SEARCH

SEARCH BY CITATION

References

  • Aguey-Zinsou KF, Bernhardt PV, Kappler U & McEwan AG (2003) Direct electrochemistry of a bacterial sulfite dehydrogenase. J Am Chem Soc 125: 530535.
  • Amend JP & Shock EL (2001) Energetics of overall metabolic reactions of thermophilic and hyperthermophilic Archaea and bacteria. FEMS Microbiol Rev 25: 175243.
  • Anandham R, Indiragandhi P, Madhaiyan M, Kim K, Yim W, Saravanan VS, Chung J & Sa T (2007) Thiosulfate oxidation and mixotrophic growth of Methylobacterium oryzae. Can J Microbiol 53: 869876.
  • Appia-Ayme C & Berks BC (2002) SoxV, an orthologue of the CcdA disulfide transporter, is involved in thiosulfate oxidation in Rhodovulumsulfidophilum and reduces the periplasmic thioredoxin SoxW. Biochem Bioph Res Co 296: 737741.
  • Appia-Ayme C, Little PJ, Matsumoto Y, Leech AP & Berks BC (2001) Cytochrome complex essential for photosynthetic oxidation of both thiosulfate and sulfide in Rhodovulumsulfidophilum. J Bacteriol 183: 61076118.
  • Arieli B, Padan E & Shahak Y (1991) Sulfide-induced sulfide-quinone reductase activity in thylakoids of Oscillatorialimnetica. J Biol Chem 266: 104111.
  • Arieli B, Shahak Y, Taglicht D, Hauska G & Padan E (1994) Purification and characterization of sulfide-quinone reductase, a novel enzyme driving anoxygenic photosynthesis in Oscillatorialimnetica. J Biol Chem 269: 57055711.
  • Bamford VA, Bruno S, Rasmussen T, Appia-Ayme C, Cheesman MR, Berks BC & Hemmings AM (2002) Structural basis for the oxidation of thiosulfate by a sulfur cycle enzyme. EMBO J 21: 55995610.
  • Bardischewsky F & Friedrich CG (2001a) Identification of ccdA in Paracoccuspantotrophus GB17: disruption of ccdA causes complete deficiency in c-type cytochromes. J Bacteriol 183: 257263.
  • Bardischewsky F & Friedrich CG (2001b) The shxVW locus is essential for oxidation of inorganic sulfur and molecular hydrogen by Paracoccuspantotrophus GB17: a novel function for lithotrophy. FEMS Microbiol Lett 202: 215220.
  • Bardischewsky F, Fischer J, Holler B & Friedrich CG (2006a) SoxV transfers electrons to the periplasm of Paracoccuspantotrophus– an essential reaction for chemotrophic sulfur oxidation. Microbiology 152: 465472.
  • Bardischewsky F, Quentmeier A & Friedrich CG (2006b) The flavoprotein SoxF functions in chemotrophic thiosulfate oxidation of Paracoccuspantotrophusin vivo and in vitro. FEMS Microbiol Lett 258: 121126.
  • Bazylinski DA, Dean AJ, Williams TJ, Long LK, Middleton SL & Dubbels BL (2004) Chemolithoautotrophy in the marine, magnetotactic bacterial strains MV-1 and MV-2. Arch Microbiol 182: 373387.
  • Beijerinck MW (1904a) Über Bakterien welche sich im Dunkeln mit Kohlensäure ernähren können. Centralbl Bakteriol Parasitenkunde Abt II 11: 593599.
  • Beijerinck MW (1904b) Phénomènes de réduction produits par les microbes (Conférence avec démonstrations faite – Delft, le 16 avril 1903). Arch Neérl Sci Ser 2 9: 131157.
  • Beijerinck MW & Minkman DC (1910) Bildung und Verbrauch von Stickoxydul durch Bakterien. Centralbl Bakteriol Parasitenkunde Abt II 25: 3063.
  • Beller HR, Chain PS, Letain TE et al. (2006) The genome sequence of the obligately chemolithoautotrophic, facultatively anaerobic bacterium Thiobacillus denitrificans. J Bacteriol 188: 14731488.
  • Bezsudnova EY, Sorokin DY, Tikhonova TV & Popov VO (2007) Thiocyanate hydrolase, the primary enzyme initiating thiocyanate degradation in the novel obligately chemolithoautotrophic halophilic sulfur-oxidizing bacterium Thiohalophilusthiocyanoxidans. Biochim Biophys Acta 1174: 15631570.
  • Borodina E, Kelly DP, Schumann P, Rainey FA, Ward-Rainey NL & Wood AP (2002) Enzymes of dimethylsulfone metabolism and the phylogenetic characterization of the facultative methylotrophs Arthrobactersulfonivorans sp. nov., Arthrobactermethylotrophus sp. nov., and Hyphomicrobiumsulfonivorans sp. nov. Arch Microbiol 177: 173183.
  • Boucher Y, Douady CJ, Papke RT et al. (2003) Lateral gene transfer and the origins of prokaryotic groups. Annu Rev Genet 37: 283328.
  • Brinkhoff T, Muyzer G, Wirsen CO & Kuever J (1999) Thiomicrospira kuenenii sp. nov. and Thiomicrospira frisia sp. nov., two mesophilic obligately chemolithoautotrophic sulfur-oxidizing bacteria isolated from an intertidal mud flat. Int J Syst Bacteriol 49: 385392.
  • Brocks JJ, Love GD, Summons RE, Knoll AH, Logan GA & Bowden SA (2005) Biomarker evidence for green and purple sulphur bacteria in a stratified Palaeoproterozoic sea. Nature 437: 866870.
  • Broda E (1977) The position of nitrate respiration in evolution. Origins Life 8: 173174.
  • Brune DC (1989) Sulfur oxidation by phototrophic bacteria. Biochim Biophys Acta 975: 189221.
  • Brune DC (1995a) Sulfur compounds as photosynthetic electron donors. Anoxygenic Photosynthetic Bacteria (BlankenshipRE, MadiganMT & BauerCE, eds), pp. 847870. Kluwer Academic Publishers, Dordrecht.
  • Brune DC (1995b) Isolation and characterization of sulfur globule proteins from Chromatiumvinosum and Thiocapsaroseopersicina. Arch Microbiol 163: 391399.
  • Brüser TL, Lens PNL & Trüper H-G (2000a) The biological sulfur cycle. Environmental Technologies to Treat Sulfur Pollution (LensPNL & PolLH, eds), pp. 4786. IWA Publishing, London, UK.
  • Brüser T, Selmer T & Dahl C (2000b) ‘ADP sulfurylase’ from Thiobacillusdenitrificans is an adenylylsulfate: phosphate adenylyltransferase and belongs to a new family of nucleotidyltransferases. J Biol Chem 275: 16911698.
  • Bryant RD, McGroarty KM, Costerton JW & Laishley EJ (1983) Isolation and characterization of a new acidophilic Thiobacillus species (T. albertensis). Can J Microbiol 29: 11591170.
  • Bryantseva I, Gorlenko VM, Kompantseva EI, Imhoff JF, Suling J & Mityushina L (1999) Thiorhodospirasibirica gen. nov., sp. nov., a new alkaliphilic purple sulfur bacterium from a Siberian soda lake. Int J Syst Bacteriol 49: 697703.
  • Buchan A, Gonzalez JM & Moran MA (2005) Overview of the marine Roseobacter lineage. Appl Environ Microb 71: 56655677.
  • Bugaytsova Z & Lindström EB (2004) Localization, purification and properties of a tetrathionate hydrolase from Acidithiobacilluscaldus. Eur J Biochem 271: 272280.
  • Burggraf S, Olsen GJ, Stetter KO & Woese CR (1992) A phylogenetic analysis of Aquifex pyrophilus. Syst Appl Microbiol 15: 352356.
  • Burke CM & Burton HR (1988) Photosynthetic bacteria in meromictic lakes and stratified fjords of the Vestfold Hills, Antarctica. Hydrobiologia 165: 1323.
  • Campbell BJ, Stein JL & Cary SC (2003) Evidence of chemolithoautotrophy in the bacterial community associated with Alvinella pompejana, a hydrothermal vent polychaete. Appl Environ Microb 69: 50705078.
  • Campbell BJ, Engel AS, Porter ML & Takai K (2006) The versatile epsilon-proteobacteria: key players in sulphidic habitats. Nat Rev Microbiol 4: 458468.
  • Canfield DE (2005) The early history of atmospheric oxygen: homage to Robert A. Garrels. Annu Rev Earth Pl Sc 33: 136.
  • Canfield DE & Teske A (1996) Late Proterozoic rise in atmospheric oxygen concentration inferred from phylogenetic and sulphur-isotope studies. Nature 382: 127132.
  • Castenholz RW & Pierson BK (1995) Ecology of thermophilic anoxygenic phototrophs. Anoxygenic Photosynthetic Bacteria (BlankenshipRE, MadiganMT & BauerCE, eds), pp. 87103. Kluwer Academic Publishers, Dordrecht.
  • Cavanaugh CM, McKiness ZP, Newton ILG & Stewart FJ (2004) Marine chemosynthetic symbioses. The Prokaryotes: An Evolving Electronic Resource for the Microbial Community (DworkinM, FalkowS, RosenbergE, SchleiferK-H & StackebrandtE, eds). Springer, New York. Available at http://link.springer-ny.com/link/service/books/10125/index.htm
  • Cerletti P (1986) Seeking a better job for an under-employed enzyme, Rhodanese. Trends Biochem Sci 11: 369372.
  • Chan CW & Suzuki I (1993) Quantitative extraction and determination of elemental sulfur and stoichiometric oxidation of sulfide to elemental sulfur by Thiobacillusferrooxidans. Can J Microbiol 39: 11661168.
  • Chan L-K, Morgan-Kiss R & Hanson TE (2008a) Sulfur oxidation in Chlorobiumtepidum (syn. Chlorobaculumtepidum): genetic and proteomic analyses. Microbial Sulfur Metabolism (DahlC & FriedrichCG, eds), pp. 117126. Springer, Berlin.
  • Chan L-K, Weber TS, Morgan-Kiss R & Hanson TE (2008b) A genomic region required for phototrophic thiosulfate oxidation in the green sulfur bacterium Chlorobiumtepidum (syn. Chlorobaculumtepidum). Microbiology 154: 818829.
  • Charles AM & Suzuki I (1966) Mechanism of thiosulfate oxidation by Thiobacillus novellus. Biochim Biophys Acta 128: 510521.
  • Chen Z-W, Koh M, Van Driessche G, Van Beeumen JJ, Bartsch RG, Meyer TE, Cusanovich MA & Mathews FS (1994) The structure of flavocytochrome c sulfide dehydrogenase from a purple phototrophic bacterium. Science 266: 430432.
  • Chen ZW, Jiang CY, She Q, Liu SJ & Zhou PJ (2005) Key role of cysteine residues in catalysis and subcellular localization of sulfur oxygenase-reductase of Acidianustengchongensis. Appl Environ Microb 71: 621628.
  • Dahl C (1996) Insertional gene inactivation in a phototrophic sulphur bacterium: APS-reductase-deficient mutants of Chromatiumvinosum. Microbiology 142: 33633372.
  • Dahl C (1999) Deposition and oxidation of polymeric sulfur in prokaryotes. Biochemical Principles and Mechanisms of Biosynthesis and Biodegradation of Polymers (SteinbüchelA, ed), pp. 2734. Wiley-VCH, Weinheim.
  • Dahl C (2008) Inorganic sulfur compounds as electron donors in phototrophic sulfur bacteria. Advances in Photosynthesis and Respiration (Govindjee J, series ed.), Sulfur Metabolism in Phototrophic Organisms, Vol. 27 (HellR, DahlC, KnaffD & LeustekT, eds), pp. 289317. Springer, New York.
  • Dahl C & Prange A (2006) Bacterial sulfur globules: occurrence, structure and metabolism. Inclusions in Prokaryotes (ShivelyJM, ed), pp. 2151. Springer-Verlag, Heidelberg.
  • Dahl C & Trüper HG (1994) Enzymes of dissimilatory sulfide oxidation in phototrophic sulfur bacteria. Inorganic Microbial Sulfur Metabolism (PeckH, LeGallJ, AbelsonJ & SimonM, eds), pp. 400421. Elsevier, Amsterdam, the Netherlands.
  • Dahl C, Rakhely G, Pott-Sperling AS et al. (1999) Genes involved in hydrogen and sulfur metabolism in phototrophic sulfur bacteria. FEMS Microbiol Lett 180: 317324.
  • Dahl C, Engels S, Pott-Sperling AS et al. (2005) Novel genes of the dsr gene cluster and evidence for close interaction of Dsr proteins during sulfur oxidation in the phototrophic sulfur bacterium Allochromatiumvinosum. J Bacteriol 187: 13921404.
  • Dam B, Mandal S, Ghosh W, Das Gupta SK & Roy P (2007) The S4-intermediate pathway for the oxidation of thiosulfate by the chemolithoautotroph Tetrathiobacterkashmirensis and inhibition of tetrathionate oxidation by sulfite. Res Microbiol 158: 330338.
  • Das SK, Mishra AK, Tindall BJ, Rainey FA & Stackebrandt E (1996) Oxidation of thiosulfate by a new bacterium, Bosea thiooxidans (strain BI-42) gen. nov., sp. nov.: analysis of phylogeny based on chemotaxonomy and 16S ribosomal DNA sequencing. Int J Syst Bacteriol 46: 981987.
  • Deb C, Stackebrandt E, Pradella S, Saha A & Roy P (2004) Phylogenetically diverse new sulfur chemolithotrophs of alpha-proteobacteria isolated from Indian soils. Curr Microbiol 48: 452458.
  • De Jong GAH, Hazeu W, Bos P & Kuenen JG (1997a) Polythionate degradation by tetrathionate hydrolase of Thiobacillus ferrooxidans. Microbiology 143: 499504.
  • De Jong GAH, Hazeu W, Bos P & Kuenen JG (1997b) Isolation of tetrathionate hydrolase from Thiobacillus acidophilus. Eur J Biochem 243: 678683.
  • D'Errico G, Di Salle A, La Cara F, Rossi M & Cannio R (2006) Identification and characterization of a novel bacterial sulfite oxidase with no heme binding domain from Deinococcusradiodurans. J Bacteriol 188: 694701.
  • De Zwart JMM, Sluis JMR & Kuenen JG (1997) Competition for dimethyl sulfide and hydrogen sulfide by Methylophaga sulfidovorans and Thiobacillus thioparus T5 in continuous cultures. Appl Environ Microb 63: 33183322.
  • Do YS, Schmidt TM, Zahn JA, Boyd ES, De La Mora A & DiSpirito AA (2003) Role of Rhodobacter sp. strain PS9, a purple non-sulfur photosynthetic bacterium isolated from an anaerobic swine waste lagoon, in odor remediation. Appl Environ Microb 69: 17101720.
  • Drobner E, Huber H & Stetter KO (1990) Thiobacillusferrooxidans, a facultative hydrogen oxidizer. Appl Environ Microb 56: 29222923.
  • Drobner E, Huber H, Rachel R & Stetter KO (1992) Thiobacillusplumbophilus spec. nov., a novel galena and hydrogen oxidizer. Arch Microbiol 157: 213217.
  • Dubinina GA, Grabovich MY & Chernyshova YY (2004) The role of oxygen in the regulation of the metabolism of aerotolerant spirochetes, a major component of ‘Thiodendron’ bacterial sulfur mats. Microbiology 73: 725733.
  • Durand P, Reysenbach AL, Prieur D & Pace N (1993) Isolation and characterization of Thiobacillus hydrothermalis sp. nov., a mesophilic obligately chemolithotrophic bacterium isolated from a deep sea hydrothermal vent in Figi basin. Arch Microbiol 159: 3944.
  • Eilers T, Schwarz G, Brinkmann H et al. (2001) Identification and biochemical characterization of Arabidopsisthaliana sulfite oxidase. A new player in plant sulfur metabolism. J Biol Chem 276: 4698946994.
  • Eisen JA, Nelson KE, Paulsen IT et al. (2002) The complete genome sequence of Chlorobium tepidum TLS, a photosynthetic, anaerobic, green-sulfur bacterium. P Natl Acad Sci USA 99: 95099514.
  • Emmel T, Sand W, König WA & Bock E (1986) Evidence for the existence of a sulphur oxygenase in Sulfolobus brierleyi. J Gen Microbiol 132: 34153420.
  • Evans MCW, Buchanan BB & Arnon DI (1966) A new ferredoxin-dependent carbon reduction cycle in a photosynthetic bacterium. P Natl Acad Sci USA 55: 928934.
  • Finster K, Liesack W & Thamdrup B (1998) Elemental sulfur and thiosulfate disproportionation by Desulfocapsa sulfoexigens sp. nov., a new anaerobic bacterium isolated from marine surface sediment. Appl Environ Microb 64: 119125.
  • Frederiksen TM & Finster K (2003) Sulfite-oxido-reductase is involved in the oxidation of sulfite in Desulfocapsasulfoexigens during disproportionation of thiosulfate and elemental sulfur. Biodegradation 14: 189198.
  • Friedrich CG (1998) Physiology and genetics of sulfur-oxidizing bacteria. Adv Microb Physiol 39: 235289.
  • Friedrich CG, Quentmeier A, Bardischewsky F, Rother D, Kraft R, Kostka S & Prinz H (2000) Novel genes coding for lithotrophic sulfur oxidation of Paracoccuspantotrophus GB17. J Bacteriol 182: 46774687.
  • Friedrich CG, Rother D, Bardischewsky F, Quentmeier A & Fischer J (2001) Oxidation of reduced inorganic sulfur compounds by bacteria: emergence of a common mechanism? Appl Environ Microb 67: 28732882.
  • Friedrich CG, Bardischewsky F, Rother D, Quentmeier A & Fischer J (2005) Prokaryotic sulfur oxidation. Curr Opin Microbiol 8: 253259.
  • Frigaard N-U & Bryant DA (2008) Genomic and evolutionary perspectives on sulfur metabolism in green sulfur bacteria. Microbial Sulfur Metabolism (DahlC & FriedrichCG, eds), pp. 6076. Springer, Berlin.
  • Fuchs G, Stupperich E & Eden G (1980) Autotrophic CO2 fixation in Chlorobium limicola– evidence for the operation of a reductive tricarboxylic acid cycle in growing cells. Arch Microbiol 128: 6471.
  • Fuchs T, Huber H, Burggraf S & Stetter KO (1996) 16S rDNA-based phylogeny of the archaeal order Sulfolobales and reclassification of Desulfurolobus ambivalens as Acidianusambivalens comb. nov. Syst Appl Microbiol 19: 5660.
  • Fukumori Y & Yamanaka T (1979) Flavocytochrome c of Chromatiumvinosum. Some enzymatic properties and subunit structure. J Biochem-Tokyo 85: 14051414.
  • Fukumori Y, Hoshiko K & Yamanaka T (1989) Purification and some properties of thiosulphate-cleaving enzyme from Thiobacillus novellus. FEMS Microbiol Lett 53: 159163.
  • Garrett RM & Rajagopalan KV (1994) Molecular cloning of rat liver sulfite oxidase. Expression of a eukaryotic Mo-pterin-containing enzyme in Escherichiacoli. J Biol Chem 269: 272276.
  • Gevertz D, Telang AJ, Voordouw G & Jenneman GE (2000) Isolation and characterization of strains CVO and FWKOB, two novel nitrate-reducing, sulfide-oxidizing bacteria isolated from oil field brine. Appl Environ Microb 66: 24912501.
  • Ghosh W & Roy P (2006a) Mesorhizobiumthiogangeticum sp. nov., a novel sulfur-oxidizing chemolithoautotroph from rhizosphere soil of an Indian tropical leguminous plant. Int J Syst Evol Micr 56: 9197.
  • Ghosh W & Roy P (2006b) Ubiquitous presence and activity of sulfur-oxidizing lithoautotrophic microorganisms in the rhizospheres of tropical plants. Curr Sci 91: 159161.
  • Ghosh W & Roy P (2007a) Chemolithoautotrophic oxidation of thiosulfate and tetrathionate by novel strains of Azospirillum and Pseudoxanthomonas isolated from the rhizosphere of an Indian tropical leguminous plant. Curr Sci 93: 16131615.
  • Ghosh W & Roy P (2007b) Chemolithoautotrophic oxidation of thiosulfate, tetrathionate and thiocyanate by a novel rhizobacterium belonging to the genus Paracoccus. FEMS Microbiol Lett 270: 124131.
  • Ghosh W, Bagchi A, Mandal S, Dam B & Roy P (2005) Tetrathiobacterkashmirensis gen. nov., sp. nov., a novel mesophilic, neutrophilic, tetrathionate-oxidizing, facultatively chemolithotrophic betaproteobacterium isolated from soil from a temperate orchard in Jammu and Kashmir, India. Int J Syst Evol Micr 55: 17791787.
  • Ghosh W, Mandal S & Roy P (2006) Paracoccusbengalensis sp. nov., a novel sulfur-oxidizing chemolithoautotroph from the rhizospheric soil of an Indian tropical leguminous plant. Syst Appl Microbiol 29: 396403.
  • Golovacheva RS, Val'ekho-Roman KM & Troitskii AV (1985) Sulfurococcusmirabilis gen. nov., sp. nov., a new thermophilic archaebacterium with the ability to oxidize sulfur. Mikrobiologiya 54: 100107.
  • Gommers PJF & Kuenen JG (1988) Thiobacillus strain Q, a chemolithoheterotrophic sulfur bacterium. Arch Microbiol 150: 117125.
  • Gorlenko VM, Briantseva IA, Panteleeva EE, Turova TP, Kolganova TV, Makhneva ZK & Moskalenko AA (2004) Ectothiorhodosinusmongolicum gen. nov., sp. nov. – a new purple sulfur bacterium from soda lake in Mongolia. Mikrobiologiia 73: 8088.
  • Grabovich MY, Dubinina GA, Lebedeva VY & Churikova VV (1998) Mixotrophic and lithoheterotrophic growth of the freshwater filamentous sulfur bacterium Beggiatoa leptomitiformis D-402. Mikrobiologiia 67: 383388.
  • Graff A & Stubner S (2003) Isolation and molecular characterization of thiosulfate-oxidizing bacteria from an Italian rice field soil. Syst Appl Microbiol 26: 445452.
  • Gribaldo S & Cammarano P (1998) The root of the universal tree of life inferred from anciently duplicated genes encoding components of the protein-targeting machinery. J Mol Evol 47: 508516.
  • Griesbeck C, Schütz M, Schödl T, Bathe S, Nausch L, Mederer N, Vielreicher M & Hauska G (2002) Mechanism of sulfide-quinone reductase investigated using site-directed mutagenesis and sulfur analysis. Biochemistry 41: 1155211565.
  • Grimm F, Franz B & Dahl C (2008) Thiosulfate and sulfur oxidation in purple sulfur bacteria. Microbial Sulfur Metabolism (DahlC & FriedrichCG, eds), pp. 101116. Springer Verlag, Berlin.
  • Guay R & Silver M (1975) Thiobacillus acidophilus sp. nov.; isolation and some physiological characteristics. Can J Microbiol 21: 281288.
  • Güde H, Strohl WR & Larkin JM (1981) Mixotrophic and heterotrophic growth of Beggiatoa alba in continuous culture. Arch Microbiol 129: 357360.
  • Gupta RS (2000) The phylogeny of proteobacteria: relationships to other eubacterial phyla and eukaryotes. FEMS Microbiol Rev 24: 367402.
  • Guyoneaud R, Suling J, Petri R, Matheron R, Caumette P, Pfennig N & Imhoff JF (1998) Taxonomic rearrangements of the genera Thiocapsa and Amoebobacter on the basis of 16S rDNA sequence analyses, and description of Thiolamprovum gen. nov. Int J Syst Bacteriol 48: 957964.
  • Hagen KD & Nelson DC (1996) Organic carbon utilization by obligately and facultatively autotrophic Beggiatoa strains in homogeneous and gradient cultures. Appl Environ Microb 62: 947953.
  • Hallberg KB & Lindström EB (1994) Characterization of Thiobacilluscaldus sp. nov., a moderately thermophilic acidophile. Microbiology 140: 34513456.
  • Hallberg KB, Dopson M & Lindström EB (1996) Reduced sulfur compound oxidation by Thiobacilluscaldus. J Bacteriol 178: 611.
  • Hanada S & Pierson BK (2002) The family Chloroflexaceae. The Prokaryotes: An Evolving Electronic Resource for the Microbial Community (DworkinM, FalkowS, RosenbergE, SchleiferK-H & StackebrandtE, eds). Springer, New York. Available at http://link.springer-ny.com/link/service/books/10125/
  • Hansen TA & Imhoff JF (1985) Rhodobacter veldkampii, a new species of phototrophic purple nonsulfur bacteria. Int J Syst Bacteriol 35: 115116.
  • Hansen TA & Van Gemerden H (1972) Sulfide utilization by purple nonsulfur bacteria. Arch Mikrobiol 86: 4956.
  • Hansen TA & Veldkamp H (1973) Rhodopseudomonassulfidophila, nov. spec., a new species of the purple nonsulfur bacteria. Arch Mikrobiol 92: 4558.
  • Hanson TE & Tabita FR (2003) Insights into the stress response and sulfur metabolism revealed by proteome analysis of a Chlorobium tepidum mutant lacking the Rubisco-like protein. Photosynth Res 78: 231248.
  • Happold FC, Jones GL & Pratt DB (1958) Utilization of thiocyanate by Thiobacillusthioparus and T. thiocyanoxidans. Nature 182: 266267.
  • Harrison AP Jr (1984) The acidophilic thiobacilli and other acidophilic bacteria that share their habitat. Annu Rev Microbiol 38: 265292.
  • Hazeu W, Vegte WHB-V, Bos P, Van Der Pas RK & Kuenen JG (1988) The production and utilization of intermediary elemental sulfur during the oxidation of reduced sulfur compounds by Thiobacillus ferrooxidans. Arch Microbiol 150: 574579.
  • Heising S, Richter L, Ludwig W & Schink B (1999) Chlorobium ferrooxidans sp. nov., a phototrophic green sulfur bacterium that oxidizes ferrous iron in coculture with a ‘Geospirillum’ sp. strain. Arch Microbiol 172: 116124.
  • Hensen D, Sperling D, Trüper HG, Brune DC & Dahl C (2006) Thiosulphate oxidation in the phototrophic sulphur bacterium Allochromatiumvinosum. Mol Microbiol 62: 794810.
  • Hille R (1996) The mononuclear molybdenum enzymes. Chem Rev 96: 27572816.
  • Hille R (2003) Plants have SOX: the structure of sulfite oxidase from Arabidopsisthaliana. Structure 11: 11891190.
  • Hipp WM, Pott AS, Thum-Schmirtz N, Faath I, Dahl C & Trüper HG (1997) Towards a phylogeny of APS reductases and sirohaem sulfite reductases in sulfate-reducing and sulfur-oxidizing prokaryotes. Microbiology 143: 28912902.
  • Hiraishi A & Ueda Y (1995) Isolation and characterization of Rhodovulumstrictum sp. nov. and some other purple nonsulfur bacteria from colored blooms in tidal and seawater pools. Int J Syst Bacteriol 45: 319326.
  • Hiraishi A, Masamune K & Kitamura H (1989) Characterization of the bacterial population structure in an anaerobic–aerobic activated sludge system on the basis of respiratory quinone profiles. Appl Environ Microb 55: 897901.
  • Hiraishi A, Hoshino Y & Satoh T (1991) Rhodoferax fermentans gen. nov., sp. nov., a phototrophic purple nonsulfur bacterium previously referred to as the ‘Rhodocyclus gelatinosus-like’ group. Arch Microbiol 155: 330336.
  • Hiraishi A, Nagashima KVP, Matsuura K, Shimada K, Takaichi S, Wakao N & Katayama Y (1998) Phylogeny and photosynthetic features of Thiobacillus acidophilus and related acidophilic bacteria: its transfer to the genus Acidiphilium as Acidiphiliumacidophilum comb. nov. Int J Syst Bacteriol 48: 13891398.
  • Hirayama H, Takai K, Inagaki F, Nealson KH & Horikoshi K (2005) Thiobacter subterraneus gen. nov., sp. nov., an obligately chemolithoautotrophic, thermophilic, sulfur-oxidizing bacterium from a subsurface hot aquifer. Int J Syst Evol Micr 55: 467472.
  • Howarth R, Unz RF, Seviour EM et al. (1999) Phylogenetic relationships of filamentous sulfur bacteria (Thiothrix spp. and Eikelboom type 021N bacteria) isolated from wastewater-treatment plants and description of Thiothrix eikelboomii sp. nov., Thiothrix unzii sp. nov., Thiothrix fructosivorans sp. nov. and Thiothrix defluvii sp. nov. Int J Syst Bacteriol 49: 18171827.
  • Huber H & Stetter KO (1989) Thiobacillus prosperus sp. nov., represents a new group of halotolerant metal-mobilizing bacteria isolated from a marine geothermal field. Arch Microbiol 151: 479485.
  • Huber H & Stetter KO (1990) Thiobacillus cuprinus sp. nov., a novel facultatively organotrophic metal-mobilizing bacterium. Appl Environ Microb 56: 315322.
  • Huber H & Stetter KO (1999) Aquificales. Embryonic ELS. No. 785998, pp. 17. Macmillan, Houndmills, UK.
  • Huber H & Stetter KO (2001) Sulfolobales. Bergey's Manual of Systematic Bacteriology, Vol. 1 (BooneDR, CastenholzRW & GarrityGM, eds), pp. 198. Springer, New York.
  • Huber J, Butterfield DA & Baross JA (2003) Bacterial diversity in a subseafloor habitat following a deep-sea volcanic eruption. FEMS Microbiol Ecol 43: 393409.
  • Hugler M, Huber H, Stetter KO & Fuchs G (2003) Autotrophic CO2 fixation pathways in archaea (Crenarchaeota). Arch Microbiol 179: 160173.
  • Hung CH & Pavlostathis SG (1997) Aerobic biodegradation of thiocyanate. Water Res 31: 27612770.
  • Hung CH & Pavlostathis SG (1999) Kinetics and modeling of autotrophic thiocyanate biodegradation. Biotechnol Bioeng 62: 111.
  • Hutchinson M, Johnstone KI & White D (1965) The taxonomy of certain thiobacilli. J Gen Microbiol 41: 357366.
  • Hutchinson M, Johnstone KI & White D (1967) Taxonomy of anaerobic thiobacilli. J Gen Microbiol 47: 1723.
  • Hutchinson M, Johnstone KI & White D (1969) Taxonomy of the genus Thiobacillus: the outcome of numerical taxonomy applied to the group as a whole. J Gen Microbiol 57: 397410.
  • Imhoff JF (1995) Taxonomy and physiology of phototrophic purple bacteria and green sulfur bacteria. Anoxygenic Photosynthetic Bacteria (BlankenshipRE, MadiganMT & BauerCE, eds), pp. 115. Kluwer Academic Publishers, Dordrecht.
  • Imhoff JF (1999) The family Ectothiorhodospiraceae. The Prokaryotes: An Evolving Electronic Resource for the Microbial Community (DworkinM, FalkowS, RosenbergE, SchleiferK-H & StackebrandtE, eds). Springer, New York. Available at http://link.springer-ny.com/link/service/
  • Imhoff JF (2001a) The Chromatiaceae. The Prokaryotes: An Evolving Electronic Resource for the Microbial Community (DworkinM, FalkowS, RosenbergE, SchleiferK-H & StackebrandtE, eds). Springer, New York. Available at http://link.springer-ny.com/link/service/books/10125/index.htm
  • Imhoff JF (2001b) The phototrophic alpha-proteobacteria. The Prokaryotes: An Evolving Electronic Resource for the Microbial Community (DworkinM, FalkowS, RosenbergE, SchleiferK-H & StackebrandtE, eds). Springer, New York. Available at http://link.springer-ny.com/link/service/books/10125/index.htm
  • Imhoff JF (2001c) The phototrophic beta-proteobacteria. The Prokaryotes: An Evolving Electronic Resource for the Microbial Community (DworkinM, FalkowS, RosenbergE, SchleiferK-H & StackebrandtE, eds). Springer, New York. Available at http://link.springer-ny.com/link/service/books/10125/index.htm
  • Imhoff JF (2001d) The anoxigenic phototrophic purple bacteria. Bergey's Manual of Systematic Bacteriology, Vol. 1 (BooneDR, CastenholzRW & GarrityGM, eds), pp. 631637. Springer, New York.
  • Imhoff JF (2003) Phylogenetic taxonomy of the family Chlorobiaceae on the basis of 16S rRNA and fmo (Fenna-Matthews-Olson protein) gene sequences. Int J Syst Evol Micr 53: 941951.
  • Imhoff JF, Petri R & Suling J (1998a) Reclassification of species of the spiral-shaped phototrophic purple non-sulfur bacteria of the alpha-proteobacteria: description of the new genera Phaeospirillum gen. nov., Rhodovibrio gen. nov., Rhodothalassium gen. nov. and Roseospira gen. nov. as well as transfer of Rhodospirillumfulvum to Phaeospirillumfulvum comb. nov., of Rhodospirillummolischianum to Phaeospirillummolischianum comb. nov., of Rhodospirillumsalinarum to Rhodovibriosalexigens. Int J Syst Bacteriol 48: 793798.
  • Imhoff JF, Suling J & Petri R (1998b) Phylogenetic relationships among the Chromatiaceae, their taxonomic reclassification and description of the new genera Allochromatium, Halochromatium, Isochromatium, Marichromatium, Thiococcus, Thiohalocapsa and Thermochromatium. Int J Syst Bacteriol 48: 11291143.
  • Inagaki F, Takai K, Hideki KI, Nealson KH & Horikishi K (2003) Sulfurimonas autotrophica gen. nov., sp. nov., a novel sulfur-oxidizing ɛ-proteobacterium isolated from hydrothermal sediments in the Mid-Okinawa Trough. Int J Syst Evol Micr 53: 18011805.
  • Inagaki F, Takai K, Nealson KH & Horikoshi K (2004) Sulfurovum lithotrophicum gen. nov., sp. nov., a novel sulfur-oxidizing chemolithoautotroph within the ɛ-proteobacteria isolated from Okinawa Trough hydrothermal sediments. Int J Syst Evol Micr 54: 14771482.
  • Ito T, Sugita K & Okabe S (2004) Isolation, characterization, and in situ detection of a novel chemolithoautotrophic sulfur-oxidizing bacterium in wastewater biofilms growing under microaerophilic conditions. Appl Environ Microb 70: 31223129.
  • Jannasch H, Wirsen C, Nelson D & Robertson L (1985) Thiomicrospira crunogena sp. nov., a colorless, sulfur-oxidizing bacterium from a deep-sea hydrothermal vent. Int J Syst Bacteriol 35: 422424.
  • Javor BJ, Wilmot DB & Vetter RD (1990) pH-dependent metabolism of thiosulfate and sulfur globules in the chemolithotrophic marine bacterium Thiomicrospiracrunogena. Arch Microbiol 154: 231238.
  • Johnston F & McAmish L (1973) A study of the rates of sulfur production in acid thiosulfate solutions using S-35. J Colloid Interf Sci 42: 112119.
  • Justin P & Kelly DP (1978a) Growth kinetics of Thiobacillusdenitrificans in anaerobic and aerobic chemostat culture. J Gen Microbiol 107: 123130.
  • Justin P & Kelly DP (1978b) Metabolic changes in Thiobacillus denitrificans accompanying the transition from aerobic to anaerobic growth in continuous chemostat culture. J Gen Microbiol 107: 131137.
  • Kämpf C & Pfennig N (1980) Capacity of Chromatiaceae for chemotrophic growth. Specific respiration rates of Thiocystis violacea and Chromatium vinosum. Arch Microbiol 127: 125135.
  • Kaneko T, Nakamura Y, Sato S et al. (2002) Complete genomic sequence of nitrogen-fixing symbiotic bacterium Bradyrhizobium japonicum USDA110. DNA Res 9: 189197.
  • Kappler U & Bailey S (2005) Molecular basis of intramolecular electron transfer in sulfite-oxidizing enzymes is revealed by high resolution structure of a heterodimeric complex of the catalytic molybdopterin subunit and a c-type cytochrome subunit. J Biol Chem 280: 2499925007.
  • Kappler U & Dahl C (2001) Enzymology and molecular biology of prokaryotic sulfite oxidation. FEMS Microbiol Lett 203: 19.
  • Kappler U, Bennett B, Rethmeier J, Schwarz G, Deutzmann R, McEwan AG & Dahl C (2000) Sulfite : cytochrome c oxidoreductase from Thiobacillus novellus. Purification, characterization, and molecular biology of a heterodimeric member of the sulfite oxidase family. J Biol Chem 275: 1320213212.
  • Kappler U, Friedrich CG, Trüper HG & Dahl C (2001) Evidence for two pathways of thiosulfate oxidation in Starkeyanovella (formerly Thiobacillusnovellus). Arch Microbiol 175: 102111.
  • Kappler U, Aguey-Zinsou KF, Hanson GR, Bernhardt PV & McEwan AG (2004) Cytochrome c551 from Starkeya novella: characterization, spectroscopic properties, and phylogeny of a diheme protein of the SoxAX family. J Biol Chem 279: 62526260.
  • Kappler U, Bernhardt PV, Kilmartin J, Riley MJ, Teschner J, McKenzie KJ & Hanson GR (2008) SoxAX cytochromes, a new type of heme copper protein involved in bacterial energy generation from sulfur compounds. J Biol Chem 283: 2220622214.
  • Karavaiko GI, Golyshina OV, Troitskii AV, Val'ekho-Roman KM, Golovacheva RS & Pivovarova TA (1994) Sulfurococcusyellowstonii sp. nov. – a new species of iron- and sulfur-oxidizing thermoacidophilic Archaeobacterium. Mikrobiologiia 63: 668682.
  • Karavaiko GI, Kondrat'eva TF, Savari EE, Grigor'eva NV & Avakian ZA (2000) Microbial destruction of cyanide and thiocyanate. Mikrobiologiia 69: 209216.
  • Karr EA, Sattley WM, Jung DO, Madigan MT & Achenbach LA (2003) Remarkable diversity of phototrophic purple bacteria in a permanently frozen Antarctic lake. Appl Environ Microb 69: 49104914.
  • Katayama Y & Kuraishi H (1978) Characteristics of Thiobacillusthioparus and its thiocyanate assimilation. Can J Microbiol 24: 804810.
  • Katayama Y, Narahara Y, Inoue Y, Amano F, Kanagawa T & Kuraishi H (1992) A thiocyanate hydrolase of Thiobacillusthioparus. A novel enzyme catalyzing the formation of carbonyl sulfide from thiocyanate. J Biol Chem 267: 91709175.
  • Katayama-Fujimura Y & Kuraishi H (1983) Emendation of Thiobacillus perometabolis London and Rittenberg 1967. Int J Syst Bacteriol 33: 650651.
  • Katayama-Fujimura Y, Kawashima I, Tsuzaki N & Kuraishi H (1983) Reidentification of Thiobacillus perometabolis ATCC 27793 and Thiobacillus sp. strain A2 with reference to a new species of Thiobacillus rapidicrescens sp. nov. Int J Syst Bacteriol 33: 532538.
  • Katayama-Fujimura Y, Kawashima I, Tzusaki N & Kuraishi H (1984) Physiological characteristics of the facultatively chemolithotrophic Thiobacillus species Thiobacillus delicatus nom. rev., emend., Thiobacillus perometabolis, and Thiobacillus intermedius. Int J Syst Bacteriol 34: 139144.
  • Katayama Y, Hiraishi A & Kuraishi H (1995) Paracoccusthiocyanatus sp. nov., a new species of thiocyanate-utilizing facultative chemolithotroph, and transfer of Thiobacillusversutus to the genus Paracoccus as Paracoccusversutus comb. nov. with emendation of the genus. Microbiology 141: 14691477.
  • Katayama Y, Matsushita Y, Kaneko M, Kondo M, Mizuno T & Nyunoya H (1998) Cloning of genes coding for the three subunits of thiocyanate hydrolase of Thiobacillusthioparus THI 115 and their evolutionary relationships to nitrile hydratase. J Bacteriol 180: 25832589.
  • Katayama Y, Uchino Y, Wood AP & Kelly DP (2006) Confirmation of Thiomonasdelicata (formerly Thiobacillusdelicatus) as a distinct species of the genus ThiomonasMoreira and Amils 1997 with comments on some species currently assigned to the genus. Int J Syst Evol Micr 56: 25532557.
  • Kelly DP (1982) Biochemistry of the chemolithotrophic oxidation of inorganic sulfur. Philos T R Soc B 298: 499528.
  • Kelly DP (1988) Oxidation of sulphur compounds. Society for General Microbiology Symposium 42: 6598.
  • Kelly DP (1989) Physiology and biochemistry of unicellular sulfur bacteria. Autotrophic Bacteria (SchlegelHG & BowienB, eds), pp. 193217. Springer-Verlag, Berlin Science Tech Publishers, Madison, WI.
  • Kelly DP & Baker SC (1990) The organosulfur cycle: aerobic and anaerobic processes leading to turnover of C1-sulfur compounds. FEMS Microbiol Rev 87: 241246.
  • Kelly DP & Harrison AH (1989) Genus Thiobacillus. Bergey's Manual of Systematic Bacteriology, Vol. 3 (StaleyJT, BryantMP, PfennigN & HoltJG, eds), pp. 18421858. Williams & Wilkins, Baltimore.
  • Kelly DP & Tuovinen OH (1972) Recommendations that the names Ferrobacillus ferrooxidans Leathen and Braley and Ferrobacillus sulfooxidans Kinsel be recognized as synonyms of Thiobacillus ferrooxidans Temple and Colmer. Int J Syst Bacteriol 22: 170172.
  • Kelly DP & Wood AP (2000a) The chemolithotrophic prokaryotes. The Prokaryotes: An Evolving Electronic Resource for the Microbial Community (PKIIIE) (DworkinM, FalkowS, RosenbergE, SchleiferK-H & StackebrandtE, eds), Springer-Verlag, New York. Available at http://www.prokaryotes.com
  • Kelly DP & Wood AP (2000b) Confirmation of Thiobacillusdenitrificans as a species of the genus Thiobacillus, in the beta-subclass of the Proteobacteria, with strain NCIMB 9548 as the type strain. Int J Syst Evol Micr 50: 547550.
  • Kelly DP & Wood AP (2000c) Reclassification of some species of Thiobacillus to the newly designated genera Acidithiobacillus gen. nov., Halothiobacillus gen. nov. and Thermithiobacillus gen. nov. Int J Syst Evol Micr 50: 511516.
  • Kelly DP, Shergill JK, Lu WP & Wood AP (1997) Oxidative metabolism of inorganic sulfur compounds by bacteria. Antonie van Leeuwenhoek 71: 95107.
  • Kelly DP, Stackebrandt E, Burghardt J & Wood AP (1998) Confirmation that Thiobacillushalophilus and Thiobacillushydrothermalis are distinct species within the gamma-subclass of the Proteobacteria. Arch Microbiol 170: 138140.
  • Kelly DP, McDonald IR & Wood AP (2000) Proposal for the reclassification of Thiobacillusnovellus as Starkeyanovella gen. nov., comb. nov., in the alpha-subclass of the Proteobacteria. Int J Syst Evol Micr 50: 17971802.
  • Khanna S & Nicholas DJD (1982) Utilization of tetrathionate and 35S-labelled thiosulfate by washed cells of Chlorobium vibrioforme f. sp. thiosulfatophilum. J Gen Microbiol 128: 10271034.
  • Kisker C (2001) Sulphite oxidase. Handbook of Metalloproteins, Vol. 1 (MesserschmidtA, HuberR, WieghardtK & PoulosT, eds), pp. 11211135. Wiley, New York.
  • Kisker C, Schindelin H & Rees DC (1997) Molybdenum cofactor-containing enzymes: structure and mechanism. Annu Rev Biochem 66: 233267.
  • Kletzin A (1989) Coupled enzymatic production of sulfite, thiosulfate, and hydrogen sulfide from sulfur: purification and properties of a sulfur oxygenase reductase from the facultatively anaerobic archaebacterium Desulfurolobusambivalens. J Bacteriol 171: 16381643.
  • Kletzin A (1992) Molecular characterization of the sor gene, which encodes the sulfur oxygenase/reductase of the thermoacidophilic Archaeum Desulfurolobusambivalens. J Bacteriol 174: 58545859.
  • Kletzin A (2008) Oxidation of sulfur and inorganic sulfur compounds in Acidianus ambivalens. Microbial Sulfur Metabolism (DahlC & FriedrichCG, eds), pp. 184201. Springer Verlag, Berlin.
  • Kletzin A, Urich T, Muller F, Bandeiras TM & Gomes CM (2004) Dissimilatory oxidation and reduction of elemental sulfur in thermophilic archaea. J Bioenerg Biomembr 36: 7791.
  • Kodama Y & Watanabe K (2004) Sulfuricurvum kujiense gen. nov., sp. nov., a facultatively anaerobic, chemolithoautotrophic, sulfur-oxidizing bacterium isolated from an underground crude oil storage cavity. Int J Syst Evol Micr 54: 22972300.
  • Kompantseva EI, Sorokin D, Gorlenko VM & Namsaraev BB (2005) The phototrophic community found in Lake Khilganta (an alkaline saline lake located in the southeastern Transbaikal region). Mikrobiologiia 74: 410419.
  • Kondratieva EN (1989) Chemolithotrophy of phototrophic bacteria. Autotrophic Bacteria (SchlegelHG & BowienB, eds), pp. 283287. Springer, Berlin.
  • Kondratieva EN, Pfennig N & Trüper HG (1992) The phototrophic prokaryotes. The Prokaryotes (BalowsA, TrüperHG, DworkinM, HarderW & SchleiferK-H, eds), pp. 312330. Springer-Verlag, New York.
  • Kostanjevecki V, Brige A, Meyer TE, Cusanovich MA, Guisez Y & Van Beeumen J (2000) A membrane-bound flavocytochrome c-sulfide dehydrogenase from the purple phototrophic sulfur bacterium Ectothiorhodospiravacuolata. J Bacteriol 182: 30973103.
  • Kusai K & Yamanaka T (1973) The oxidation mechanisms of thiosulphate and sulphide in Chlorobiumthiosulphatophilum: roles of cytochrome c-551 and cytochrome c-553. Biochim Biophys Acta 325: 304314.
  • Lahiri C, Mandal S, Ghosh W, Dam B & Roy P (2006) A novel gene cluster soxSRT is essential for the chemolithotrophic oxidation of thiosulfate and tetrathionate by Pseudaminobactersalicylatoxidans KCT001. Curr Microbiol 52: 267273.
  • Laska S, Lottspeich F & Kletzin A (2003) Membrane-bound hydrogenase and sulfur reductase of the hyperthermophilic and acidophilic archaeon Acidianusambivalens. Microbiology 149: 23572371.
  • Lees H (1960) Energy metabolism in chemolithotrophic bacteria. Annu Rev Microbiol 14: 8398.
  • Lindahl PA & Chang B (2001) The evolution of acetyl-CoA synthase. Origins Life Evol B 31: 403434.
  • London J (1963) Thiobacillusintermedius nov. sp. a novel type of facultative autotroph. Arch Mikrobiol 46: 329337.
  • London J & Rittenberg SC (1967) Thiobacillusperometabolis nov. sp., a non-autotrophic thiobacillus. Arch Mikrobiol 59: 218225.
  • Lu W-P (1986) A periplasmic location for the thiosulfate-oxidizing multi-enzyme system from Thiobacillus versutus. FEMS Microbiol Lett 34: 313317.
  • Lu W-P & Kelly DP (1988a) Kinetic and energetic aspects of inorganic sulphur compound oxidation by Thiobacillus tepidarius. J Gen Microbiol 134: 865876.
  • Lu W-P & Kelly DP (1988b) Cellular location and partial purification of the ‘thiosulphate-oxidizing-enzyme’ and ‘trithionate hydrolyase’ from Thiobacillus tepidarius. J Gen Microbiol 134: 877885.
  • Lu W-P, Swoboda BEP & Kelly DP (1985) Properties of the thiosulfate-oxidizing multi-enzyme system from Thiobacillus versutus. Biochim Biophys Acta 828: 116122.
  • Lübbe YJ, Youn H-S, Timkovich R & Dahl C (2006) Siro(haem)amide in Allochromatium vinosum and relevance of DsrL and DsrN, a homolog of cobyrinic acid a,c diamide synthase for sulfur oxidation. FEMS Microbiol Lett 261: 194202.
  • Maden BE (1995) No soup for starters? Autotrophy and the origins of metabolism. Trends Biochem Sci 20: 337341.
  • Madigan MT (1988) Microbiology, physiology, and ecology of phototrophic bacteria. Biology of Anaerobic Microorganisms (ZehnderAJB, ed), pp. 39112. John Wiley and Sons, New York.
  • Madigan MT (2001) Family VI. ‘Heliobacteriaceae’ Beer-Romero and Gest 1987, 113. Bergey's Manual of Systematic Bacteriology, Vol. 1 (BooneDR, CastenholzRW & GarrityGM, eds), pp. 625630. Springer, New York.
  • Madigan MT (2003) Anoxygenic phototrophic bacteria from extreme environments. Photosynth Res 76: 157171.
  • Madigan MT, Jung DO, Woese CR & Achenbach LA (2000) Rhodoferaxantarcticus sp. nov., a moderately psychrophilic purple nonsulfur bacterium isolated from an Antarctic microbial mat. Arch Microbiol 173: 269277.
  • Mandal S, Chatterjee S, Dam B, Roy P & Das Gupta SK (2007) The dimeric repressor SoxR binds cooperatively to the promoter(s) regulating expression of the sulfur oxidation (sox) operon of Pseudaminobactersalicylatoxidans KCT001. Microbiology 153: 8091.
  • Marritt SJ & Hagen WF (1996) Dissimilatory sulfite reductase revisited. The desulfoviridin molecule does contain 20 iron ions, extensively demetallated sirohaem, and an S=9/2 iron–sulfur cluster. Eur J Biochem 238: 724727.
  • Mason J, Kelly DP & Wood AP (1987) Chemolithotrophic and autotrophic growth of Thermothrix thiopara and some thiobacilli on thiosulphate and polythionates, and a reassessment of the growth yields of T. thiopara in chemostat culture. J Gen Microbiol 133: 12491256.
  • McDonald IR, Kelly DP, Murrell JC & Wood AP (1997) Taxonomic relationships of Thiobacillus halophilus, T. aquaesulis and other species of Thiobacillus, as determined using 16S rRNA sequencing. Arch Microbiol 166: 394398.
  • McEwan AG (1994) Photosynthetic electron transport and anaerobic metabolism in purple non-sulfur phototrophic bacteria. Antonie van Leeuwenhoek 66: 151164.
  • Meulenberg R, Pronk JT, Hazeu W, Bos P & Kuenen JG (1992) Oxidation of reduced sulfur compounds by intact cells of Thiobacillus acidophilus. Arch Microbiol 157: 161168.
  • Meulenberg R, Pronk JT, Hazeu W, Van Dijken JP, Frank J, Bos P & Kuenen JG (1993a) Purification and partial characterization of thiosulphate dehydrogenase from Thiobacillus acidophilus. J Gen Microbiol 139: 20332039.
  • Meulenberg R, Scheer EJ, Pronk JT, Hazeu W, Bos P & Kuenen JG (1993b) Metabolism of tetrathionate in Thiobacillus acidophilus. FEMS Microbiol Lett 112: 167172.
  • Meyer B & Kuever J (2007a) Phylogeny of the alpha and beta subunits of the dissimilatory adenosine-5′-phosphosulfate (APS) reductase from sulfate-reducing prokaryotes – origin and evolution of the dissimilatory sulfate-reduction pathway. Microbiology 153: 20262044.
  • Meyer B & Kuever J (2007b) Molecular analysis of the distribution and phylogeny of dissimilatory adenosine-5′-phosphosulfate reductase-encoding gene (aprBA) among sulfur-oxidizing prokaryotes. Microbiology 153: 34783498.
  • Meyer B, Imhoff JF & Kuever J (2007) Molecular analysis of the distribution and phylogeny of the soxB gene among sulfur-oxidizing bacteria – evolution of the Sox sulfur oxidation enzyme system. Environ Microbiol 9: 29572977.
  • Mizoguchi T, Sato T & Okabe T (1976) New sulfur-oxidizing bacteria capable of growing heterotrophically, Thiobacillus rubellus nov. sp. and Thiobacillus delicatus nov. sp. J Ferment Technol 54: 181191.
  • Moran MA, Buchan A, Gonzalez JM et al. (2004) Genome sequence of Silicibacterpomeroyi reveals adaptations to the marine environment. Nature 432: 910913.
  • Moreira D & Amils R (1997) Phylogeny of Thiobacillus cuprinus and other mixotrophic thiobacilli: proposal for Thiomonas gen. nov. Int J Syst Bacteriol 47: 522528.
  • Moyer CL, Dobbs FC & Karl DM (1995) Phylogenetic diversity of the bacterial community from a microbial mat at an active, hydrothermal vent system, Loihi Seamount, Hawaii. Appl Environ Microb 61: 15551562.
  • Mukhopadhyaya PN, Deb C, Lahiri C & Roy P (2000) A soxA gene, encoding a diheme cytochrome c, and a sox locus, essential for sulfur oxidation in a new sulfur lithotrophic bacterium. J Bacteriol 182: 42784287.
  • Muller FH, Bandeiras TM, Urich T, Teixeira M, Gomes CM & Kletzin A (2004) Coupling of the pathway of sulphur oxidation to dioxygen reduction: characterization of a novel membrane-bound thiosulphate:quinone oxidoreductase. Mol Microbiol 53: 11471160.
  • Muyzer G, Teske A, Wirsen C & Jannasch H (1995) Phylogenetic relationships of Thiomicrospira species and their identification in deep-sea hydrothermal vent samples by denaturing gradient gel electrophoresis of 16S rDNA fragments. Arch Microbiol 164: 165172.
  • Nakagawa S, Takaki Y, Shimamura S, Reysenbach AL, Takai K & Horikoshi K (2007) Deep-sea vent epsilon-proteobacterial genomes provide insights into emergence of pathogens. P Natl Acad Sci USA 104: 1214612150.
  • Nakamura K, Nakamura M, Yoshikawa H & Amano Y (2001) Purification and properties of thiosulfate dehydrogenase from Acidithiobacillus thiooxidans JCM7814. Biosci Biotech Bioch 65: 102108.
  • Nelson DC & Fisher CR (1995) Chemoautotrophic and methanoautotrophic endosymbiontic bacteria at deep-sea vents and seeps. Deep Sea Hydrothermal Vents (KarlDM, ed), pp. 125167. CRC Press, Boca Raton, FL.
  • Nelson DC & Jannasch HW (1983) Chemoautotropic growth of a marine Beggiatoa in sulfide-gradient cultures. Arch Microbiol 136: 262269.
  • Nelson DC, Jørgensen BB & Revsbech NP (1986) Growth pattern and yield of chemoautotrophic Beggiatoa sp. in oxygen sulfide gradients. Appl Environ Microb 52: 225233.
  • Neutzling O, Pfleiderer C & Trüper H-G (1985) Dissimilatory sulphur metabolism in phototrophic ‘non-sulphur’ bacteria. J Gen Microbiol 131: 791798.
  • Odintsova EV, Wood AP & Kelly DP (1993) Chemolithoautotrophic growth of Thiothrixramosa. Arch Microbiol 60: 152157.
  • Odintsova EV, Jannasch HW, Mamone JA & Langworthy TA (1996) Thermothrix azorensis sp. nov., an obligately chemolithotrophic sulfur-oxidizing thermophilic bacterium. Int J Syst Bacteriol 46: 422428.
  • Oh JK & Suzuki I (1977) Isolation and characterization of a membrane-associated thiosulfate oxidizing system of Thiobacillus novellus. J Gen Microbiol 99: 397412.
  • Okubo Y, Futamata H & Hiraishi A (2006) Characterization of phototrophic purple nonsulfur bacteria forming colored microbial mats in a swine wastewater ditch. Appl Environ Microb 72: 62256233.
  • Okuzumi M (1965) Studies on biochemistry of the thiobacilli. Part VII. Metabolism of tetrathionate by T. thiooxidans. Agr Biol Chem 29: 10691073.
  • Okuzumi M (1966a) Studies on biochemistry of the thiobacilli. Part VIII. Dismutation of tetrathionate by T. thiooxidans. Agr Biol Chem 30: 313318.
  • Okuzumi M (1966b) Studies on biochemistry of the thiobacilli. Part IX. Reduction of trithionate by Thiobacillus thiooxidans. Agr Biol Chem 30: 713716.
  • Orawski G, Bardischewsky F, Quentmeier A, Rother D & Friedrich CG (2007) The periplasmic thioredoxin SoxS plays a key role in activation in vivo of chemotrophic sulfur oxidation of Paracoccuspantotrophus. Microbiology 153: 10811086.
  • Overmann J (2000) The family Chlorobiaceae. The Prokaryotes: An Evolving Electronic Resource for the Microbiological Community (DworkinM, eds), Springer-Verlag, New York.
  • Overmann J (2001) Green sulfur bacteria. Bergey's Manual of Systematic Bacteriology, Vol. 1 (BooneDR, CastenholzRW & GarrityGM, eds), pp. 601605. Springer, New York.
  • Overmann J & Tuschak C (1997) Phylogeny and molecular fingerprinting of green sulfur bacteria. Arch Microbiol 167: 302309.
  • Overmann J & Van Gemerden H (2000) Microbial interactions involving sulfur bacteria: implications for the ecology and evolution of bacterial communities. FEMS Microbiol Rev 24: 591599.
  • Padden AN, Kelly DP & Wood AP (1998) Chemolithoautotrophy and mixotrophy in the thiophene-2-carboxylic acid-utilizing Xanthobactertagetidis. Arch Microbiol 169: 249256.
  • Parker CD (1957) Genus V. Thiobacillus Beijerinck 1904. Bergey's Manual of Determinative Bacteriology (BreedRS, MurrayRGE & SmithPH, eds), pp. 8388. Williams & Wilkins, Baltimore.
  • Pasteris JD, Freeman JJ, Goffredi SK & Buck KR (2001) Raman spectroscopic and laser scanning confocal microscopic analysis of sulfur in living sulfur-precipitating marine bacteria. Chem Geol 180: 318.
  • Pattaragulwanit K, Brune DC, Trüper H-G & Dahl C (1998) Molecular genetic evidence for extracytoplasmic localization of sulfur globules in Chromatium vinosum. Arch Microbiol 169: 434444.
  • Pereto JG, Velasco AM, Becerra A & Lazcano A (1999) Comparative biochemistry of CO2 fixation and the evolution of autotrophy. Int Microbiol 2: 310.
  • Petri R, Podgorsek L & Imhoff JF (2001) Phylogeny and distribution of the soxB gene among thiosulfate-oxidizing bacteria. FEMS Microbiol Lett 197: 171178.
  • Pfennig N & Trüper H-G (1992) The family Chlorobiaceae. The Prokaryotes (StarrMP, StolzH, TrüperHG & SchlegelHG, eds), pp. 35833592. Springer-Verlag, Berlin.
  • Pfennig N & Widdel F (1982) The bacteria of the sulphur cycle. Philos T R Soc B 298: 433441.
  • Pires RH, Lourenco AI, Morais F, Teixeira M, Xavier AV, Saraiva LM & Pereira IA (2003) A novel membrane-bound respiratory complex from Desulfovibrio desulfuricans ATCC 27774. Biochim Biophys Acta 1605: 6782.
  • Pires RH, Venceslau SS, Morais F, Teixeira M, Xavier AV & Pereira IAC (2006) Characterization of the Desulfovibrio desulfuricans ATCC 27774 DsrMKJOP complex – a membrane-bound redox complex involved in the sulfate respiratory pathway. Biochemistry 45: 249262.
  • Pott AS & Dahl C (1998) Sirohaem sulfite reductase and other proteins encoded by genes at the dsr locus of Chromatiumvinosum are involved in the oxidation of intracellular sulfur. Microbiology 144: 18811894.
  • Prange A, Chauvistre R, Modrow H, Hormes J, Trüper H-G & Dahl C (2002) Quantitative speciation of sulfur in bacterial sulfur globules: X-ray absorption spectroscopy reveals at least three different speciations of sulfur. Microbiology 148: 267276.
  • Prange A, Engelhardt H, Trüper H-G & Dahl C (2004) The role of the sulfur globule proteins of Allochromatium vinosum: mutagenesis of the sulfur globule protein genes and expression studies by realtime RT-PCR. Arch Microbiol 182: 165174.
  • Pronk JT, Meulenberg R, Hazeu W, Bos P & Kuenen JG (1990) Oxidation of reduced inorganic sulfur compounds by acidophilic thiobacilli. FEMS Microbiol Rev 75: 293306.
  • Quentmeier A & Friedrich CG (2001) The cysteine residue of the SoxY protein as the active site of protein-bound sulfur oxidation of Paracoccuspantotrophus GB17. FEBS Lett 503: 168172.
  • Quentmeier A, Kraft R, Kostka S, Klockenkamper R & Friedrich CG (2000) Characterization of a new type of sulfite dehydrogenase from Paracoccuspantotrophus GB17. Arch Microbiol 173: 117125.
  • Quentmeier A, Hellwig P, Bardischewsky F, Grelle G, Kraft R & Friedrich CG (2003) Sulfur oxidation in Paracoccuspantotrophus: interaction of the sulfur-binding protein SoxYZ with the dimanganese SoxB protein. Biochem Bioph Res Co 312: 10111018.
  • Quentmeier A, Hellwig P, Bardischewsky F, Wichmann R & Friedrich CG (2004) Sulfide dehydrogenase activity of the monomeric flavoprotein SoxF of Paracoccuspantotrophus. Biochemistry 43: 1469614703.
  • Quentmeier A, Janning P, Hellwig P & Friedrich CG (2007) Activation of the heterodimeric central complex SoxYZ of chemotrophic sulfur oxidation is linked to a conformational change and SoxY-Y interprotein disulfide formation. Biochemistry 46: 1099010998.
  • Rainey FA, Kelly DP, Stackebrandt E, Burghardt J, Hiraishi A, Katayama Y & Wood AP (1999) A re-evaluation of the taxonomy of Paracoccusdenitrificans and a proposal for the combination Paracoccuspantotrophus comb. nov. Int J Syst Bacteriol 49: 645651.
  • Ramírez P, Guiliani N, Valenzuela L, Beard S & Jerez CA (2004) Differential protein expression during growth of Acidithiobacillus ferrooxidans on ferrous iron, sulfur compounds, or metal sulfides. Appl Environ Microb 70: 44914498.
  • Reinartz M, Tschape J, Brüser T, Trüper HG & Dahl C (1998) Sulfide oxidation in the phototrophic sulfur bacterium Chromatiumvinosum. Arch Microbiol 170: 5968.
  • Reysenbach A-L (2001) Sulfurococcus. Bergey's Manual of Systematic Bacteriology, Vol. 1 (BooneDR, CastenholzRW & GarrityGM, eds), pp. 209210. Springer, New York.
  • Reysenbach AL, Banta AB, Boone DR, Cary SC & Luther GW (2000a) Microbial essentials at hydrothermal vents. Nature 404: 835835.
  • Reysenbach A-L, Longnecker K & Kirshtein J (2000b) Novel bacterial and archaeal lineages from an in situ growth chamber deployed at a Mid-Atlantic Ridge hydrothermal vent. Appl Environ Microb 66: 37983806.
  • Robertson LA & Kuenen JG (1983) Thiosphaera pantotropha gen. nov. sp. nov., a facultatively anaerobic, facultatively autotrophic sulphur bacterium. J Gen Microbiol 129: 28472855.
  • Robertson LA & Kuenen JG (2002) The genus Thiobacillus. The Prokaryotes: An Evolving Electronic Resource for the Microbial Community (DworkinM, FalkowS, RosenbergE, SchleiferK-H & StackebrandtE, eds). Springer, New York. Available at http://link.springer-ny.com/link/service/books/10125/index.htm
  • Rohwerder T & Sand W (2003) The sulfane sulfur of persulfides is the actual substrate of the sulfur-oxidizing enzymes from Acidithiobacillus and Acidiphilium spp. Microbiology 149: 16991710.
  • Rother D & Friedrich CG (2002) The cytochrome complex SoxXA of Paracoccuspantotrophus is produced in Escherichiacoli and functional in the reconstituted sulfur-oxidizing enzyme system. Biochim Biophys Acta 1598: 6573.
  • Rother D, Henrich HJ, Quentmeier A, Bardischewsky F & Friedrich CG (2001) Novel genes of the sox gene cluster, mutagenesis of the flavoprotein SoxF, and evidence for a general sulfur-oxidizing system in Paracoccuspantotrophus GB17. J Bacteriol 183: 44994508.
  • Rother D, Orawski G, Bardischewsky F & Friedrich CG (2005) SoxRS-mediated regulation of chemotrophic sulfur oxidation in Paracoccuspantotrophus. Microbiology 151: 17071716.
  • Russell MJ & Hall AJ (1997) The emergence of life from iron monosulphide bubbles at a submarine hydrothermal redox and pH front. J Geol Soc London 154: 377402.
  • Russell MJ & Martin W (2004) The rocky roots of the acetyl-CoA pathway. Trends Biochem Sci 29: 358363.
  • Rzhepishevska OI, Valdes J, Marcinkeviciene L et al. (2007) Regulation of a novel Acidithiobacillus caldus gene cluster involved in metabolism of reduced inorganic sulfur compounds. Appl Environ Microb 73: 73677372.
  • Sanchez O, Ferrera I, Dahl C & Mas J (2001) In vivo role of adenosine-5′-phosphosulfate reductase in the purple sulfur bacterium Allochromatiumvinosum. Arch Microbiol 176: 301305.
  • Sander J & Dahl C (2008) Metabolism of inorganic sulfur compounds in purple bacteria. The Purple Phototrophic Bacteria (HunterCN, DaldalF, ThurnauerMC & BeattyJT, eds), pp. 595622. Dordrecht, The Netherlands.
  • Sander J, Engels-Schwarzlose S & Dahl C (2006) Importance of the DsrMKJOP complex for sulfur oxidation in Allochromatiumvinosum and phylogenetic analysis of related complexes in other prokaryotes. Arch Microbiol 186: 357366.
  • Sattley WM & Madigan MT (2006) Isolation, characterization, and ecology of cold-active, chemolithotrophic, sulfur-oxidizing bacteria from perennially ice-covered Lake Fryxell, Antarctica. Appl Environ Microb 72: 55625568.
  • Sauvé V, Bruno S, Berks BC & Hemmings AM (2007) The SoxYZ complex carries sulfur cycle intermediates on a peptide swinging arm. J Biol Chem 282: 2319423204.
  • Schedel M & Trüper HG (1980) Anaerobic oxidation of thiosulfate and elemental sulfur in Thiobacillus denitrificans. Arch Microbiol 124: 205210.
  • Schonheit P & Schaeferr T (1995) Metabolism of hyperthermophiles. World J Microb Biot 11: 2657.
  • Schutz M, Shahak Y, Padan E & Hauska G (1997) Sulfide-quinone reductase from Rhodobactercapsulatus. Purification, cloning, and expression. J Biol Chem 272: 98909894.
  • Schutz M, Klughammer C, Griesbeck C, Quentmeier A, Friedrich CG & Hauska G (1998) Sulfide-quinone reductase activity in membranes of the chemotrophic bacterium Paracoccus denitrificans GB17. Arch Microbiol 170: 353360.
  • Schutz M, Maldener I, Griesbeck C & Hauska G (1999) Sulfide-quinone reductase from Rhodobactercapsulatus: requirement for growth, periplasmic localization, and extension of gene sequence analysis. J Bacteriol 181: 65166523.
  • Scott KM, Sievert SM, Abril FN et al. (2006) The genome of deep-sea vent chemolithoautotroph Thiomicrospiracrunogena XCL-2. PLoS Biol 4: e383.
  • Shahak Y, Arieli B, Padan E & Hauska G (1992) Sulfide quinone reductase (SQR) activity in Chlorobium. FEBS Lett 299: 127130.
  • Shen YN & Buick R (2004) The antiquity of microbial sulfate reduction. Earth Sci Rev 64: 243272.
  • Sheridan PP, Freeman KH & Brenchley JE (2003) Estimated minimal divergence times of the major bacterial and archaeal phyla. Geomicrobiol J 20: 114.
  • Shooner F, Bousquet J & Tyagi RD (1996) Isolation, phenotypic characterization, and phylogenetic position of a novel, facultatively autotrophic, moderately thermophilic bacterium, Thiobacillus thermosulfatus sp. nov. Int J Syst Bacteriol 46: 409415.
  • Sievert SM, Heidorn T & Kuever J (2000) Halothiobacilluskellyi sp. nov., a mesophilic, obligately chemolithoautotrophic, sulfur-oxidizing bacterium isolated from a shallow-water hydrothermal vent in the Aegean Sea, and emended description of the genus Halothiobacillus. Int J Syst Evol Micr 50: 12291237.
  • Sievert SM, Scott KM, Klotz MG et al. (2008) Genome of the epsilonproteobacterial chemolithoautotroph Sulfurimonasdenitrificans. Appl Environ Microb 74: 11451156.
  • Silver M & Lundgren DG (1968) Sulfur-oxidizing enzyme of Ferrobacillusferrooxidans (Thiobacillusferrooxidans). Can J Biochem 46: 457461.
  • Sinha DB & Walden CC (1966) Formation of polythionates and their interrelationships during oxidation of thiosulphate by Thiobacillusferrooxidans. Can J Microbiol 12: 10411054.
  • Skirnisdottir S, Hreggvidsson GO, Holst O & Kristjansson JK (2001) Isolation and characterization of a mixotrophic sulfur-oxidizing Thermusscotoductus. Extremophiles 5: 4551.
  • Smith AJ (1966) The role of tetrathionate in the oxidation of thiosulphate by Chromatium sp. strain D. J Gen Microbiol 42: 371380.
  • Smith AJ & Lascelles J (1966) Thiosulphate metabolism and rhodanese in Chromatium sp. strain D. J Gen Microbiol 42: 357370.
  • Smith E & Morowitz HJ (2004) Universality in intermediary metabolism. P Natl Acad Sci USA 101: 1316813173.
  • Smith NA & Kelly DP (1988) Oxidation of carbon disulfide as the sole source of energy for the autotrophic growth of Thiobacillus thioparus strain TK-m. J Gen Microbiol 134: 30413048.
  • Sorokin D (2003) Oxidation of inorganic sulfur compounds by obligatory organotrophic bacteria. Mikrobiologiia 72: 725739.
  • Sorokin DY, Teske A, Robertson LA & Kuenen JG (1999) Anaerobic oxidation of thiosulfate to tetrathionate by obligately heterotrophic bacteria, belonging to the Pseudomonasstutzeri group. FEMS Microbiol Ecol 30: 113123.
  • Sorokin DY, Lysenko AM, Mityushina LL et al. (2001a) Thioalkalimicrobiumaerophilum gen. nov., sp. nov. and Thioalkalimicrobiumsibericum sp. nov., and Thioalkalivibrioversutus gen. nov., sp. nov., Thioalkalivibrionitratis sp.nov., novel and Thioalkalivibriodenitrificans sp. nov., novel obligately alkaliphilic and obligately chemolithoautotrophic sulfur-oxidizing bacteria from soda lakes. Int J Syst Evol Micr 51: 565580.
  • Sorokin DY, Tourova TP, Lysenko AM & Kuenen JG (2001b) Microbial thiocyanate utilization under highly alkaline conditions. Appl Environ Microb 67: 528538.
  • Sorokin DY, Gorlenko VM, Tourova TP, Tsapin AI, Nealson KH & Kuenen GJ (2002) Thioalkalimicrobiumcyclicum sp. nov. and Thioalkalivibriojannaschii sp. nov., novel species of haloalkaliphilic, obligately chemolithoautotrophic sulfur-oxidizing bacteria from hypersaline alkaline Mono Lake (California). Int J Syst Evol Micr 52: 913920.
  • Sorokin DY, Tourova TP, Sjollema KA & Kuenen JG (2003) Thialkalivibrionitratireducens sp. nov., a nitrate-reducing member of an autotrophic denitrifying consortium from a soda lake. Int J Syst Evol Micr 53: 17791783.
  • Sorokin DY, Tourova TP, Antipov AN, Muyzer G & Kuenen JG (2004) Anaerobic growth of the haloalkaliphilic denitrifying sulfur-oxidizing bacterium Thialkalivibriothiocyanodenitrificans sp. nov. with thiocyanate. Microbiology 150: 24352442.
  • Sorokin DY, Tourova TP & Muyzer G (2005) Oxidation of thiosulfate to tetrathionate by an haloarchaeon isolated from hypersaline habitat. Extremophiles 9: 501504.
  • Sorokin DY, Tourova TP, Lysenko AM & Muyzer G (2006) Diversity of culturable halophilic sulfur-oxidizing bacteria in hypersaline habitats. Microbiology 152: 30133023.
  • Sorokin DY, Tourova TP, Braker G & Muyzer G (2007) Thiohalomonasdenitrificans gen. nov., sp. nov. and Thiohalomonasnitratireducens sp. nov., novel obligately chemolithoautotrophic, moderately halophilic, thiodenitrifying Gammaproteobacteria from hypersaline habitats. Int J Syst Evol Micr 57: 15821589.
  • Stackebrandt E & Goebel BM (1994) Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44: 846849.
  • Starkey RL (1935) Isolation of some bacteria which oxidize thiosulfate. Soil Sci 39: 197219.
  • Stetter KO (1992) Life at the upper temperature border. Frontiers of Life (Tran Thanh VanJ, Tran Thanh VanK, MounlouHC, SchneiderJ & McKayC, eds), pp. 195219. Frontieres, France.
  • Stetter KO, Fiala G, Huber G, Huber H & Segerer A (1990) Hyperthermophilic microorganisms. FEMS Microbiol Rev 75: 117124.
  • Steudel R (1989) On the nature of the ‘Elemental Sulfur’ (S0) produced by sulfur-oxidizing bacteria – a model for S0 globules. Autotrophic Bacteria (SchlegelHG & BowienB, eds), pp. 289303. Springer-Verlag, Berlin Science Tech Publishers, Madison, WI.
  • Steudel R (1996) Mechanism for the formation of elemental sulfur from aqueous sulfide in chemical and microbiological desulfurization processes. Ind Eng Chem Res 35: 14171423.
  • Steudel R (2000) The chemical sulfur cycle. Environmental Technologies to Treat Sulfur Pollution (LensPNL & PolLH, eds), pp. 131. IWA Publishing, London.
  • Steudel R, Holdt G, Göbel T & Hazeu W (1987) Chromatographic separation of higher polythionates SnO62 (n=3 … 22) and their detection in cultures of Thiobacillus ferrooxidans: molecular composition of bacterial sulfur secretion. Angew Chem Int Edit 26: 151153.
  • Sugio T, Kanao T, Furukawa H, Nagasawa T & Blake RC II (1996) Isolation and identification of an iron-oxidizing bacterium which can grow on tetrathionate medium and the properties of a tetrathionate-decomposing enzyme isolated from the bacterium. J Ferment Bioeng 82: 233238.
  • Sun CW, Chen ZW, He ZG, Zhou PJ & Liu SJ (2003) Purification and properties of the sulfur oxygenase/reductase from the acidothermophilic archaeon, Acidianus strain S5. Extremophiles 7: 131134.
  • Suzuki I (1999) Oxidation of inorganic sulfur compounds: chemical and enzymatic reactions. Can J Microbiol 45: 97105.
  • Takai K, Campbell BJ, Cary SC et al. (2005) Enzymatic and genetic characterization of carbon and energy metabolisms by deep-sea hydrothermal chemolithoautotrophic isolates of Epsilonproteobacteria. Appl Environ Microb 71: 73107320.
  • Takai K, Suzuki M, Nakagawa S, Miyazaki M, Suzuki Y, Inagaki F & Horikoshi K (2006) Sulfurimonas paravinellae sp. nov., a novel mesophilic, hydrogen- and sulfur-oxidizing chemolithoautotroph within the Epsilonproteobacteria isolated from a deep-sea hydrothermal vent polychaete nest, reclassification of Thiomicrospira denitrificans as Sulfurimonas denitrificans comb. nov. and emended description of the genus Sulfurimonas. Int J Syst Evol Micr 56: 17251733.
  • Takakuwa S (1992) Biochemical aspects of microbial oxidation of inorganic sulfur compounds. Organic Sulfur Chemistry. Biochemical Aspects (OaeS & OkuyamaT, eds), pp. 143. CRC Press, Boca Raton, FL.
  • Tano T, Kitaguchi H, Harada K, Nagasawa T & Sugio T (1996) Purification and some properties of tetrathionate decomposing enzyme from Thiobacillus thiooxidans. Biosci Biotech Bioch 60: 224227.
  • Taylor BF & Hoare DS (1969) New facultative Thiobacillus and a reevaluation of the heterotrophic potential of Thiobacillusnovellus. J Bacteriol 100: 487497.
  • Taylor CD & Wirsen CO (1997) Microbiology and ecology of filamentous sulfur formation. Science 277: 14831485.
  • Taylor CD, Wirsen CO & Gaill F (1999) Rapid microbial production of filamentous sulfur mats at hydrothermal vents. Appl Environ Microb 65: 22532255.
  • Temple KL & Colmer AR (1951) The autotrophic oxidation of iron by a new bacterium, Thiobacillus ferrooxidans. J Bacteriol 62: 605611.
  • Teske A & Nelson DC (2004) The genera Beggiatoa and Thioploca. The Prokaryotes: An Evolving Electronic Resource for the Microbial Community (DworkinM, FalkowS, RosenbergE, SchleiferK-H & StackebrandtE, eds). Springer, New York. Available at http://link.springer-ny.com/link/service/books/10125/index.htm
  • Thauer RK (2007) A fifth pathway of carbon fixation. Science 318: 17321733.
  • Tikhonova TV, Slutsky A, Antipov AN et al. (2006) Molecular and catalytic properties of a novel cytochrome c nitrite reductase from nitrate-reducing haloalkaliphilic sulfur-oxidizing bacterium Thioalkalivibrionitratireducens. Biochim Biophys Acta 1764: 715723.
  • Timmer-Ten Hoor A (1975) A new type of thiosulphate oxidizing, nitrate reducing microorganism: Thiomicrospira denitrificans sp. nov. Neth J Sea Res 9: 344350.
  • Tourova TP, Spiridonova EM, Berg IA, Slobodova NV, Boulygina ES & Sorokin DY (2007) Phylogeny and evolution of the family Ectothiorhodospiraceae based on comparison of 16S rRNA, cbbL and nifH gene sequences. Int J Syst Evol Micr 57: 23872398.
  • Trudinger PA (1961a) Thiosulfate oxidation and cytochromes in Thiobacillus X. 1. Fractionation of bacterial extracts and properties of cytochromes. Biochem J 78: 673680.
  • Trudinger PA (1961b) Thiosulphate oxidation and cytochromes in Thiobacillus X: 2. Thiosulphate-oxidizing enzyme. Biochem J 78: 680686.
  • Trudinger PA (1964) Evidence for a four-sulphur intermediate in thiosulphate oxidation by Thiobacillus X. Aust J Biol Sci 17: 577579.
  • Trudinger PA (1965) Effect of thiol-binding reagents on the metabolism of thiosulfate and tetrathionate by Thiobacillus neapolitanus. J Bact 89: 617625.
  • Trüper H-G & Fischer U (1982) Anaerobic oxidation of sulfur compounds as electron donors for bacterial photosynthesis. Philos T R Soc B 298: 529542.
  • Trüper H-G & Pfennig N (1966) Suphur metabolism in Thiorhodaceae. 3. Storage and turnover of thiosulphate sulphur in Thiocapsafloridana and Chromatium species. Antonie van Leeuwenhoek 32: 261276.
  • Trüper H-G, Lorenz C, Schedel M & Steinmetz M (1988) Metabolism of thiosulfate in Chlorobium. Green Photosynthetic Bacteria (OlsonJM, OrmerodJG, AmeszJ, StackebrandtE & TrüperHG, eds), pp. 189200. Plenum Press, New York.
  • Urich T, Bandeiras TM, Leal SS et al. (2004) The sulphur oxygenase reductase from Acidianusambivalens is a multimeric protein containing a low-potential mononuclear non-haem iron centre. Biochem J 381: 137146.
  • Urich T, Coelho R, Kletzin A & Frazao C (2005) The sulfur oxygenase reductase from Acidianusambivalens is an icosatetramer as shown by crystallization and Patterson analysis. Biochim Biophys Acta 1747: 267270.
  • Urich T, Gomes CM, Kletzin A & Frazao C (2006) X-ray structure of a self-compartmentalizing sulfur cycle metalloenzyme. Science 311: 9961000.
  • Vandamme P, Pot B, Gillis M, De Vos P, Kersters K & Swings J (1996) Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol Rev 60: 407438.
  • Van Der Walt JP & De Kruyff CD (1955) Anaerobic metabolism of thiocyanate by thiobacilli. Nature 176: 310311.
  • Van Gemerden H (1986) Production of elemental sulfur by green and purple sulfur bacteria. Arch Microbiol 146: 5256.
  • Van Gemerden H & Mas J (1995) Ecology of phototrophic sulfur bacteria. Anoxygenic Photosynthetic Bacteria (BlankenshipRE, MadiganMT & BauerCE, eds), pp. 4985. Kluwer Academic Publishers, Dordrecht.
  • Verté F, Kostanjevecki V, De Smet L, Meyer TE, Cusanovich MA & Van Beeumen JJ (2002) Identification of a thiosulfate utilization gene cluster from the green phototrophic bacterium Chlorobiumlimicola. Biochemistry 41: 29322945.
  • Vishniac W & Trudinger PA (1962) Symposium on autotrophy. V. Carbon dioxide fixation and substrate oxidation in the chemosynthetic sulfur and hydrogen bacteria. Bacteriol Rev 26: 168175.
  • Visser JM, De Jong GA, Robertson LA & Kuenen JG (1996) Purification and characterization of a periplasmic thiosulfate dehydrogenase from the obligately autotrophic Thiobacillus sp. W5. Arch Microbiol 166: 372378.
  • Visser JM, De Jong GAH, Robertson LA & Kuenen JG (1997a) A novel membrane-bound flavocytochrome c sulfide dehydrogenase from the colourless sulfur bacterium Thiobacillus sp. W5. Arch Microbiol 167: 295301.
  • Visser JM, Robertson LA, Van Verseveld HW & Kuenen JG (1997b) Sulfur production by obligately chemolithoautotrophic Thiobacillus species. Appl Environ Microb 63: 23002305.
  • Wächtershäuser G (1990a) The case for the chemoautotrophic origin of life in an iron–sulfur world. Origins Life Evol B 20: 173176.
  • Wächtershäuser G (1990b) Evolution of the 1st metabolic cycles. P Natl Acad Sci USA 87: 200204.
  • Wagner M, Roger AJ, Flax JL, Brusseau GA & Stahl DA (1998) Phylogeny of dissimilatory sulfite reductases supports an early origin of sulfate respiration. J Bacteriol 180: 29752982.
  • Waksman SA & Joffe JS (1922) Microorganisms concerned in the oxidation of sulfur in the soil. II. Thiobacillus thiooxidans, a new sulfur-oxidizing organism isolated from the soil. J Bacteriol 7: 239256.
  • Wentzien S, Sand W, Albertsen A & Steudel R (1994) Thiosulfate and tetrathionate degradation as well as biofilm generation by Thiobacillusintermedius and Thiobacillusversutus studied by microcalorimetry, HPLC, and ion-pair chromatography. Arch Microbiol 161: 116125.
  • Wirsen CO, Sievert SM, Cavanaugh CM et al. (2002) Characterization of an autotrophic sulfide-oxidizing marine Arcobacter sp. that produces filamentous sulfur. Appl Environ Microb 68: 316325.
  • Wodara C, Kostka S, Egert M, Kelly DP & Friedrich CG (1994) Identification and sequence analysis of the soxB gene essential for sulfur oxidation of Paracoccusdenitrificans GB17. J Bacteriol 176: 61886191.
  • Wodara C, Bardischewsky F & Friedrich CG (1997) Cloning and characterization of sulfite dehydrogenase, two c-type cytochromes, and a flavoprotein of Paracoccusdenitrificans GB17: essential role of sulfite dehydrogenase in lithotrophic sulfur oxidation. J Bacteriol 179: 50145023.
  • Woese CR (1987) Bacterial evolution. Microbiol Rev 51: 221271.
  • Wolfe BM, Lui SM & Cowan JA (1994) Desulfoviridin, a multimeric-dissimilatory sulfite reductase from Desulfovibriovulgaris (Hildenborough). Purification, characterization, kinetics and EPR studies. Eur J Biochem 223: 7989.
  • Wood AP & Kelly DP (1985) Physiological characteristics of a new thermophilic obligately chemolithotrophic Thiobacillus species, Thiobacillus tepidarius. Int J Syst Bacteriol 35: 434437.
  • Wood AP & Kelly DP (1987) Chemolithotrophic metabolism of the newly-isolated moderately thermophilic, obligately autotrophic Thiobacillustepidarius. Arch Microbiol 144: 7177.
  • Wood AP & Kelly DP (1988) Isolation and characterization of Thiobacillus aquaesulis sp. nov., a novel facultatively autotrophic moderate thermophile. Arch Microbiol 149: 339343.
  • Wood AP & Kelly DP (1989) Isolation and physiological characterization of Thiobacillusthyasiris sp. nov., a novel marine facultative autotroph and the putative symbiont of Thyasiraflexuosa. Arch Microbiol 152: 160166.
  • Wood AP & Kelly DP (1991) Isolation and characterization of Thiobacillus halophilus sp. nov., a sulphur-oxidising autotrophic eubacterium from a Western Australian hypersaline lake. Arch Microbiol 156: 277280.
  • Wood AP & Kelly DP (1993) Reclassification of Thiobacillus thyasiris as Thiomicrospira thyasirae comb. nov., an organism exhibiting pleomorphism in response to environmental conditions. Arch Microbiol 159: 4547.
  • Wood AP, Woodall CA & Kelly DP (2005) Halothiobacillusneapolitanus strain OSWA isolated from ‘The Old Sulphur Well’ at Harrogate (Yorkshire, England). Syst Appl Microbiol 28: 746748.
  • Yamanaka T, Fukumori Y & Okunuki K (1979) Preparation of subunits of flavocytochromes c derived from Chlorobiumlimicola f. thiosulfatophilum and Chromatiumvinosum. Anal Biochem 95: 209213.
  • Zhang D, Yang H, Huang Z, Zhang W & Liu SJ (2002) Rhodopseudomonasfaecalis sp. nov., a phototrophic bacterium isolated from an anaerobic reactor that digests chicken faeces. Int J Syst Evol Micr 52: 20552060.
  • Zimmermann P, Laska S & Kletzin A (1999) Two modes of sulfite oxidation in the extremely thermophilic and acidophilic archaeon Acidianusambivalens. Arch Microbiol 172: 7682.