SEARCH

SEARCH BY CITATION

References

  • Anfinsen CB (1973) Principles that govern the folding of protein chains. Science 181: 223230.
  • Asadulghani, Suzuki Y & Nakamoto H (2003) Light plays a key role in the modulation of heat shock response in the cyanobacterium Synechocystis sp. PCC 6803. Biochem Bioph Res Co 306: 872879.
  • Babst M, Hennecke H & Fischer HM (1996) Two different mechanisms are involved in the heat-shock regulation of chaperonin gene expression in Bradyrhizobium japonicum. Mol Microbiol 19: 827839.
  • Barreiro C, González-Lavado E, Pátek M & Martín JF (2004) Transcriptional analysis of the groES-groEL1, groEL2, and dnaK genes in Corynebacterium glutamicum: characterization of heat shock-induced promoters. J Bacteriol 186: 48134817.
  • Barreiro C, González-Lavado E, Brand S, Tauch A & Martín JF (2005) Heat shock proteome analysis of wild-type Corynebacterium glutamicum ATCC 13032 and a spontaneous mutant lacking GroEL1, a dispensable chaperone. J Bacteriol 187: 884889.
  • Benkirane R, Guinet R & Delaunay T (1992) Purification and immunological studies of the cross-reaction between the 65-kilodalton gonococcal parietal lectin and an antigen common to a wide range of bacteria. Infect Immun 60: 34683471.
  • Bittner AN & Oke V (2006) Multiple groESL operons are not key targets of RpoH1 and RpoH2 in Sinorhizobium meliloti. J Bacteriol 188: 35073515.
  • Bittner AN, Foltz A & Oke V (2007) Only one of five groEL genes is required for viability and successful symbiosis in Sinorhizobium meliloti. J Bacteriol 189: 18841889.
  • Braig K, Otwinowski Z, Hegde R, Boisvert DC, Joachimiak A, Horwich AL & Sigler PB (1994) The crystal structure of the bacterial chaperonin GroEL at 2.8 Å. Nature 371: 578596.
  • Brocchieri L & Karlin S (2000) Conservation among HSP60 sequences in relation to structure, function, and evolution. Protein Sci 9: 476486.
  • Chapman E, Farr GW, Usaite R et al. (2006) Global aggregation of newly translated proteins in an Escherichia coli strain deficient of the chaperonin GroEL. P Natl Acad Sci USA 103: 1580015805.
  • Coates AR, Shinnick TM & Ellis RJ (1993) Chaperonin nomenclature. Mol Microbiol 8: 787.
  • Das Gupta T, Bandyopadhyay B & Das Gupta SK (2008) Modulation of DNA-binding activity of Mycobacterium tuberculosis HspR by chaperones. Microbiology 154: 484490.
  • De Bruyn J, Bosmans R, Turneer M, Weckx M, Nyabenda J, Van Vooren JP, Falmagne P, Wiker HG & Harboe M (1987) Purification, partial characterization, and identification of a skin-reactive protein antigen of Mycobacterium bovis BCG. Infect Immun 55: 245252.
  • DeLano WL. The PyMOL Molecular Graphics System (2002) on World Wide Web. Available at http://www.pymol.org
  • De León P, Marco S, Isiegas C, Marina A, Carrascosa JL & Mellado RP (1997) Streptomyces lividans groES, groEL1 and groEL2 genes. Microbiology 143: 35633571.
  • Duchêne AM, Kieser HM, Hopwood DA, Thompson CJ & Mazodier P (1994) Characterization of two groEL genes in Streptomyces coelicolor A3(2). Gene 144: 97101.
  • Ellis RJ (2001) Macromolecular crowding: obvious but underappreciated. Trends Biochem Sci 26: 597604.
  • Ellis RJ & Minton AP (2006) Protein aggregation in crowded environments. Biol chem 387: 487495.
  • Eriksson MJ & Clarke AK (1996) The heat shock protein ClpB mediates the development of thermotolerance in the cyanobacterium Synechococcus sp. strain PCC 7942. J Bacteriol 178: 48394846.
  • Fenton WA, Kashi Y, Furtak K & Horwich AL (1994) Residues in chaperonin GroEL required for polypeptide binding and release. Nature 371: 614619.
  • Fischer HM (1994) Genetic regulation of nitrogen fixation in rhizobia. Microbiol Rev 58: 352386.
  • Fischer HM, Babst M, Kaspar T, Acuna G, Arigoni F & Hennecke H (1993) One member of a groESL-like chaperonin multigene family in Bradyrhizobium japonicum is co-regulated with symbiotic nitrogen fixation genes. EMBO J 12: 29012912.
  • Fischer HM, Schneider K, Babst M & Hennecke H (1999) GroEL chaperonins are required for the formation of a functional nitrogenase in Bradyrhizobium japonicum. Arch Microbiol 171: 279289.
  • Furuki M, Tanaka N, Hiyama T & Nakamoto H (1996) Cloning, characterization and functional analysis of groEL-like gene from thermophilic cyanobacterium Synechococcus vulcanus, which does not form an operon with groES. Biochim Biophys Acta 1294: 106110.
  • Galibert F, Finan TM, Long SR et al. (2001) The composite genome of the legume symbiont Sinorhizobium meliloti. Science 293: 668672.
  • George R, Kelly SM, Price NC, Erbse A, Fisher M & Lund PA (2004) Three GroEL homologues from Rhizobium leguminosarum have distinct in vitro properties. Biochem Bioph Res Co 324: 822828.
  • Georgopoulos CP, Hendrix RW, Kaiser AD & Wood WB (1972) Role of the host cell in bacteriophage morphogenesis: effects of a bacterial mutation on T4 head assembly. Nat New Biol 239: 3841.
  • Gérard HC, Whittum-Hudson JA, Schumacher HR & Hudson AP (2004) Differential expression of three Chlamydia trachomatis hsp60-encoding genes in active vs. persistent infections. Microb Pathog 36: 3539.
  • Glatz A, Horváth I, Varvasovszki V, Kovács E, Török Z & Vigh L (1997) Chaperonin genes of the Synechocystis PCC 6803 are differentially regulated under light-dark transition during heat stress. Biochem Bioph Res Co 239: 291297.
  • Goloubinoff P, Christeller JT, Gatenby AA & Lorimer GH (1989a) Reconstitution of active dimeric ribulose bisphosphate carboxylase from an unfolded state depends on two chaperonin proteins and Mg-ATP. Nature 342: 884889.
  • Goloubinoff P, Gatenby AA & Lorimer GH (1989b) GroE heat-shock proteins promote assembly of foreign prokaryotic ribulose bisphosphate carboxylase oligomers in Escherichia coli. Nature 337: 4447.
  • González V, Santamaría RI, Bustos P et al. (2006) The partitioned Rhizobium etli genome: genetic and metabolic redundancy in seven interacting replicons. P Natl Acad Sci USA 103: 38343839.
  • Gould P, Maguire M & Lund PA (2007a) Distinct mechanisms regulate expression of the two major groEL homologues in Rhizobium leguminosarum. Arch Microbiol 187: 41640.
  • Gould PS, Burgar HR & Lund PA (2007b) Homologous cpn60 genes in Rhizobium leguminosarum are not functionally equivalent. Cell Stress Chaperon 12: 123131.
  • Govezensky D, Greener T, Segal G & Zamir A (1991) Involvement of GroEL in nif gene regulation and nitrogenase assembly. J Bacteriol 173: 63396346.
  • Goyal K, Qamra R & Mande SC (2006) Multiple gene duplication and rapid evolution in the groEL gene: functional implications. J Mol Evol 63: 781787.
  • Grandvalet C, Rapoport G & Mazodier P (1998) hrcA, encoding the repressor of the groEL genes in Streptomyces albus G, is associated with a second dnaJ gene. J Bacteriol 180: 51295134.
  • Hemmingsen SM, Woolford C, Van Der Vies SM, Tilly K, Dennis DT, Georgopoulos CP, Hendrix RW & Ellis RJ (1988) Homologous plant and bacterial proteins chaperone oligomeric protein assembly. Nature 333: 330334.
  • Henderson B, Allan E & Coates AR (2006) Stress wars: the direct role of host and bacterial molecular chaperones in bacterial infection. Infect Immun 74: 36933706.
  • Horváth I, Multhoff G, Sonnleitner A & Vígh L (2008) Membrane-associated stress proteins: more than simply chaperones. Biochim Biophys Acta 1778: 16531664.
  • Horwich AL, Farr GW & Fenton WA (2006) GroEL–GroES-mediated protein folding. Chem Rev 106: 19171930.
  • Horwich AL, Fenton WA, Chapman E & Farr GW (2007) Two families of chaperonin: physiology and mechanism. Annu Rev Cell Dev Bi 23: 115145.
  • Houry WA, Frishman D, Eckerskorn C, Lottspeich F & Hartl FU (1999) Identification of in vivo substrates of the chaperonin GroEL. Nature 402: 147154.
  • Hu Y, Henderson B, Lund PA, Tormay P, Ahmed MT, Gurcha SS, Besra GS & Coates AR (2008) A Mycobacterium tuberculosis mutant lacking the groEL homologue cpn60.1 is viable but fails to induce an inflammatory response in animal models of infection. Infect Immun 76: 15351546.
  • Hughes AL (1993) Contrasting evolutionary rates in the duplicate chaperonin genes of Mycobacterium tuberculosis and M. leprae. Mol Biol Evol 10: 243255.
  • Hunt JF, Weaver AJ, Landry SJ, Gierasch L & Deisenhofer J (1996) The crystal structure of the GroES co-chaperonin at 2.8 A resolution. Nature 379: 3745.
  • Jager KM & Bergman B (1991) Localization of a multifunctional chaperonin (GroEL protein) in nitrogen-fixing Anabaeba PCC 7120 – presence in vegetative cells and heterocysts. Planta 183: 120125.
  • Kaneko T, Nakamura Y, Sato S et al. (2000a) Complete genome structure of the nitrogen-fixing symbiotic bacterium Mesorhizobium loti. DNA Res 7: 331338.
  • Kaneko T, Nakamura Y, Sato S et al. (2000b) Complete genomic sequence of nitrogen-fixing symbiotic bacterium Bradyrhizobium japonicum USDA110. DNA Res 9: 189197.
  • Karunakaran KP, Noguchi Y, Read TD, Cherkasov A, Kwee J, Shen C, Nelson CC & Brunham RC (2003) Molecular analysis of the multiple GroEL proteins of Chlamydiae. J Bacteriol 185: 19581966.
  • Kerner MJ, Naylor DJ, Ishihama Y et al. (2005) Proteome-wide analysis of chaperonin-dependent protein folding in Escherichia coli. Cell 122: 209220.
  • Kim AI, Ghosh P, Aaron MA, Bibb LA, Jain S & Hatfull GF (2003) Mycobacteriophage Bxb1 integrates into the Mycobacterium smegmatis groEL1 gene. Mol Microbiol 50: 463473.
  • Kojima K & Nakamoto H (2007) A novel light- and heat-responsive regulation of the groE transcription in the absence of HrcA or CIRCE in cyanobacteria. FEBS Lett 581: 18711880.
  • Kong TH, Coates ARM, Butcher PD, Hickman CJ & Shinnick TM (1993) Mycobacterium tuberculosis expresses two chaperonin-60 homologs. P Natl Acad Sci U S A 90: 26082612.
  • Kovács E, Török Z, Horváth I & Vigh L (1994) Heat stress induces association of the GroEL-analog chaperonin with thylakoid membranes in cyanobacterium, Synechocystis PCC 6803. Plant Biochem Physiol 32: 285293.
  • Kovács E, Van Der Vies SM, Glatz A, Török Z, Varvasovszki V, Horváth I & Vígh L (2001) The chaperonins of Synechocystis PCC 6803 differ in heat inducibility and chaperone activity. Biochem Bioph Res Co 289: 908915.
  • Lehel C, Los D, Wada H, Györgyei J, Horváth I, Kovács E, Murata N & Vigh L (1993) A second groEL-like gene, organized in a groESL operon is present in the genome of Synechocystis sp. PCC 6803. J Biol Chem 268: 17991804.
  • Lin Z, Madan D & Rye HS (2008) GroEL stimulates protein folding through forced unfolding. Nat Struct Mol Biol 15: 303311.
  • Maiwald M, Lepp PW & Relman DA (2003) Analysis of conserved non-rRNA genes of Tropheryma whipplei. Syst Appl Microbiol 26: 312.
  • Marco S, Parro V, Carrascosa JL & Mellado RP (1992) Streptomyces lividans possesses a GroEL-like chaperonin. FEMS Microbiol Lett 72: 127132.
  • Marques MA, Chitale S, Brennan PJ & Pessolani MC (1998) Mapping and identification of the major cell wall-associated components of Mycobacterium leprae. Infect Immun 66: 26252631.
  • Martin J & Hartl FU (1997) The effect of macromolecular crowding on chaperonin-mediated protein folding. P Natl Acad Sci USA 94: 11071112.
  • Mayhew M, Da Silva AC, Martin J, Erdjument-Bromage H, Tempst P & Hartl FU (1996) Protein folding in the central cavity of the GroEL–GroES chaperonin complex. Nature 379: 420426.
  • McNally D & Fares MA (2007) In silico identification of functional divergence between the multiple groEL gene paralogs in Chlamydiae. BMC Evol Biol 7: 81.
  • Minder AC, Fischer HM, Hennecke H & Narberhaus F (2000) Role of HrcA and CIRCE in the heat shock regulatory network of Bradyrhizobium japonicum. J Bacteriol 182: 1422.
  • Mitsui H, Sato T, Sato Y, Ito N & Minamisawa K (2004) Sinorhizobium meliloti RpoH1 is required for effective nitrogen-fixing symbiosis with alfalfa. Mol Genet Genomics 271: 416425.
  • Morrison RP, Lyng K & Caldwell HD (1989) Chlamydial disease pathogenesis. Ocular hypersensitivity elicited by a genus-specific 57-kD protein. J Exp Med 169: 663675.
  • Moulin L, Munive A, Dreyfus B & Boivin-Masson C (2001) Nodulation of legumes by members of the beta-subclass of Proteobacteria. Nature 411: 948950.
  • Nakamoto H, Suzuki M & Kojima K (2003) Targeted inactivation of the hrcA repressor gene in cyanobacteria. FEBS Lett 549: 5762.
  • Narberhaus F (1999) Negative regulation of bacterial heat shock genes. Mol Micro 31: 18.
  • Normand P, Lapierre P, Tisa LS et al. (2007) Genome characteristics of facultatively symbiotic Frankia sp. strains reflect host range and host plant biogeography. Genome Res 1: 715.
  • Ogawa J & Long SR (1995) The Rhizobium meliloti groELc locus is required for regulation of early nod genes by the transcription activator NodD. Genes Dev 9: 714729.
  • Ojha A, Anand M, Bhatt A, Kremer L, Jacobs WR Jr & Hatfull GF (2005) GroEL1: a dedicated chaperone involved in mycolic acid biosynthesis during biofilm formation in mycobacteria. Cell 123: 861873.
  • Oke V & Long SR (1999) Bacterial genes induced within the nodule during the Rhizobium–legume symbiosis. Mol Micro 32: 837849.
  • Peeling RW, Bailey RL, Conway DJ, Holland MJ, Campbell AE, Jallow O, Whittle HC & Mabey DC (1998) Antibody response to the 60-kDa chlamydial heat-shock protein is associated with scarring trachoma. J Infect Dis 177: 256259.
  • Portaro FCV, Hayashi MAF, De Arauz LJ, Palma MS, Assakura MT, Silva CL & De Camargo ACM (2002) The Mycobacterium leprae hsp65 displays proteolytic activity. Mutagenesis studies indicate that the M-leprae hsp65 proteolytic activity is catalytically related to the Hs1VU protease. Biochemistry 41: 74007406.
  • Qamra R & Mande SC (2004) Crystal structure of the 65-kilodalton heat shock protein, chaperonin 60.2, of Mycobacterium tuberculosis. J Bacteriol 186: 81058113.
  • Qamra R, Srinivas V & Mande SC (2004) Mycobacterium tuberculosis GroEL homologues unusually exist as lower oligomers and retain the ability to suppress aggregation of substrate proteins. J Mol Biol 342: 605617.
  • Qamra R, Mande SC, Coates AR & Henderson B (2005) The unusual chaperonins of Mycobacterium tuberculosis. Tuberculosis 85: 385394.
  • Rajaram H & Apte SK (2003) Heat-shock response and its contribution to thermotolerance of the nitrogen-fixing cyanobacterium Anabaena sp. strain L-31. Arch Microbiol 179: 423429.
  • Rajaram H & Apte SK (2008) Nitrogen status and heat-stress-dependent differential expression of the cpn60 chaperonin gene influences thermotolerance in the cyanobacterium Anabaena. Microbiology 154: 317325.
  • Rengarajan J, Murphy E, Park A, Krone CL, Hett EC, Bloom BR, Glimcher LH & Rubin EJ (2008) Mycobacterium tuberculosis Rv2224c modulates innate immune responses. P Natl Acad Sci USA 105: 264269.
  • Rinke de Wit TF, Bekelie S, Osland A, Miko TL, Hermans PW, Van Soolingen D, Drijfhout JW, Schoningh R, Janson AA & Thole JE (1992) Mycobacteria contain two groEL genes: the second Mycobacterium leprae groEL gene is arranged in an operon with groES. Mol Microbiol 6: 19952007.
  • Roberts MM, Coker AR, Fossati G, Mascagni P, Coates AR & Wood SP (2003) Mycobacterium tuberculosis chaperonin 10 heptamers self-associate through their biologically active loops. J bacteriol 185: 41724185.
  • Rodríguez-Quiñones F, Maguire M, Wallington EJ, Gould PS, Yerko V, Downie JA & Lund PA (2005) Two of the three groEL homologues in Rhizobium leguminosarum are dispensable for normal growth. Arch Microbiol 184: 253265.
  • Rusanganwa E & Gupta RS (1993) Cloning and characterization of multiple groEL chaperonin-encoding genes in Rhizobium meliloti. Gene 126: 6775.
  • Rye HS, Burston SG, Fenton WA, Beechem JM, Xu Z, Sigler PB & Horwich AL (1997) Distinct actions of cis and trans ATP within the double ring of the chaperonin GroEL. Nature 388: 792798.
  • Rye HS, Roseman AM, Chen S, Furtak K, Fenton WA, Saibil HR & Horwich AL (1999) GroEL-GroES cycling: ATP and nonnative polypeptide direct alternation of folding-active rings. Cell 97: 325328.
  • Sasu S, LaVerda D, Qureshi N, Golenbock DT & Beasley D (2001) Chlamydia pneumoniae and chlamydial heat shock protein 60 stimulate proliferation of human vascular smooth muscle cells via toll-like receptor 4 and p44/p42 mitogen-activated protein kinase activation. Circ Res 89: 244250.
  • Sato M, Nimura-Matsune K, Watanabe S, Chibazakura T & Yoshikawa H (2007) Expression analysis of multiple dnaK genes in the cyanobacterium Synechococcus elongatus PCC 7942. J Bacteriol 189: 37513758.
  • Sato S, Ikeuchi M & Nakamoto H (2008) Expression and function of a groEL paralog in the thermophilic cyanobacterium Thermosynechoccus elongatus under heat and cold stress. FEBS Lett 582: 33893395.
  • Schnappinger D, Ehrt S, Voskuil MI et al. (2003) Transcriptional adaptation of Mycobacterium tuberculosis within macrophages: insights into the phagosomal environment. J Exp Med 198: 693704.
  • Servant P, Thompson CJ & Mazodier P (1994) Post-transcriptional regulation of the groEL1 gene of Streptomyces albus. Mol Microbiol 12: 423432.
  • Stewart GR, Wernisch L, Stabler R, Mangan JA, Hinds J, Laing KG, Young DB & Butcher PD (2002) Dissection of the heat-shock response in Mycobacterium tuberculosis using mutants and microarrays. Microbiology 148: 31293138.
  • Takano T & Kakefuda T (1972) Involvement of a bacterial factor in morphogenesis of bacteriophage capsid. Nat New Biol 239: 3437.
  • Tan M, Wong B & Engel JN (1996) Transcriptional organization and regulation of the dnaK and groE operons of Chlamydia trachomatis. J Bacteriol 178: 69836990.
  • Tanaka N, Hiyama T & Nakamoto H (1997) Cloning, characterization and functional analysis of groESL operon from thermophilic cyanobacterium Synechococcus vulcanus. Biochim Biophys Acta 1343: 335348.
  • Thirumalai D & Lorimer GH (2001) Chaperonin-mediated protein folding. Annu Rev Biophys Bio 30: 245269.
  • Tilly K, Murialdo H & Georgopoulos C (1981) Identification of a second Escherichia coli groE gene whose product is necessary for bacteriophage morphogenesis. P Natl Acad Sci USA 78: 16291633.
  • Török Z, Horváth I, Goloubinoff P, Kovács E, Glatz A, Balogh G & Vígh L (1997) Evidence for a lipochaperonin: association of active protein-folding GroESL oligomers with lipids can stabilize membranes under heat shock conditions. P Natl Acad Sci USA 94: 21922197.
  • Van Den Berg B, Ellis RJ & Dobson CM (1999) Effects of macromolecular crowding on protein folding and aggregation. EMBO J 18: 69276933.
  • Van Dyk TK, Gatenby AA & LaRossa RA (1989) Demonstration by genetic suppression of interaction of GroE products with many proteins. Nature 342: 451453.
  • Viitanen PV, Gatenby AA & Lorimer GH (1992) Purified chaperonin 60 (groEL) interacts with the nonnative states of a multitude of Escherichia coli proteins. Protein Sci 1: 363369.
  • Wallington EJ & Lund PA (1994) Rhizobium leguminosarum contains multiple chaperonin (cpn60) genes. Microbiology 140: 113122.
  • Wang JD, Herman C, Tipton KA, Gross CA & Weissman JS (2002) Directed evolution of substrate-optimized GroEL/S chaperonins. Cell 111: 10271039.
  • Wastl J, Fraunholz M, Zauner S, Douglas S & Maier UG (1999) Ancient gene duplication and differential gene flow in plastid lineages: the GroEL/Cpn60 example. J Mol Evol 48: 112117.
  • Weissman JS, Hohl CM, Kovalenko O, Kashi Y, Chen S, Braig K, Saibil HR, Fenton WA & Horwich AL (1995) Mechanism of GroEL action: productive release of polypeptide from a sequestered position under GroES. Cell 83: 577587.
  • Weissman JS, Rye HS, Fenton WA, Beechem JM & Horwich AL (1996) Characterization of the active intermediate of a GroEL–GroES-mediated protein folding reaction. Cell 84: 481490.
  • Williams DL, Pittman TL, Deshotel M, Oby-Robinson S, Smith I & Husson R (2007) Molecular basis of the defective heat stress response in Mycobacterium leprae. J Bacteriol 189: 88188827.
  • Wilson AC & Tan M (2004) Stress response gene regulation in Chlamydia is dependent on HrcA-CIRCE interactions. J Bacteriol 186: 33843391.
  • Wilson AC, Wu CC, Yates JR III & Tan M (2005) Chlamydial GroEL autoregulates its own expression through direct interactions with the HrcA repressor protein. J Bacteriol 187: 75357542.
  • Wood D, Setubal J, Kaul L et al. (2001) The genome of the natural genetic engineer Agrobacterium tumefaciens C58. Science 294: 23172323.
  • Xu Z, Horwich AL & Sigler PB (1997) The crystal structure of the asymmetric GroEL–GroES-(ADP)7 chaperonin complex. Nature 388: 741750.
  • Yeh KC, Peck MC & Long SR (2002) Luteolin and GroESL modulate in vitro activity of NodD. J Bacteriol 184: 525530.
  • Yoshida N, Oeda K, Watanabe E et al. (2001) Protein function. Chaperonin turned insect toxin. Nature 411: 44.
  • Young JP, Crossman LC, Johnston AW et al. (2006) The genome of Rhizobium leguminosarum has recognizable core and accessory components. Genome Biol 7: R34.
  • Zauner S, Lockhart P, Stoebe-Maier B, Gilson P, McFadden GI & Maier UG (2006) Differential gene transfers and gene duplications in primary and secondary endosymbioses. BMC Evol Biol 6: 38.