & Whitwood AC (1997) A kinetic and ESR investigation of iron(II) oxalate oxidation by hydrogen peroxide and dioxygen as a source of hydroxyl radicals. Free Radical Res 27: 447458.
  • Park JSB, Wood PM, Gilbert BC & Whitwood AC (1999) EPR Evidence for hydroxyl- and substrate-derived radicals in Fe(II)-oxalate/hydrogen peroxide reactions. The importance of the reduction of Fe(III)-oxalate by oxygen-conjugated radicals to regenerate Fe(II) in reactions of carbohydrates and model compounds. J Chem Soc – Perkin Trans 2: 923931.
  • Paszczynski A, Crawford R, Funk D & Goodell B (1999) De novo synthesis of 4,5-dimethoxycatechol and 2,5-dimethoxyhydroquinone by the brown rot fungus Gloeophyllum trabeum. Appl Environ Microbiol 65: 674679.
  • Patil RV & Sadana JC (1984) The purification and properties of (14)-beta-d-glucan cellobiohydrolase from Sclerotium rolfsii– substrate specificity and mode of action. Can J Biochem Cell Biol 62: 920926.
  • Peciarova A & Biely P (1982) Beta-xylosidases and a nonspecific wall-bound beta-glucosidase of the yeast Cryptococcus albidus. Biochim Biophy Acta 716: 391399.
  • Pettersson G & Porath J (1963) Studies on cellulolytic enzymes. 2. Multiplicity of cellulolytic enzymes of Polyporus versicolor. Biochim Biophys Acta 67: 915.
  • Qi WH & Jellison J (2004) Characterization of a transplasma membrane redox system of the brown rot fungus Gloeophyllum trabeum. Intl Biodeter Biodegrad 53: 3742.
  • Ratto M, Ritschkoff AC & Viikari L (1997) The effect of oxidative pretreatment on cellulose degradation by Poria placenta and Trichoderma reesei cellulases. Appl Microbiol Biotechnol 48: 5357.
  • Reese ET & Levinson HS (1952) A comparative study of the breakdown of cellulose by microorganisms. Physiolog Plantar 5: 345366.
  • Renganathan V, Usha SN & Lindenburg F (1990) Cellobiose-oxidizing enzymes from the lignocellulose-degrading basidiomycete Phanerochaete chrysosporium– interaction with microcrystalline cellulose. Appl Microbiol Biotechnol 32: 609613.
  • Ritschkoff AC & Viikari L (1991) The production of extracellular hydrogen peroxide by brown rot fungi. Mater Organism 26: 157167.
  • Ritschkoff AC, Buchert J & Viikari L (1994) Purification and characterization of a thermophilic xylanase from the brown rot fungus Gloeophyllum trabeum. J Biotechnol 32: 6774.
  • Rouau X & Odier E (1986) Purification and properties of 2 enzymes from Dichomitus squalens which exhibit both cellobiohydrolase and xylanase activity. Carbohydr Res 145: 279292.
  • Rouland C, Civas A, Renoux J & Petek F (1988) Purification and properties of cellulases from the termite Macrotermes mulleri (Termitidae, Macrotermitinae) and its symbiotic fungus Termitomyces sp. Compar Biochem Physiol B – Biochem Mol Biol 91: 449458.
  • Roy BP, Dumonceaux T, Koukoulas AA & Archibald FS (1996) Purification and characterization of cellobiose dehydrogenases from the white rot fungus Trametes versicolor. Appl Environ Microbiol 62: 44174427.
  • Sadana JC & Patil RV (1988a) Cellobiose dehydrogenase from Sclerotium rolfsii. Methods Enzymol 160: 448454.
  • Sadana JC & Patil RV (1988b) 1,4-beta-d-glucan cellobiohydrolase from Sclerotium rolfsii. Methods Enzymol 160: 307314.
  • Sadana JC, Lachke AH & Patil RV (1984) Endo-(1-4)-beta-d-glucanases from Sclerotium rolfsii– purification, substrate specificity, and mode of action. Carbohydr Res 133: 297312.
  • Sadana JC, Patil RV & Shewale JG (1988) Beta-d-glucosidases from Sclerotium rolfsii. Methods Enzymol 160: 424431.
  • Sato S, Liu FHK & Tien M (2007) Expression analysis of extracellular proteins from Phanerochaete chrysosporium grown on different liquid and solid substrates. Microbiology 153: 30233033.
  • Schmidhalter DR & Canevascini G (1992) Characterization of the cellulolytic enzyme system from the brown rot fungus Coniophora puteana. Appl Microbiol Biotechnol 37: 431436.
  • Schmidhalter DR & Canevascini G (1993a) Purification and characterization of 2 exocellobiohydrolases from the brown rot fungus Coniophora puteana (Schum Ex-Fr) Karst. Archiv Biochem Biophys 300: 551558.
  • Schmidhalter DR & Canevascini G (1993b) Isolation and characterization of the cellobiose dehydrogenase from the brown rot fungus Coniophora puteana (Schum Ex-Fr) Karst. Archiv Biochem Biophys 300: 559563.
  • Sengupta S, Ghosh AK & Sengupta S (1991) Purification and characterization of a beta-glucosidase (cellobiase) from a mushroom Termitomyces clypeatus. Biochim Biophys Acta 1076: 215220.
  • Shewale JG & Sadana J (1981) Purification, characterization, and properties of beta-glucosidase enzymes from Sclerotium rolfsii. Archiv Biochem Biophys 207: 185196.
  • Shimada M, Akamtsu Y, Tokimatsu T, Mii K & Hattori T (1997) Possible biochemical roles of oxalic acid as a low molecular weight compound involved in brown-rot and white-rot wood decays. J Biotechnol 53: 103113.
  • Shimokawa T, Nakamura M, Hayashi N & Ishihara M (2004) Production of 2,5-dimethoxyhydroquinone by the brown-rot fungus Serpula lacrymans to drive extracellular Fenton reaction. Holzforschung 58: 305310.
  • Sigoillot C, Lomascolo A, Record E, Robert JL, Asther M & Sigoillot JC (2002) Lignocellulolytic and hemicellulolytic system of Pycnoporus cinnabarinus: isolation and characterization of a cellobiose dehydrogenase and a new xylanase. Enzyme Microb Technol 31: 876883.
  • Sison Jr & Schubert WJ (1958) On the mechanism of enzyme action. LXVIII. The cellobiase component of the cellulolytic enzyme system of Poria vaillantii. Archiv Biochem Biophys 78: 563572.
  • Smith MH & Gold MH (1979) Phanerochaete chrysosporiumβ-glucosidases: induction, cellular localization, and physical characterization. Appl Environ Microbiol 37: 938942.
  • Stahl JD, Rasmussen SJ & Aust SD (1995) Reduction of quinones and radicals by a plasma membrane redox system of Phanerochaete chrysosporium. Archiv Biochem Biophys 322: 221227.
  • Steffen KT, Cajthaml T, Šnajdr J & Baldrian P (2007) Differential degradation of oak (Quercus petraea) leaf litter by litter-decomposing basidiomycetes. Rese Microbiol 158: 447455.
  • Suzuki MR, Hunt CG, Houtman CJ, Dalebroux ZD & Hammel KE (2006) Fungal hydroquinones contribute to brown rot of wood. Environ Microbiol 8: 22142223.
  • Takao S (1965) Organic acid production by basidiomycetes. I. Screening of acid-producing strains. Appl Microbiol 13: 732.
  • Tanaka H, Fuse G & Enoki A (1991) An extracellular H2O2-producing and H2O2-reducing glycopeptide preparation from the lignin-degrading white rot fungus, Irpex lacteus. Mokuzai Gakkaishi 37: 986988.
  • Tanaka H, Hirano T & Enoki A (1993) Extracellular substance from the white rot basidiomycete Irpex lacteus for production and reduction of H2O2 during wood degradation. Mokuzai Gakkaishi 39: 493499.
  • Tanaka H, Itakura S, Hirano T & Enoki A (1996) An extracellular substance from the white-rot basidiomycete Phanerochaete chrysosporium for reducing molecular oxygen and ferric iron. Holzforschung 50: 541548.
  • Tanaka H, Itakura S & Enoki A (1999a) Hydroxyl radical generation by an extracellular low-molecular-weight substance and phenol oxidase activity during wood degradation by the white-rot basidiomycete Trametes versicolor. J Biotechnol 75: 5770.
  • Tanaka H, Itakura S & Enoki A (1999b) Hydroxyl radical generation by an extracellular low-molecular-weight substance and phenol oxidase activity during wood degradation by the white-rot basidiomycete Phanerochaete chrysosporium. Holzforschung 53: 2128.
  • Tanaka H, Itakura S & Enoki A (1999c) Hydroxyl radical generation and phenol oxidase activity in wood degradation by the white-rot basidiomycete Irpex lacteus. Mater Organism 33: 91105.
  • Tanaka H, Yoshida G, Baba Y et al. (2007) Characterization of a hydroxyl-radical-producing glycoprotein and its presumptive genes from the white-rot basidiomycete Phanerochaete chrysosporium. J Biotechnol 128: 500511.
  • Tanaka N, Akamtsu Y, Hattori T & Shimada M (1994) Effect of oxalic acid on the oxidative breakdown of cellulose by Fenton reaction. Wood Res 81: 810.
  • Temp U & Eggert C (1999) Novel interaction between laccase and cellobiose dehydrogenase during pigment synthesis in the white rot fungus Pycnoporus cinnabarinus. Appl Environ Microbiol 65: 389395.
  • Tomme P, Kwan E, Gilkes NR, Kilburn DG & Warren RAJ (1996) Characterization of CenC, an enzyme from Cellulomonas fimi with both endo- and exoglucanase activities. J Bacteriol 178: 42164223.
  • Tsukada T, Igarashi K, Yoshida M & Samejima M (2006) Molecular cloning and characterization of two intracellular β-glucosidases belonging to glycoside hydrolase family 1 from the basidiomycete Phanerochaete chrysosporium. Appl Microbiol Biotechnol 73: 807814.
  • Uzcategui E, Johansson G, Ek B & Pettersson G (1991a) The 1,4-beta-d-glucan glucanohydrolases from Phanerochaete chrysosporium– Re-assessment of their significance in cellulose degradation mechanisms. J Biotechnol 21: 143160.
  • Uzcategui E, Ruiz A, Montesino R, Johansson G & Pettersson G (1991b) The 1,4-beta-d-glucan cellobiohydrolases from Phanerochaete chrysosporium. 1. A system of synergistically acting enzymes homologous to Trichoderma reesei. J Biotechnol 19: 271285.
  • Valášková V & Baldrian P (2006a) Estimation of bound and free fractions of lignocellulose-degrading enzymes of wood-rotting fungi Pleurotus ostreatus, Trametes versicolor and Piptoporus betulinus. Res Microbiol 157: 119124.
  • Valášková V & Baldrian P (2006b) Degradation of cellulose and hemicelluloses by the brown rot fungus Piptoporus betulinus– production of extracellular enzymes and characterization of the major cellulases. Microbiology-Sgm 152: 36133622.
  • Valášková V, Šnajdr J, Bittner B, Cajthaml T, Merhautová V, Hofrichter M & Baldrian P (2007) Production of lignocellulose-degrading enzymes and degradation of leaf litter by saprotrophic basidiomycetes isolated from a Quercus petraea forest. Soil Biology and Biochemistry 39: 26512660.
  • Vallim MA, Janse BJH, Gaskell J, Pizzirani-Kleiner AA & Cullen D (1998) Phanerochaete chrysosporium cellobiohydrolase and cellobiose dehydrogenase transcripts in wood. Appl Environ Microbiol 64: 19241928.
  • Van Den Wymelenberg A, Sabat G, Martinez D et al. (2005) The Phanerochaete chrysosporium secretome: database predictions and initial mass spectrometry peptide identifications in cellulose-grown medium. J Biotechnol 118: 1734.
  • Van Den Wymelenberg A, Minges P, Sabat G et al. (2006) Computational analysis of the Phanerochaete chrysosporium v 2.0 genome database and mass spectrometry identification of peptides in ligninolytic cultures reveal complex mixtures of secreted proteins. Fungal Genet Biol 43: 343356.
  • Varela E & Tien M (2003) Effect of pH and oxalate on hydroquinone-derived hydroxyl radical formation during brown rot wood degradation. Appl Environ Microbiol 69: 60256031.
  • Welch KD, Davis TZ & Aust SD (2002a) Iron autoxidation and free radical generation: effects of buffers, ligands, and chelators. Archiv Biochem Biophys 397: 360369.
  • Welch KD, Davis TZ, Van Eden ME & Aust SD (2002b) Deleterious iron-mediated oxidation of biomolecules. Free Radical Biol Med 32: 577583.
  • Westermark U & Eriksson KE (1974a) Cellobiose-quinone oxidoreductase, a new wood-degrading enzyme from white rot fungi. Acta Chem Scand Series B – Org Chem Biochem B 28: 209214.
  • Westermark U & Eriksson KE (1974b) Carbohydrate-dependent enzymic quinone reduction during lignin degradation. Acta Chem Scand Series B – Org Chem Biochem B 28: 204208.
  • Westermark U & Eriksson KE (1975) Purification and properties of cellobiose – quinone oxidoreductase from Sporotrichum pulverulentum. Acta Chem Scand Series B – Org Chem Biochem 29: 419424.
  • Willick GE & Seligy VL (1985) Multiplicity in cellulases of Schizophyllum commune– derivation partly from heterogeneity in transcription and glycosylation. Eur J Biochem 151: 8996.
  • Wood JD & Wood PM (1992) Evidence that cellobiose – quinone oxidoreductase from Phanerochaete chrysosporium is a breakdown product of cellobiose oxidase. Biochim Biophys Acta 1119: 9096.
  • Wood PM (1994) Pathways of production of Fenton reagent by wood-rotting fungi. FEMS Microbiol Rev 13: 313320.
  • Xu G & Goodell B (2001) Mechanisms of wood degradation by brown-rot fungi: chelator-mediated cellulose degradation and binding of iron by cellulose. J Biotechnol 87: 4357.
  • Yamakawa M, Ozaki K, Fujime T, Kakimoto N, Itakura S, Enoki A & Tanaka H (2005) Relationship of phenol oxidase activity and hydroxyl radical generation to wood degradation by white rot basidiomycetes. Biocontr Sci 10: 8590.
  • Yoon JJ & Kim YK (2005) Degradation of crystalline cellulose by the brown-rot basidiomycete Fomitopsis palustris. J Microbiol 43: 487492.
  • Yoon JJ, Cha CJ, Kim YS, Son DW & Kim YK (2007) The brown-rot basidiomycete Fomitopsis palustris has the endo-glucanases capable of degrading microcrystalline cellulose. J Microbiol Biotechnol 17: 800805.
  • Yoshida M, Igarashi K, Wada M et al. (2005) Characterization of carbohydrate-binding cytochrome b562 from the white-rot fungus Phanerochaete chrysosporium. Appl Environ Microbiol 71: 45484555.
  • Zamocky M, Ludwig R, Peterbauer C, Hallberg BM, Divne C, Nicholls P & Haltrich D (2006) Cellobiose dehydrogenase – a flavocytochrome from wood-degrading, phytopathogenic and saprotropic fungi. Curr Prot Peptide Sci 7: 255280.