SEARCH

SEARCH BY CITATION

References

  • Abramson J, Smirnova I, Kasho V, Verner G, Kaback HR & Iwata S (2003) Structure and mechanism of the lactose permease of Escherichia coli. Science 301: 610615.
  • Andrade RP & Casal M (2001) Expression of the lactate permease gene JEN1 from the yeast Saccharomyces cerevisiae. Fungal Genet Biol 32: 105111.
  • Andrade RP, Kotter P, Entian KD & Casal M (2005) Multiple transcripts regulate glucose-triggered mRNA decay of the lactate transporter JEN1 from Saccharomyces cerevisiae. Biochem Biophys Res Commun 332: 254262.
  • Ansanay V, Dequin S, Camarasa C, Schaeffer V, Grivet JP, Blondin B, Salmon JM & Barre P (1996) Malolactic fermentation by engineered Saccharomyces cerevisiae as compared with engineered Schizosaccharomyces pombe. Yeast 12: 215225.
  • Baranowski K & Radler F (1984) The glucose dependent transport of l-malate in Zygosaccharomyces bailii. Antonie Van Leeuwenhoek 50: 329340.
  • Barnett JA (1976) The utilization of sugars by yeasts. Adv Carbohydr Chem 32: 125234.
  • Barnett JA & Entian KD (2005) A history of research on yeasts – 9: regulation of sugar metabolism. Yeast 22: 835894.
  • Barnett JA & Kornberg HL (1960) The utilization by yeasts of acids of the tricarboxylic acid cycle. J Gen Microbiol 23: 6582.
  • Bauer BE, Rossington D, Mollapour M, Mamnun Y, Kuchler K & Piper PW (2003) Weak organic acid stress inhibits aromatic amino acid uptake by yeast, causing a strong influence of amino acid auxotrophies on the phenotypes of membrane transporter mutants. Eur J Biochem 270: 31893195.
  • Bauer R, Volschenk H & Dicks LMT (2005) Cloning and expression of the malolactic gene of Pediococcus damnosus NCFB1832 in Saccharomyces cerevisiae. J Biotechnol 118: 353362.
  • Bianchi MM, Brambilla L, Protani F, Liu CL, Lievense J & Porro D (2001) Efficient homolactic fermentation by Kluyveromyces lactis strains defective in pyruvate utilization and transformed with the heterologous LDH gene. Appl Environ Microbiol 67: 56215625.
  • Boer VM, De Winde JH, Pronk JT & Piper MD (2003) The genome-wide transcriptional responses of Saccharomyces cerevisiae grown on glucose in aerobic chemostat cultures limited for carbon, nitrogen, phosphorus, or sulfur. J Biol Chem 278: 32653274.
  • Bojunga N & Entian KD (1999) Cat8p, the activator of gluconeogenic genes in Saccharomyces cerevisiae, regulates carbon source-dependent expression of NADP-dependent cytosolic isocitrate dehydrogenase (Idp2p) and lactate permease (Jen1p). Mol Gen Genet 262: 869875.
  • Boles E, De Jong-Gubbels P & Pronk JT (1998) Identification and characterization of MAE1, the Saccharomyces cerevisiae structural gene encoding mitochondrial malic enzyme. J Bacteriol 180: 28752882.
  • Bony M, Bidart F, Camarasa C, Ansanay V, Dulau L, Barre P & Dequin S (1997) Metabolic analysis of S. cerevisiae strains engineered for malolactic fermentation. FEBS Lett 410: 452456.
  • Branduardi P, Valli M, Brambilla L, Sauer M, Alberghina L & Porro D (2004) The yeast Zygosaccharomyces bailii: a new host for heterologous protein production, secretion and for metabolic engineering applications. FEMS Yeast Res 4: 493504.
  • Branduardi P, Sauer M, De Gioia L, Zampella G, Valli M, Mattanovich D & Porro D (2006) Lactate production yield from engineered yeasts is dependent from the host background, the lactate dehydrogenase source and the lactate export. Microb Cell Fact 5: 4.
  • Briquet M (1977) Transport of pyruvate and lactate in yeast mitochondria. Biochim Biophys Acta 459: 290299.
  • Camarasa C, Bidard F, Bony M, Barre P & Dequin S (2001) Characterization of Schizosaccharomyces pombe malate permease by expression in Saccharomyces cerevisiae. Appl Environ Microbiol 67: 41444151.
  • Cardoso H & Leão C (1992) Mechanisms underlying the low and high enthalpy death induced by short-chain monocarboxylic acids and ethanol in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 38: 388392.
  • Carlson M (1999) Glucose repression in yeast. Curr Opin Microbiol 2: 202207.
  • Casal M & Leão C (1995) Utilization of short-chain monocarboxylic acids by the yeast Torulaspora delbrueckii– specificity of the transport systems and their regulation. Biochim Biophys Acta 1267: 122130.
  • Casal M, Cardoso H & Leão C (1996) Mechanisms regulating the transport of acetic acid in Saccharomyces cerevisiae. Microbiology-UK 142: 13851390.
  • Casal M, Paiva S, Andrade RP, Gancedo C & Leão C (1999) The lactate-proton symport of Saccharomyces cerevisiae is encoded by JEN1. J Bacteriol 181: 26202623.
  • Cássio F & Leão C (1991) Low-affinity and high-affinity transport systems for citric acid in the yeast Candida utilis. Appl Environ Microbiol 57: 36233628.
  • Cássio F & Leão C (1993) A comparative study on the transport of l(−)malic acid and other short-chain carboxylic acids in the yeast Candida utilis– evidence for a general organic acid permease. Yeast 9: 743752.
  • Cássio F, Leão C & Van Uden N (1987) Transport of lactate and other short-chain monocarboxylates in the yeast Saccharomyces cerevisiae. Appl Environ Microbiol 53: 509513.
  • Corpet F (1988) Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res 16: 1088110890.
  • Côrte-Real M & Leão C (1990) Transport of malic acid and other dicarboxylic acids in the yeast Hansenula anomala. Appl Environ Microbiol 56: 11091113.
  • Côrte-Real M, Leão C & Van Uden N (1989) Transport of l(−)malic acid and other dicarboxylic acids in the yeast Candida sphaerica. Appl Microbiol Biotechnol 31: 551555.
  • De Hertogh B, Carvajal E, Talla E, Dujon B, Baret P & Goffeau A (2002) Phylogenetic classification of transporters and other membrane proteins from Saccharomyces cerevisiae. Funct Integr Genomics 2: 154170.
  • De Hertogh B, Talla E, Tekaia F, Beyne E, Sherman D, Baret PV & Goffeau A (2003) Novel transporters from hemiascomycete yeasts. J Mol Microb Biotech 6: 1928.
  • Dequin S & Barre P (1994) Mixed lactic acid alcoholic fermentation by Saccharomyes cerevisiae expressing the Lactobacillus casei L(+)-Ldh. Bio-Technology 12: 173177.
  • De Risi JL, Iyer VR & Brown PO (1997) Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 5338: 680686.
  • De Vit MJ, Waddle JA & Johnston M (1997) Regulated nuclear translocation of the Mig1 glucose repressor. Mol Biol Cell 8: 16031618.
  • Duntze W, Neumann D & Holzer H (1968) Glucose induced inactivation of malate dehydrogenase in intact yeast cells. Eur J Biochem 3: 326331.
  • Eklund T (1985) Inhibition of microbial growth at different pH levels by benzoic and propionic acids and esters of para-hydroxybenzoic acid. Int J Food Microbiol 2: 159167.
  • El Moualij B, Duyckaerts C, Lamotte-Brasseur J & Sluse FE (1997) Phylogenetic classification of the mitochondrial carrier family of Saccharomyces cerevisiae. Yeast 13: 573581.
  • Fang WG, Zhang YJ, Xiao YH, Ma JC, Yang XY & Pei Y (2003) Isolation and characterization of a carboxylic transport protein JEN1 and its promoter from Metarhizium anisopliae. Yi Chuan Xue Bao 30: 283288.
  • Ferreira C, Van Voorst F, Martins A, Neves L, Oliveira R, Kielland-Brandt MC, Lucas C & Brandt A (2005) A member of the sugar transporter family, Stl1p is the glycerol/H+ symporter in Saccharomyces cerevisiae. Mol Biol Cell 16: 20682076.
  • Flikweert M, Van der Zanden L, Janssen W, Steensma H, Van Dijken J & Pronk J (1996) Pyruvate decarboxylase: an indispensable enzyme for growth of Saccharomyces cerevisiae on glucose. Yeast 12: 247257.
  • Fonseca A, Spencer-Martins I & Van Uden N (1991) Transport of lactic-acid in Kluyveromyces marxianus– evidence for a monocarboxylate uniport. Yeast 7: 775780.
  • Foury F, Roganti T, Lecrenier N & Purnelle B (1998) The complete sequence of the mitochondrial genome of Saccharomyces cerevisiae. FEBS Lett 440: 325331.
  • Fuck E, Stark G & Radler F (1973) Malic acid metabolism of Saccharomyces. 2. Partial purification and characteristics of a malic enzyme. Arch Mikrobiol 89: 223231.
  • Gancedo JM (1998) Yeast carbon catabolite repression. Microbiol Mol Biol Rev 62: 334361.
  • Garcia CK, Goldstein JL, Pathak RK, Anderson RGW & Brown MS (1994) Molecular characterization of a membrane transporter for lactate, pyruvate, and other monocarboxylates – implications for the Cori cycle. Cell 76: 865873.
  • Garcia CK, Brown MS, Pathak RK & Goldstein JL (1995) cDNA cloning of Mct2, a 2nd monocarboxylate transporter expressed in different cells than Mct1. J Biol Chem 270: 18431849.
  • Gerós H, Cássio F & Leão C (1996) Reconstitution of lactate proton symport activity in plasma membrane vesicles from the yeast Candida utilis. Yeast 12: 12631272.
  • Gerós H, Cássio F & Leão C (2000) Utilization and transport of acetic acid in Dekkera anomala and their implications on the survival of the yeast in acidic environments. J Food Prot 63: 96101.
  • Gimenez R, Nunez MF, Badia J, Aguilar J & Baldoma L (2003) The gene YjcG, cotranscribed with the gene Acs, encodes an acetate permease in Escherichia coli. J Bacteriol 185: 64486455.
  • Goffeau A, Barrell BG, Bussey H et al. (1996) Life with 6000 genes. Science 274: 546567.
  • Grobler J, Bauer F, Subden RE & VanVuuren HJJ (1995) The mae1 gene of Schizosaccharomyces pombe encodes a permease for malate and other C-4 dicarboxylic acids. Yeast 11: 14851491.
  • Halestrap AP (1976) Mechanism of inhibition of mitochondrial pyruvate transporter by alpha-cyanocinnamate derivatives. Biochem J 156: 181183.
  • Halestrap AP & Meredith D (2004) The SLC16 gene family – from monocarboxylate transporters (MCTs) to aromatic amino acid transporters and beyond. Pflug Arch Eur J Phy 447: 619628.
  • Halestrap AP & Price NT (1999) The proton-linked monocarboxylate transporter (MCT) family: structure, function and regulation. Biochem J 343: 281299.
  • Haurie V, Perrot M, Mini T, Jeno P, Sagliocco F & Boucherie H (2001) The transcriptional activator Cat8p provides a major contribution to the reprogramming of carbon metabolism during the diauxic shift in Saccharomyces cerevisiae. J Biol Chem 276: 7685.
  • Hazelwood LA, Tai SL, Boer VM, De Winde JH, Pronk JT & Daran JM (2006) A new physiological role for Pdr12p in Saccharomyces cerevisiae: export of aromatic and branched-chain organic acids produced in amino acid catabolism. FEMS Yeast Res 6: 937945.
  • Hedges D, Proft M & Entian KD (1995) CAT8, a new zinc cluster-encoding gene necessary for derepression of gluconeogenic enzymes in the yeast Saccharomyces cerevisiae. Mol Cell Biol 15: 19151922.
  • Hediger MA, Romero MF, Peng JB, Rolfs A, Takanaga H & Bruford EA (2004) The ABCs of solute carriers: physiological, pathological and therapeutic implications of human membrane transport proteins – Introduction. Pflugers Arch 447: 465468.
  • Henick-Kling T (1993) Malolactic fermentation. Wine Microbiology and Biotechnology (FleetGH, ed), pp. 289326. Hardwood Academic Publishers.
  • Hildyard JCW & Halestrap AP (2003) Identification of the mitochondrial pyruvate carrier in Saccharomyces cerevisiae. Biochem J 374: 607611.
  • Holyoak CD, Stratford M, McMullin Z, Cole MB, Crimmins K, Brown AJP & Coote PJ (1996) Activity of the plasma membrane H+-ATPase and optimal glycolytic flux are required for rapid adaptation and growth of Saccharomyces cerevisiae in the presence of the weak-acid preservative sorbic acid. Appl Environ Microbiol 62: 31583164.
  • Holyoak CD, Bracey D, Piper PW, Kuchler K & Coote PJ (1999) The Saccharomyces cerevisiae weak-acid-inducible ABC transporter PDR12 transports fluorescein and preservative anions from the cytosol by an energy-dependent mechanism. J Bacteriol 181: 46444652.
  • Huang YF, Lemieux MJ, Song JM, Auer M & Wang DN (2003) Structure and mechanism of the glycerol-3-phosphate transporter from Escherichia coli. Science 301: 616620.
  • Husnik JI, Volschenk H, Bauer J, Colavizza D, Luo ZL & Van Vuuren HJJ (2006) Metabolic engineering of malolactic wine yeast. Metab Eng 8: 315323.
  • Ilmen M, Koivuranta K, Ruohonen L, Suominen P & Penttila M (2007) Efficient production of l-lactic acid from xylose by Pichia stipitis. Appl Environ Microbiol 73: 117123.
  • Ishida N, Saitoh S, Onishi T, Tokuhiro K, Nagamori E, Kitamoto K & Takahashi H (2006a) Metabolic engineering of Saccharomyces cerevisiae for efficient production of pure l-(+)-lactic acid. Appl Biochem Biotechnol 131: 795807.
  • Ishida N, Saitoh S, Onishi T, Tokuhiro K, Nagamori E, Kitamoto K & Takahashi H (2006b) The effect of pyruvate decarboxylase gene knockout in Saccharomyces cerevisiae on l-lactic acid production. Biosci Biotechnol Biochem 70: 11481153.
  • Ishida N, Suzuki T, Tokuhiro K, Nagamori E, Onishi T, Saitoh S, Kitamoto K & Takahashi H (2006c) d-Lactic acid production by metabolically engineered Saccharomyces cerevisiae. J Biosci Bioeng 101: 172177.
  • Jennings ML & Adamslackey M (1982) A rabbit erythrocyte-membrane protein associated with l-lactate transport. J Biol Chem 257: 28662871.
  • Jin B, Yin PH, Ma YH & Zhao L (2005) Production of lactic acid and fungal biomass by Rhizopus fungi from food processing waste streams. J Ind Microbiol Biot 32: 678686.
  • John RP, Nampoothiri KM & Pandey A (2007) Fermentative production of lactic acid from biomass: an overview on process developments and future perspectives. Appl Microbiol Biotechnol 74: 524534.
  • Kakhniashvili D, Mayor JA, Gremse DA, Xu Y & Kaplan RS (1997) Identification of a novel gene encoding the yeast mitochondrial dicarboxylate transport protein via overexpression, purification, and characterization of its protein product. J Biol Chem 272: 45164521.
  • Kal AJ, Van Zonneveld AJ, Benes V et al. (1999) Dynamics of gene expression revealed by comparison of serial analysis of gene expression transcript profiles from yeast grown on two different carbon sources. Mol Biol Cell 10: 18591872.
  • Kaplan RS, Mayor JA, Gremse DA & Wood DO (1995) High-level expression and characterization of the mitochondrial citrate transport protein from the yeast Saccharomyces cerevisiae. J Biol Chem 270: 41084114.
  • Kim CM, Goldstein JL & Brown MS (1992) cDNA cloning of mev, a mutant protein that facilitates cellular uptake of mevalonate, and identification of the point mutation responsible for its gain of function. J Biol Chem 267: 2311323121.
  • Kim DK, Kanai Y, Chairoungdua A, Matsuo H, Cha SH & Endou H (2001) Expression cloning of a Na+-independent aromatic amino acid transporter with structural similarity to H+/monocarboxylate transporters. J Biol Chem 276: 1722117228.
  • Krebs HA, Wiggins D, Stubbs M, Sols A & Bedoya F (1983) Studies on the mechanism of the anti-fungal action of benzoate. Biochem J 214: 657663.
  • Kuczynski JT & Radler F (1982) The anaerobic metabolism of malate of Saccharomyces bailii and the partial purification and characterization of malic enzyme. Arch Microbiol 131: 266270.
  • Lafreniere RG, Carrel L & Willard HF (1994) A novel transmembrane transporter encoded by the Xpct gene in Xq13.2. Hum Mol Genet 3: 11331139.
  • Lagerstedt JO, Voss JC, Wieslander A & Persson BL (2004) Structural modeling of dual-affinity purified Pho84 phosphate transporter. FEBS Lett 578: 262268.
  • Leão C & Van Uden N (1986) Transport of lactate and other short-chain monocarboxylates in the yeast Candida utilis. Appl Microbiol Biotechnol 23: 389393.
  • Lemieux MJ (2007) Eukaryotic major facilitator superfamily transporter modeling based on the prokaryotic GlpT crystal structure. Mol Membr Biol 24: 333341.
  • Lodi T, Fontanesi F & Guiard B (2002) Co-ordinate regulation of lactate metabolism genes in yeast: the role of the lactate permease gene JEN1. Mol Genet Genomics 266: 838847.
  • Lodi T, Fontanesi F, Ferrero I & Donnini C (2004) Carboxylic acids permeases in yeast: two genes in Kluyveromyces lactis. Gene 339: 111119.
  • Lodi T, Diffels J, Goffeau A & Baret PV (2007) Evolution of the carboxylate Jen transporters in fungi. FEMS Yeast Res 7: 646656.
  • Lonvaud-Funel A (1995) Microbiology of the malolactic fermentation: molecular aspects. FEMS Microbiol Lett 126: 209214.
  • Lonvaud-Funel A (1999) Lactic acid bacteria in the quality improvement and depreciation of wine. Antonie Van Leeuwenhoek 76: 317331.
  • Lonvaud-Funel A & Joyeux A (1994) Histamine production by wine lactic acid bacteria: isolation of a histamine-producing strain of Leuconostoc oenos. J Appl Bacteriol 77: 401407.
  • Loureiro-Dias MC (1998) Effects of and resistance to weak acids in spoilage yeasts. Abstracts of the 19th International Specialised Symposium on Yeasts 1998: Yeast in the production and spoilage of food and beverages. Universidade do Minho, Braga, Portugal.
  • Luyten K, Albertyn J, Skibbe WF, Prior BA, Ramos J, Thevelein JM & Hohmann S (1995) Fps1, a yeast member of the Mip family of channel proteins, is a facilitator for glycerol uptake and efflux and is inactive under osmotic stress. EMBO J 14: 13601371.
  • Makuc J, Paiva S, Schauen M, Kramer R, André B, Casal M, Leão C & Boles E (2001) The putative monocarboxylate permeases of the yeast Saccharomyces cerevisiae do not transport monocarboxylic acids across the plasma membrane. Yeast 18: 11311143.
  • Mollapour M & Piper PW (2006) Hog1p mitogen-activated protein kinase determines acetic acid resistance in Saccharomyces cerevisiae. FEMS Yeast Res 6: 12741280.
  • Mollapour M & Piper PW (2007) Hog1 mitogen-activated protein kinase phosphorylation targets the yeast Fps1 aquaglyceroporin for endocytosis, thereby rendering cells resistant to acetic acid. Mol Cell Biol 27: 64466456.
  • Narayanan N, Roychoudhury PK & Srivastava A (2004) l (+)lactic acid fermentation and its product polymerization. Electron J Biotechn 7: 167178.
  • Neeff J & Mecke D (1977) In vivo and in vitro studies on glucose dependent inactivation of yeast cytoplasmic malate dehydrogenase. Arch Microbiol 115: 5560.
  • Nelissen B, DeWachter R & Goffeau A (1997) Classification of all putative permeases and other membrane plurispanners of the major facilitator superfamily encoded by the complete genome of Saccharomyces cerevisiae. FEMS Microbiol Rev 21: 113134.
  • Nielsen JC & Richelieu M (1999) Control of flavor development in wine during and after malolactic fermentation by Oenococcus oeni. Appl Environ Microbiol 65: 740745.
  • Osothsilp C & Subden RE (1986) Malate Transport in Schizosaccharomyces pombe. J Bacteriol 168: 14391443.
  • Ostling J, Carlberg M & Ronne H (1996) Functional domains in the Mig1 repressor. Mol Cell Biol 16: 753761.
  • Paiva S, Althoff S, Casal M & Leão C (1999) Transport of acetate in mutants of Saccharomyces cerevisiae defective in monocarboxylate permeases. FEMS Microbiol Lett 170: 301306.
  • Paiva S, Kruckeberg AL & Casal M (2002) Utilization of green fluorescent protein as a marker for studying the expression and turnover of the monocarboxylate permease Jen1p of Saccharomyces cerevisiae. Biochem J 363: 737744.
  • Paiva S, Devaux F, Barbosa S, Jacq C & Casal M (2004) Ady2p is essential for the acetate permease activity in the yeast Saccharomyces cerevisiae. Yeast 21: 201210.
  • Palkova Z, Devaux F, Ricicova M, Minarikova L, Le Crom S & Jacq C (2002) Ammonia pulses and metabolic oscillations guide yeast colony development. Mol Biol Cell 13: 39013914.
  • Palmieri F, Agrimi G, Blanco E et al. (2006) Identification of mitochondrial carriers in Saccharomyces cerevisiae by transport assay of reconstituted recombinant proteins. Biochim Biophys Acta 1757: 12491262.
  • Palmieri L, Lasorsa FM, DePalma A, Palmieri F, Runswick MJ & Walker JE (1997) Identification of the yeast ACR1 gene product as a succinate-fumarate transporter essential for growth on ethanol or acetate. FEBS Lett 417: 114118.
  • Palmieri L, Vozza A, Agrimi G, De Marco V, Runswick MJ, Palmieri F & Walker JE (1999) Identification of the yeast mitochondrial transporter for oxaloacetate and sulfate. J Biol Chem 274: 2218422190.
  • Palmieri L, Agrimi G, Runswick MJ, Fearnley IM, Palmieri F & Walker JE (2001) Identification in Saccharomyces cerevisiae of two isoforms of a novel mitochondrial transporter for 2-oxoadipate and 2-oxoglutarate. J Biol Chem 276: 19161922.
  • Pampulha ME & Loureiro-Dias MC (1990) Activity of glycolytic enzymes of Saccharomyces cerevisiae in the presence of acetic acid. Appl Microbiol Biotechnol 34: 375380.
  • Pampulha ME & Loureiro-Dias MC (2000) Energetics of the effect of acetic acid on growth of Saccharomyces cerevisiae. FEMS Microbiol Lett 184: 6972.
  • Paulsen IT, Sliwinski MK, Nelissen B, Goffeau A & Saier MH (1998) Unified inventory of established and putative transporters encoded within the complete genome of Saccharomyces cerevisiae. FEBS Lett 430: 116125.
  • Piekarska K, Mol E, Van Den Berg M, Hardy G, Van Den Burg J, Van Roermund C, MacCallum D, Odds F & Distel B (2006) Peroxisomal fatty acid β-oxidation is not essential for virulence of Candida albicans. Eukaryot Cell 5: 18471856.
  • Pinto I, Cardoso H, Leão C & Van Uden N (1989) High enthalpy and low enthalpy death in Saccharomyces cerevisiae induced by acetic acid. Biotechnol Bioeng 33: 13501352.
  • Piper PW, Ortiz-Calderon C, Holyoak C, Coote P & Cole M (1997) Hsp30, the integral plasma membrane heat shock protein of Saccharomyces cerevisiae, is a stress-inducible regulator of plasma membrane H+-ATPase. Cell Stress Chaperones 2: 1224.
  • Piper P, Mahe Y, Thompson S, Pandjaitan R, Holyoak C, Egner R, Muhlbauer M, Coote P & Kuchler K (1998) The Pdr12 ABC transporter is required for the development of weak organic acid resistance in yeast. EMBO J 17: 42574265.
  • Piper P, Calderon CO, Hatzixanthis K & Mollapour M (2001) Weak acid adaptation: the stress response that confers yeasts with resistance to organic acid food preservatives. Microbiol Mol Biol Rev 147: 26352642.
  • Poole RC & Halestrap AP (1992) Identification and partial purification of the erythrocyte l-lactate transporter. Biochem J 283: 855862.
  • Poole RC & Halestrap AP (1993) Transport of lactate and other monocarboxylates across mammalian plasma membranes. Am J Physiol 264: C761C782.
  • Poole RC, Sansom CE & Halestrap AP (1996) Studies of the membrane topology of the rat erythrocyte H+/lactate cotransporter (MCT1). Biochem J 320: 817824.
  • Porro D, Brambilla L, Ranzi BM, Martegani E & Alberghina L (1995) Development of metabolically engineered Saccharomyces cerevisiae cells for the production of lactic acid. Biotechnol Prog 11: 294298.
  • Porro D, Bianchi MM, Brambilla L et al. (1999a) Replacement of a metabolic pathway for large-scale production of lactic acid from engineered yeasts. Appl Environ Microbiol 65: 42114215.
  • Porro D, Bianchi MM, Ranzi BM, Frontali L, Vai M, Winkler AA & Alberghina L (1999b) Yeast strains for the production of lactic acid. PCT WO 99/14335.
  • Price NT, Jackson VN & Halestrap AP (1998) Cloning and sequencing of four new mammalian monocarboxylate transporter (MCT) homologues confirms the existence of a transporter family with an ancient past. Biochem J 329: 321328.
  • Queirós O, Casal M, Althoff S, Moradas-Ferreira P & Leão C (1998) Isolation and characterization of Kluyveromyces marxianus mutants deficient in malate transport. Yeast 14: 401407.
  • Queirós O, Pereira L, Paiva S, Moradas-Ferreira P & Casal M (2006) Functional analysis of Kluyveromyces lactis carboxylic acids permeases: heterologous expression of KlJEN1 and KlJEN2 genes. Curr Genet 51: 161169.
  • Rabitsch KP, Toth A, Galova M et al. (2001) A screen for genes required for meiosis and spore formation based on whole-genome expression. Curr Biol 11: 10011009.
  • Radler F (1993) Yeast metabolism of organic acids. Wine Microbiology and Biotechnology (FleetGH, ed), pp. 553560. Harwood Academic, New York.
  • Rández-Gil F, Bojunga N, Proft M & Entian KD (1997) Glucose derepression of gluconeogenic enzymes in Saccharomyces cerevisiae correlates with phosphorylation of the gene activator Cat8p. Mol Cell Biol 17: 25022510.
  • Reihl P & Stolz J (2005) The monocarboxylate transporter homolog Mch5p catalyzes riboflavin (vitamin B-2) uptake in Saccharomyces cerevisiae. J Biol Chem 280: 3980939817.
  • Robellet X, Flipphi M, Pégot S, Maccabe AP & Vélot C (2008) AcpA, a member of the GPR1/FUN34/YaaH membrane protein family, is essential for acetate permease activity in the hyphal fungus Aspergillus nidulans. Biochem J 412: 485493.
  • Rodriguez SB & Thornton RJ (1990) Factors influencing the utilization of l-malate by yeasts. FEMS Microbiol Lett 72: 1722.
  • Saayman M, Van Vuuren HJJ, Van Zyl WH & Viljoen-Bloom M (2000) Differential uptake of fumarate by Candida utilis and Schizosaccharomyces pombe. Appl Microbiol Biotechnol 54: 792798.
  • Saayman M, Van Zyl WH & Viljoen-Bloom M (2006) Cloning, characterisation, and heterologous expression of the Candida utilis malic enzyme gene. Curr Genet 49: 248258.
  • Saitoh S, Ishida N, Onishi T, Tokuhiro K, Nagamori E, Kitamoto K & Takahashi H (2005) Genetically engineered wine yeast produces a high concentration of l-lactic acid of extremely high optical purity. Appl Environ Microbiol 71: 27892792.
  • Salmon JM (1987) l-Malic acid permeation in resting cells of anaerobically grown Saccharomyces cerevisiae. Biochim Biophys Acta 901: 3034.
  • Santos MA, Keith G & Tuite MF (1993) Non-standard translational events in Candida albicans mediated by an unusual seryl-tRNA with a 5′-CAG-3′ (leucine) anticodon. EMBO J 12: 607616.
  • Sauer M, Porro D, Mattanovich D & Branduardi P (2008) Microbial production of organic acids: expanding the markets. Trends Biotechnol 26: 100108.
  • Semighini CP, Goldman MHS & Goldman GH (2004) Multi-copy suppression of an Aspergillus nidulans mutant sensitive to camptothecin by a putative monocarboxylate transporter. Curr Microbiol 49: 229233.
  • Simões T, Mira NP, Fernandes AR & Sá-Correia I (2006) The SPI1 gene, encoding a glycosylphosphatidylinositol-anchored cell wall protein, plays a prominent role in the development of yeast resistance to lipophilic weak-acid food preservatives. Appl Environ Microbiol 72: 71687175.
  • Soares-Silva I, Schuller D, Andrade RP, Baltazar F, Cassio F & Casal M (2003) Functional expression of the lactate permease Jen1p of Saccharomyces cerevisiae in Pichia pastoris. Biochem J 376: 781787.
  • Soares-Silva I, Paiva S, Kötter P, Entian KD & Casal M (2004) The disruption of JEN1 from Candida albicans impairs the transport of lactate. Mol Membr Biol 21: 403411.
  • Soares-Silva I, Paiva S, Diallinas G & Casal M (2007) The conserved sequence NXX[S/T]HX[S/T]QDXXXT of the lactate/pyruvate: H+ symporter subfamily defines the function of the substrate translocation pathway. Mol Membr Biol 24: 464474.
  • Sousa MJ, Mota M & Leão C (1992) Transport of malic acid in the yeast Schizosaccharomyces pombe - Evidence for a proton dicarboxylate symport. Yeast 8: 10251031.
  • Sousa MJ, Miranda L, Côrte-Real M & Leão C (1996) Transport of acetic acid in Zygosaccharomyces bailii: effects of ethanol and their implications on the resistance of the yeast to acidic environments. Appl Environ Microbiol 62: 31523157.
  • Tachibana C, Yoo JY, Tagne JB, Kacherovsky N, Lee TI & Young ET (2005) Combined global localization analysis and transcriptome data identify genes that are directly coregulated by Adr1 and Cat8. Mol Cell Biol 25: 21382146.
  • Tamas MJ, Luyten K, Sutherland FCW et al. (1999) Fps1p controls the accumulation and release of the compatible solute glycerol in yeast osmoregulation. Mol Microbiol 31: 10871104.
  • Tamas MJ, Rep M, Thevelein JM & Hohmann S (2000) Stimulation of the yeast high osmolarity glycerol (HOG) pathway: evidence for a signal generated by a change in turgor rather than by water stress. FEBS Lett 472: 159165.
  • Todisco S, Agrimi G, Castegna A & Palmieri F (2006) Identification of the mitochondrial NAD+ transporter in Saccharomyces cerevisiae. J Biol Chem 281: 15241531.
  • Tzschoppe K, Augstein A, Bauer R, Kohlwein SD & Barth G (1999) Trans-dominant mutations in the GPR1 gene cause high sensitivity to acetic acid and ethanol in the yeast Yarrowia lipolytica. Yeast 15: 16451656.
  • Vachova L, Devaux F, Kucerova H, Ricicova M, Jacq C & Palkova Z (2004) Sok2p transcription factor is involved in adaptive program relevant for long term survival of Saccharomyces cerevisiae colonies. J Biol Chem 279: 3797337981.
  • Van Belle D & André B (2001) A genomic view of yeast membrane transporters. Curr Opin Cell Biol 13: 389398.
  • Van Maris AJA, Winkler AA, Porro D, Van Dijken JP & Pronk JT (2004) Homofermentative lactate production cannot sustain anaerobic growth of engineered Saccharomyces cerevisiae: possible consequence of energy-dependent lactate export. Appl Environ Microbiol 70: 28982905.
  • Viegas CA & Sá-Correia I (1991) Activation of plasma membrane ATPase of Saccharomyces cerevisiae by octanoic acid. J Gen Microbiol 137: 645651.
  • Viegas CA, Almeida PF, Cavaco M & Sá-Correia I (1998) The H+-ATPase in the plasma membrane of Saccharomyces cerevisiae is activated during growth latency in octanoic acid-supplemented medium accompanying the decrease in intracellular pH and cell viability. Appl Environ Microbiol 64: 779783.
  • Viljoen M, Subden RE, Krizus A & Van Vuuren HJ (1994) Molecular analysis of the malic enzyme gene (mae2) of Schizosaccharomyces pombe. Yeast 10: 613624.
  • Viljoen M, Volschenk H, Young RA & Van Vuuren HJ (1999) Transcriptional regulation of the Schizosaccharomyces pombe malic enzyme gene, mae2. J Biol Chem 274: 99699975.
  • Vimr ER, Kalivoda KA, Deszo EL & Steenbergen SM (2004) Diversity of microbial sialic acid metabolism. Microbiol Mol Biol Rev 68: 132153.
  • Volschenk H, Viljoen M, Grobler J, Bauer F, Lonvaud-Funel A, Denayrolles M, Subden RE & Van Vuuren HJJ (1997a) Malolactic fermentation in grape musts by a genetically engineered strain of Saccharomyces cerevisiae. Am J Enol Vitic 48: 193197.
  • Volschenk H, Viljoen M, Grobler J, Petzold B, Bauer F, Subden RE, Young RA, Lonvaud A, Denayrolles M & Van Vuuren HJJ (1997b) Engineering pathways for malate degradation in Saccharomyces cerevisiae. Nat Biotechnol 15: 253257.
  • Volschenk H, Viljoen-Bloom M, Subden RE & Van Vuuren HJJ (2001) Malo-ethanolic fermentation in grape must by recombinant strains of Saccharomyces cerevisiae. Yeast 18: 963970.
  • Volschenk H, Van Vuuren HJJ & Viljoen-Bloom M (2003) Malo-ethanolic fermentation in Saccharomyces and Schizosaccharomyces. Curr Genet 43: 379391.
  • Williams SA, Hodges RA, Strike TL, Snow R & Kunkee RE (1984) Cloning the gene for the malolactic fermentation of wine from Lactobacillus delbrueckii in Escherichia coli and yeasts. Appl Environ Microbiol 47: 288293.
  • Wilson WA, Hawley SA & Hardie DG (1996) Glucose repression/derepression in budding yeast: SNF1 protein kinase is activated by phosphorylation under derepressing conditions, and this correlates with a high AMP: ATP ratio. Curr Biol 6: 14261434.
  • Wolschek MF & Kubicek CP (1999) Biochemistry of citric acid accumulation by Aspergillus niger. Citric Acid Biotechnology (KristiansenB, LindenJ & MatteyM, eds), pp. 1133. Taylor and Francis, London.
  • Wood JM, Culham DE, Hillar A, Vernikovska YI, Liu F, Boggs JM & Keates RAB (2005) A structural model for the osmosensor, transporter, and osmoregulator ProP of Escherichia coli. Biochemistry (Moscow) 44: 56345646.
  • Wysocki R, Chery CC, Wawrzycka D, Van Hulle M, Cornelis R, Thevelein JM & Tamas MJ (2001) The glycerol channel Fps1p mediates the uptake of arsenite and antimonite in Saccharomyces cerevisiae. Mol Microbiol 40: 13911401.
  • Yoon HY, Fanelli A, Grollman EF & Philp NJ (1997) Identification of a unique monocarboxylate transporter (MCT3) in retinal pigment epithelium. Biochem Biophys Res Commun 234: 9094.
  • Young ET, Dombek KM, Tachibana C & Ideker T (2003) Multiple pathways are co-regulated by the protein kinase Snf1 and the transcription factors Adr1 and Cat8. J Biol Chem 278: 2614626158.
  • Zelle RM, De Hulster E, Van Winden WA, De Waard P, Dijkema C, Winkler AA, Geertman JMA, Van Dijken JP, Pronk JT & Van Maris AJA (2008) Malic acid production by Saccharomyces cerevisiae: engineering of pyruvate carboxylation, oxaloacetate reduction, and malate export. Appl Environ Microbiol 74: 27662777.
  • Zmijewski MJ & Macquillan AM (1975) Dual effects of glucose on dicarboxylic acid transport in Kluyveromyces lactis. Can J Microbiol 21: 473480.