SEARCH

SEARCH BY CITATION

References

  • Abdallah AM, Verboom T, Hannes F et al. (2006) A specific secretion system mediates PPE41 transport in pathogenic mycobacteria. Mol Microbiol 62: 667679.
  • Aharonowitz Y, Cohen G & Martin JF (1992) Penicillin and cephalosporin biosynthetic genes: structure, organization, regulation, and evolution. Annu Rev Microbiol 46: 461495.
  • Akanuma G, Hara H, Ohnishi Y & Horinouchi S (2009) Dynamic changes in the extracellular proteome caused by absence of a pleiotropic regulator AdpA in Streptomyces griseus. Mol Microbiol 73: 898912.
  • Aoki Y, Yoshida Y, Yoshida M, Kawaide H, Abe H & Natsume M (2007) Isolation and characterisation of a spore germination inhibitor from Streptomyces sp. CB-1-1, a phytopathogen causing root tumor of melon. Biosci Biotech Bioch 71: 986992.
  • Aoyagi T (1989) Protease inhibitors and biological control. Bioactive Metabolites from Microorganisms. Progress in Industrial Microbiology, 27 (BushellME & GräfeU, eds), pp. 403418. Elsevier, Amsterdam.
  • Baltz RH (2006) Molecular engineering approaches to peptide, polyketide and other antibiotics. Nat Biotechnol 24: 15331540.
  • Barona-Gómez F, Lautru S, Francou FX, Leblond P, Pernodet JL & Challis GL (2006) Multiple biosynthetic and uptake systems mediate siderophore-dependent iron acquisition in Streptomyces coelicolor A3(2) and Streptomyces ambofaciens ATCC 23877. Microbiology 152: 33553366.
  • Bendtsen JD, Nielsen H, Von Heijne G & Brunak S (2004) Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340: 783795.
  • Bendtsen JD, Nielsen H, Widdick D, Palmer T & Brunak S (2005) Prediction of twin-arginine signal peptides. BMC Bioinformatics 6: 167.
  • Bentley SD, Chater KF, Cerdeno-Tarraga AM et al. (2002) Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417: 141147.
  • Bérdy J (2005) Bioactive microbial metabolites. J Antibiot (Tokyo) 58: 126.
  • Berks BC (1996) A common export pathway for proteins binding complex redox cofactors? Mol Microbiol 22: 393404.
  • Berks BC, Sargent F & Palmer T (2000) The Tat protein export pathway. Mol Microbiol 35: 260274.
  • Bibb MJ (2005) Regulation of secondary metabolism in steptomycetes. Curr Opin Microbiol 8: 208215.
  • Birkó Z, Sümegi A, Vinnai A, Van Wezel GP, Szeszák F, Vitális S, Szabó P, Kele Z, Janáky T & Biró S (1999) Characterization of the gene for factor C, an extracellular signal protein involved in morphological differentiation of Streptomyces griseus. Microbiology 145: 22452253.
  • Birkó Z, Bialek S, Buzas K et al. (2007) The secreted protein factor C triggers the A-factor response regulon in Streptomyces griseus. Mol Cell Proteomics 6: 12481256.
  • Birkó Z, Swiatek M, Szájli E, Medzihradszky KF, Vijgenboom E, Penyige A, Keserű J, Van Wezel GP & Biró S (2009) Lack of A-factor production induces the expression of nutrient scavenging and stress-related proteins in Streptomyces griseus. Mol Cell Proteomics 8: 23962403.
  • Biró S, Békési I, Vitális S & Szabó G (1980) A substance effecting differentiation in Streptomyces griseus. Purification and properties. Eur J Biochem 103: 359363.
  • Bischoff V, Cookson SJ, Wu S & Scheible WR (2009) Thaxtomin A affects CESA-complex density, expression of cell wall genes, cell wall composition, and causes ectopic lignification in Arabidopsis thaliana seedlings. J Exp Bot 60: 955965.
  • Blaak H & Schrempf H (1995) Binding and substrate specificities of a Streptomyces olivaceoviridis chitinase in comparison with its proteolytically processed form. Eur J Biochem 229: 132139.
  • Blaak H, Schnellmann J, Walter S, Henrissat B & Schrempf H (1993) Characteristics of an exochitinase from Streptomyces olivaceoviridis, its corresponding gene, putative protein domains and relationship to other chitinases. Eur J Biochem 214: 659669.
  • Blanco J, Driessen AJ, Coque JJ & Martín JF (1998) Biochemical characterization of the SecA protein of Streptomyces lividans– interaction with nucleotides, binding to membrane vesicles and in vitro translocation of proAmy protein. Eur J Biochem 257: 472478.
  • Bloomfield BJ & Alexander M (1967) Melanins and resistance of fungi to lysis. J Bacteriol 93: 12761280.
  • Böckle B & Müller R (1997) Reduction of disulfide bonds by Streptomyces pactum during growth on chicken feathers. Appl Environ Microb 63: 790792.
  • Burts ML, Williams WA, DeBord K & Missiakas DM (2005) EsxA and EsxB are secreted by an ESAT-6-like system that is required for the pathogenesis of Staphylococcus aureus infections. P Natl Acad Sci USA 102: 11691174.
  • Buttner MJ, Fearnley IM & Bibb MJ (1987) The agarase gene (dagA) of Streptomyces coelicolor A3(2): nucleotide sequence and transcriptional analysis. Mol Gen Genet 209: 101109.
  • Buttner MJ, Smith AM & Bibb MJ (1988) At least three different RNA polymerase holoenzymes direct transcription of the agarase gene (dagA) of Streptomyces coelicolor A3(2). Cell 52: 599607.
  • Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V & Henrissat B (2009) The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 37: D0233D0238.
  • Capstick DS, Willey JM, Buttner MJ & Elliot MA (2007) SapB and the chaplins: connections between morphogenetic proteins in Streptomyces coelicolor. Mol Microbiol 64: 602613.
  • Castillo UF, Strobel GA, Ford EJ et al. (2002) Munumbicins, wide spectrum antibiotics produced by Streptomyces NRRL 30562, endophytic on Kennedia nigriscans. Microbiology 148: 26752685.
  • Challis GL (2008) Mining microbial genomes for new natural products and biosynthetic pathways. Microbiology 154: 15551569.
  • Challis GL & Hopwood DA (2003) Synergy and contingency as driving forces for the evolution of multiple secondary metabolite production by Streptomyces species. P Natl Acad Sci USA 100: 1455514561.
  • Chandra G & Chater KF (2008) Evolutionary flux of potentially bldA-dependent Streptomyces genes containing the rare leucine codon TTA. Antonie van Leeuwenhoek 94: 111126.
  • Chater KF & Bibb MJ (1997) Regulation of bacterial antibiotic production. Biotechnology (RehmHJ, ReedG, PuhlerA & StadlerP, eds), pp. 57105. VCH Press, Weinheim.
  • Chater KF & Chandra G (2006) The evolution of development in Streptomyces analysed by genome comparisons. FEMS Microbiol Rev 30: 651672.
  • Chater KF & Chandra G (2008) The use of the rare UUA codon to define ‘expression space’ for genes involved in secondary metabolism, development and environmental adaptation in Streptomyces. J Microbiol 46: 111.
  • Chater KF & Hopwood DA (1989) Antibiotic biosynthesis in Streptomyces. Genetics of Bacterial Diversity (HopwoodDA & ChaterKF, eds), pp. 129150. Academic Press, London.
  • Chater KF & Kinashi H (2007) Streptomyces linear plasmids: their discovery, functions, interactions with other replicons, and evolutionary significance. Microbial Monographs Vol 7, Microbial Linear Plasmids (MeinhardtF & KlassenR, eds), pp. 131. Springer-Verlag, Berlin.
  • Chater KF & Merrick MJ (1979) Streptomycetes. Developmental Biology of Prokaryotes (ParishJH, ed), pp. 93114. Blackwell, Oxford.
  • Chen LY, Leu WM, Wang KT & Lee YH (1992) Copper transfer and activation of the Streptomyces apotyrosinase are mediated through a complex formation between apotyrosinase and its trans-activator MelC1. J Biol Chem 267: 2010020107.
  • Choulet F, Aigle B, Gallois A et al. (2006) Evolution of the terminal regions of the Streptomyces linear chromosome. Mol Biol Evol 23: 23612369.
  • Claessen D, Wösten HAB, Van Keulen G, Faber OG, Alves AMCR, Meijer WG & Dijkhuizen L (2002) Two novel homologous proteins of Streptomyces coelicolor and Streptomyces lividans are involved in the formation of the rodlet layer and mediate attachment to a hydrophobic surface. Mol Microbiol 44: 14831492.
  • Claessen D, Rink R, De Jong W, Siebring J, De Vreugd P, Boersma FG, Dijkhuizen L & Wösten HA (2003) A novel class of secreted hydrophobic proteins is involved in aerial hyphae formation in Streptomyces coelicolor by forming amyloid-like fibrils. Genes Dev 17: 17141726.
  • Claessen D, Stokroos I, Deelstra HJ et al. (2004) The formation of the rodlet layer of streptomycetes is the result of the interplay between rodlins and chaplins. Mol Microbiol 53: 433443.
  • Claessen D, De Jong W, Dijkhuizen L & Wösten HA (2006) Regulation of Streptomyces development: reach for the sky!. Trends Microbiol 14: 313319.
  • Corre C, Song L, O'Rourke S, Chater KF & Challis GL. (2008) 2-Alkyl-4-hydroxymethylfuran-3-carboxylic acids, antibiotic production inducers discovered by Streptomyces coelicolor genome mining. P Natl Acad Sci USA 105: 1751017515.
  • Cristobal S, De Gier JW, Nielsen H & Von Heijne G (1999) Competition between Sec- and TAT-dependent protein translocation in Escherichia coli. EMBO J 18: 29822990.
  • Cundliffe E. (1989) How antibiotic-producing organisms avoid suicide. Annu Rev Microbiol 43: 207233.
  • Currie CR, Wong B, Stuart AE, Schultz TR, Rehner SA, Mueller UG, Sung GH, Spatafora JW & Straus NA (2003) Ancient tripartite coevolution in the attine ant-microbe symbiosis. Science 299: 386388.
  • Davies J, Spiegelman GB & Yim G (2006) The world of subinhibitory antibiotic concentrations. Curr Opin Microbiol 9: 445453.
  • Davis NK & Chater KF (1990) Spore colour in Streptomyces coelicolor A3(2) involves the developmentally regulated synthesis of a compound biosynthetically related to polyketide antibiotics. Mol Microbiol 4: 16791691.
  • De Jong W, Manteca A, Sánchez J, Bucca G, Smith CP, Dijkhuisen L, Claessen D & Wösten HAB (2009a) NepA is a structural cell wall protein involved in maintenance of spore dormancy in Streptomyces coelicolor. Mol Microbiol 71: 15911603.
  • De Jong W, Wösten HAB, Dijkhuisen L & Claessen D (2009b) Attachment of Streptomyces coelicolor is mediated by amyloidal fimbriae that are anchored to the cell surface via cellulose. Mol Microbiol 73: 11281140.
  • DiBerardo C, Capstick DS, Bibb MJ, Findlay K, Buttner MJ & Elliot MA (2008) Function and redundancy of the chaplin cell-surface proteins in aerial hyphae formation, rodlet assembly, and viability in Streptomyces coelicolor. J Bacteriol 190: 58795889.
  • Dietrich LE, Teal TK, Price-Whelan A & Newman DK (2008) Redox-active antibiotics control gene expression and community behavior in divergent bacteria. Science 321: 12031206.
  • Dilks K, Rose RW, Hartmann E & Pohlschroder M (2003) Prokaryotic utilization of the twin-arginine translocation pathway: a genomic survey. J Bacteriol 185: 14781483.
  • Doran JL, Leskiw BK, Aippersbach S & Jensen SE (1990) Isolation and characterization of a beta-lactamase-inhibitory protein from Streptomyces clavuligerus and cloning and analysis of the corresponding gene. J Bacteriol 172: 49094918.
  • Driessen AJ & Nouwen N (2008) Protein translocation across the bacterial cytoplasmic membrane. Annu Rev Biochem 77: 643667.
  • Egan S, Wiener P, Kallifidas D & Wellington EM (1998) Transfer of streptomycin biosynthesis gene clusters within streptomycetes isolated from soil. Appl Environ Microb 64: 50615063.
  • Elliot M & Talbot NJ (2004) Building filaments in the air: aerial morphogenesis in bacteria and fungi. Curr Opin Microbiol 7: 594601.
  • Elliot MA, Karoonuthaisiri N, Huang J, Bibb MJ, Cohen SN, Kao CM & Buttner MJ (2003) The chaplins: a family of hydrophobic cell-surface proteins involved in aerial mycelium formation in Streptomyces coelicolor. Genes Dev 17: 17271740.
  • Faury D, Saidane S, Li H & Morosoli R (2004) Secretion of active xylanase C from Streptomyces lividans is exclusively mediated by the Tat protein export system. Biochim Biophys Acta 1699: 155162.
  • Felsenstein J (1989) PHYLIP – Phylogeny Inference Package (Version 3.2). Cladistics 5: 164166.
  • Felsenstein J (2005) PHYLIP (Phylogeny Inference Package) Version 3.6. Distributed by the Author. Department of Genome Sciences, University of Washington, Seattle.
  • Fernández M & Sánchez J (2002) Nuclease activities and cell death processes associated with the development of surface cultures of Streptomyces antibioticus. Microbiology 148: 405412.
  • Fernández-Abalos JM, Reviejo V, Díaz M, Rodríguez S, Leal F & Santamaría RI (2003) Posttranslational processing of the xylanase Xys1L from Streptomyces halstedii JM8 is carried out by secreted serine proteases. Microbiology 149: 16231632.
  • Flärdh K & Buttner MJ (2009) Streptomyces morphogenetics: dissecting differentiation in a filamentous bacterium. Nat Rev Microbiol 7: 3649.
  • Folcher M, Gaillard H, Nguyen LT, Nguyen KT, Lacroix P, Bamas-Jacques N, Rinkel M & Thompson CJ. (2001) Pleiotropic functions of a Streptomyces pristinaespiralis autoregulator receptor in development, antibiotic biosynthesis, and expression of a superoxide dismutase. J Biol Chem 276: 4429744306.
  • Funa N, Ohnishi Y, Fujii I, Shibuya M, Ebizuka Y & Horinouchi S (1999) A new pathway for polyketide synthesis in microorganisms. Nature 400: 897899.
  • Funa N, Funabashi M, Ohnishi Y & Horinouchi S (2005) Biosynthesis of hexahydroxyperylenequinone melanin via oxidative aryl coupling by cytochrome P-450 in Streptomyces griseus. J Bacteriol 187: 81498155.
  • García M (1995) A membrane-like structure envelops substrate mycelium during colony development in Streptomyces. FEMS Microbiol Lett 131: 107111.
  • Glauert AM & Hopwood DA (1961) The fine structure of Streptomyces violaceoruber (S. coelicolor). J Biophys Biochem Cy 10: 505516.
  • Goettler W, Kaltenpoth M, Herzner G & Strohm E (2007) Morphology and ultrastructure of a bacterial cultivation organ: the antennal glands of female European beewolves, Philanthus triangulum (Hymenoptera, Crabronidae). Arthropod Struct Dev 36: 19.
  • Goh EB, Yun G, Tsui W, McCure J & Davies J (2002) Transcriptional modulation of bacterial gene expression by subinhibitory concentrations of antibiotics. P Natl Acad Sci USA 99: 1702517030.
  • Gomes RC, Soares RMA, Nakamura CV, Souto-Padrón T, Souza RF, Semêdo LTAS, Alviano CS & Coelho RRR (2008) Streptomyces lunalinharesii spores contain chitin on the outer sheath. FEMS Microbiol Lett 286: 118123.
  • Gräfe U (1989) Autoregulatory secondary metabolite from actinomycetes. Regulation of Secondary Metabolism in Actinomycetes (ShapiroS, ed), pp. 75126. CRC Press, Boca Raton, FL.
  • Grund AD & Ensign JC (1985) Properties of the germination inhibitor of Streptomyces viridochromogenes spores. J Gen Microbiol 131: 833847.
  • Haeder S, Wirth R, Herz H & Spiteller D (2009) Candicidin-producing Streptomyces support leaf-cutting ants to protect their fungus garden against the pathogenic fungus Escovopsis. P Natl Acad Sci USA 106: 47424746.
  • Hashimoto M, Kondo T, Kozone I, Kawaide H, Abe H & Natsume M (2003) Relationship between response to and production of the aerial mycelium-inducing substances pamamycin-607 and A-factor. Biosci Biotech Bioch 67: 803808.
  • Henrich S, Lindberg I, Bode W & Than ME (2005) Proprotein convertase models based on the crystal structures of furin and kexin: explanation of their specificity. J Mol Biol 345: 211227.
  • Hesketh A & Chater KF (2003) Evidence from proteomics that some of the enzymes of actinorhodin biosynthesis have more than one form and may occupy distinctive cellular locations. J Ind Microbiol Biot 30: 523529.
  • Hesketh AR, Chandra G, Shaw AD, Rowland JJ, Kell DB, Bibb MJ & Chater KF (2002) Primary and secondary metabolism, and post-translational protein modifications, as portrayed by proteomic analysis of Streptomyces coelicolor. Mol Microbiol 46: 917932.
  • Hiraga K, Suzuli T & Oda K (2000) A novel double headed proteinaceous inhibitor for metalloproteinase and serine proteinase. J Biol Chem 275: 2517325179.
  • Hirano S, Kato JY, Ohnishi Y & Horinouchi S (2006) Control of the Streptomyces subtilisin inhibitor gene by AdpA in the A-factor regulatory cascade in Streptomyces griseus. J Bacteriol 188: 62076216.
  • Holzer H (1983) Regulation of proteinase in Saccharomyces cerevisiae. Protease Inhibitors: Medical and Biological Aspects (KatunumaN, UmezawaH & HolzerH, eds), pp. 181190. Japan Scientific Society Press, Tokyo.
  • Hopwood DA (2007) Streptomyces in Nature and Medicine: The Antibiotic Makers. Oxford University Press, New York.
  • Horinouchi S (2007) Mining and polishing of the treasure trove in the bacterial genus Streptomyces. Biosci Biotech Bioch 71: 283299.
  • Hsu T, Hingley-Wilson SM, Chen B et al. (2003) The primary mechanism of attenuation of bacillus Calmette–Guerin is a loss of secreted lytic function required for invasion of lung interstitial tissue. P Natl Acad Sci USA 100: 1242012425.
  • Huson DH, Richter DC, Rausch C, Dezulian T, Franz M & Rupp R (2007) Dendroscope: an interactive viewer for large phylogenetic trees. BMC Bioinformatics 8: 460.
  • Ikeda H, Ishikawa J, Hanamoto A, Shinose M, Kikuchi H, Shiba T, Sakaki Y, Hattori M. & Ōmura S (2003) Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. Nat Biotechnol 21: 526531.
  • Isiegas C, Parro V & Mellado RP (1999) Streptomyces lividans as a host for the production and secretion of Escherichia coli TEM beta-lactamase. Lett Appl Microbiol 28: 321326.
  • Jeong BC, Kang SG, Rho YT & Lee KJ (1993) Submerged spore formation and biosynthesis of extracellular protease in Streptomycesalbidoflavus SMF301. Kor J Microbiol 31: 566572.
  • Joerger MC & Klaenhammer TR (1990) Cloning expression and nucleotide sequence of the Lactobacillus helveticus 481 gene encoding the bacteriocin helveticin J. J Bacteriol 172: 63396347.
  • Johnson EG, Sparks JP, Dzikovski B, Gibson DM & Loria R (2008) Plant-pathogenic Streptomyces species produce nitric oxide synthase-derived nitric oxide in response to host signals. Chem Biol 15: 4350.
  • Joshi M, Rong X, Moll S, Kers J, Franco C & Loria R (2007) Streptomyces turgidiscabies secretes a novel virulence protein, Nec1, which facilitates infection. Mol Plant-Microbe Interact 20: 599608.
  • Ju LK, Chen F & Xia Q (2005) Monitoring microaerobic denitrification of Pseudomonas aeruginosa by online NAD(P)H fluorescence. J Ind Microbiol Biot 32: 622628.
  • Kaltenpoth M, Göttler W, Herzner G & Strohm E (2005) Symbiotic bacteria protect wasp larvae from fungal infestation. Curr Biol 15: 475479.
  • Kang SG & Lee KJ (1997) Kinetic analysis of morphological differentiation and protease production in Streptomyces albidoflavus SMF301. Microbiology 143: 27092714.
  • Kang SG, Kim IS, Rho YT & Lee KJ (1995a) Production dynamics of extracellular proteases accompanying morphological differentiation of Streptomcyes albidoflavus SMF301. Microbiology 141: 30953103.
  • Kang SG, Kim IS, Jeong BC, Ryu JG, Rho YT & Lee KJ (1995b) Characteristics of trypsin-like protease and metalloprotease associated with mycelium differentiation of Streptomyces albidoflavus SMF301. J Microbiol 33: 307314.
  • Kang SG, Kenyon RGW, Ward AC & Lee KJ (1998) Analysis of the differentiation state in Streptomyces albidoflavus SMF301 by the combination of pyrolysis mass spectrometry and neural network. J Biotech 62: 110.
  • Kang SG, Park HU, Lee HS, Kim HT & Lee KJ (2000) New beta-lactamase inhibitory protein (BLIP-I) from Streptomyces exfoliatus SMF19 and its roles on the morphological differentiation. J Biol Chem 275: 1685116856.
  • Kato J, Suzuki A, Yamazaki H, Ohnishi Y & Horinouchi S (2002) Control by A-factor of a metalloendopeptidase gene involved in aerial mycelium formation in Streptomyces griseus. J Bacteriol 184: 60166025.
  • Kato J, Chi WJ, Ohnishi Y, Hong SK & Horinouhi S (2005a) Transcriptional control by A-factor of two trypsin genes in Streptomyces griseus. J Bacteriol 187: 286295.
  • Kato J, Hirano S, Ohnishi Y & Horinouchi S (2005b) The Streptomyces subtilisin inhibitor (SSI) gene in Streptomycescoelicolor A(3)2. Biosci Biotech Bioch 69: 16241629.
  • Kato JY, Funa N, Watanabe H, Ohnishi Y & Horinouchi S (2007) Biosynthesis of gamma-butyrolactone autoregulators that switch on secondary metabolism and morphological development in Streptomyces. P Nat Acad Sci USA 104: 23782383.
  • Kendall K & Cullum J (1984) Cloning and expression of an extracellular-agarase from Streptomyces coelicolor A3(2) in Streptomyces lividans 66. Gene 29: 315321.
  • Khokhlov AS, Tovarova II, Borisova LN, Pliner SA, Shevchenko LN, Kornitskaia E, Ivkina NS & Rapoport IA (1967) A-factor responsible for the biosynthesis of streptomycin by a mutant strain of Actinomyces streptomycini. Dokl Akad Nauk SSSR 177: 232235.
  • Kim DW, Chater KF, Lee KJ & Hesketh AJ (2005) Changes in the extracellular proteome caused by the absence of the bldA gene product, a developmentally significant tRNA, reveal a new target for the pleiotropic regulator AdpA in Streptomyces coelicolor. J Bacteriol 187: 29572966.
  • Kim DW, Hesketh A, Kim ES, Song JY, Lee DH, Kim IS, Chater KF & Lee KJ (2008a) Complex extracellular interactions of proteases and a protease inhibitor influence multicellular development of Streptomyces coelicolor. Mol Microbiol 70: 11801193.
  • Kim ES, Song JY, Kim DW, Ko EJ, Jensen SE & Lee KJ (2008b) Involvement of beta-lactamase inhibitory protein, BLIP-II, in morphological differentiation of Streptomyces exfoliatus SMF19. J Microbiol Biotechn 18: 18841889.
  • Kim IS & Lee KJ (1990) Characterization of thiol protease inhibitor isolated from Streptomyces sp. KIS13. Kor J Appl Microbiol Biotech 18: 501505.
  • Kim IS & Lee KJ (1995a) Physiological roles of leupeptin and extracellular proteases in mycelium development of Streptomyces exfoliatus SMF13. Microbiology 141: 10171025.
  • Kim IS & Lee KJ (1995b) Kinetic study on the production and degradation of leupeptin in Streptomyces exfoliatus SMF13. J Biotechnol 42: 3544.
  • Kim IS & Lee KJ (1996) Trypsin like protease in Streptomyces exfoliatus SMF13, as a potential agent for mycelium differentiation. Microbiology 142: 17971806.
  • Kim IS, Kim HT, Lee HS & Lee KJ (1991) Protease inhibitor production using Streptomyces sp. SMF13. J Microbiol Biotechn 1: 288292.
  • Kim IS, Kim HT, Ward AC, Goodfellow M, Hah YC & Lee KJ (1992) Numerical identification of a Streptomyces strain producing thiol protease inhibitor. J Microbiol Biotechn 2: 220225.
  • Kim IS, Han YT, Barrow KD & Lee KJ (1993) The structure of protease inhibitors produced by Streptomyces exfoliatus SMF13. Kor J Microbiol 31: 326334.
  • Kim IS, Kang SG & Lee KJ (1995) Physiological importance of trypsin like protease during morphological differentiation of Streptomyces spp. J Microbiol 33: 315321.
  • Kim IS, Kim YB & Lee KJ (1998) Characterization of the leupeptin-inactivating enzyme from Streptomyces exfoliatus SMF13 which produces leupeptin. Biochem J 331: 539545.
  • Kim MK & Lee KJ (1994) Characteristics of β-lactamase inhibiting protein from Streptomyces exfoliatus SMF19. Appl Environ Microb 60: 10291032.
  • King RR & Calhoun LA (2009) The thaxtomin phytotoxins: sources, synthesis, biosynthesis, biotransformation and biological activity. Phytochemistry 70: 833841.
  • Kiss Z, Ward AC, Birkó Z, Chater KF & Biró S (2008) Streptomyces griseus 45H, the producer of the extracellular autoregulator protein factor C, is a member of the species Streptomyces albidoflavus. Int J Syst Evol Micr 58: 10291031.
  • Kodani S, Hudson E, Durrant MC, Buttner MJ, Nodwell JR & Willey JM (2004) The SapB morphogen is a lantibiotic-like peptide derived from the product of the developmental gene ramS in Streptomyces coelicolor. P Natl Acad Sci USA 101: 1144811453.
  • Kodani S, Lodato MA, Durrant MC, Picart F & Willey JM (2005) SapT, a lanthionine-containing peptide involved in aerial hyphae formation in the streptomycetes. Mol Microbiol 58: 13681380.
  • Kojima S, Kumagai I & Miura K (1990) Effect on inhibitory activity of mutation at reaction site P4 of the Streptomyces subtilisin inhibitor, SSI. Protein Eng 3: 527530.
  • Kojima S, Kumazaki T, Ishii S & Miura K (1998) Primary structure of Streptomyces griseus metalloprotease II. Biosci Biotech Bioch 62: 13921398.
  • Kolbe S, Fischer S, Becirevic A, Hinz P & Schrempf H (1998) The Streptomyces reticuliα-chitin-binding protein CHB2 and its gene. Microbiology 144: 12911297.
  • Koller KP & Riess G (1989) Heterologous expression of the α-amylase inhibitor gene cloned from an amplified genomic sequence of Streptomyces tendae. J Bacteriol 171: 49534957.
  • Komatsu M, Tsuda M, Ōmura S, Oikawa H & Ikeda H (2008) Identification and functional analysis of genes controlling biosynthesis of 2-methylisoborneol. P Natl Acad Sci USA 105: 74227427.
  • Kristufek V, Fischer S, Bührmann J, Zeltins A & Schrempf H (1999) In situ monitoring of chitin degradation by Streptomyces lividans pCHIO2 within Enchytraeus crypticus (Oligachaeta) feeding on Aspergillus proliferans. FEMS Microbiol Ecol 28: 4148.
  • Kumazaki T, Kajiwara K, Kojima S, Miura K & Ishii S (1993) Interaction of Streptomyces subtilisin inhibitor (SSI) with Streptomyces griseus metallo-endopeptidase II (SGMP II). J Biochem 114: 570575.
  • Kuramoto A, Lezhava A, Taguchi S, Momose H & Kinashi H (1996) The location and deletion of the genes which code for SSI-like protease inhibitors in Streptomyces species. FEMS Microbiol Lett 139: 3742.
  • Kutzner HJ (1981) The family Streptomycetaceae. The Prokaryotes: A Handbook on Habitats, Isolation and Identification of Bacteria (StarrMP, StolpH, TrüperHG, BalowsA & SchlegelH, eds), pp. 20282090. Springer-Verlag, Berlin.
  • Laskowski M Jr, Tashiro M, Empie MW, Park SJ, Kato I, Ardelt W & Wieczorek M (1983) Relationship between the amino acid sequence and inhibitory activity of protein inhibitors of proteinase. Proteinase Inhibitors: Medical and Biological Aspect (KatunumaN, UmezawaH & HolzerH, eds), pp. 5568. Springer-Verlag, Berlin.
  • Lawlor EJ, Baylis HA & Chater KF (1987) Pleiotropic morphological and antibiotic deficiencies result from mutations in a gene encoding a tRNA-like product in Streptomyces coelicolor A3(2). Genes Dev 1: 13051310.
  • Lee KJ (1998) Dynamics of morphological and physiological differentiation in actinomycetes group and quantitative analysis of the differentiation. J Microbiol Biotechn 8: 17.
  • Lee KM, Lee CK, Choi SU, Park HR & Hwang YI (2008) Functional analysis of a BarX homologue (SngA) as a pleiotropic regulator in Streptomyces nataliensis. Arch Microbiol 89: 569577.
  • Lerat S, Simao-Beaunoir AM & Beaulieu C (2009) Genetic and physiological determinants of Streptomyces scabies pathogenicity. Mol Plant Pathol 10: 579585.
  • Leskiw BK, Lawlor EJ, Fernández-Abalos JM & Chater KF (1991) TTA codons in some genes prevent their expression in a class of developmental, antibiotic-negative, Streptomyces mutants. P Natl Acad Sci USA 88: 24612465.
  • Lewis JW, Morley NJ, Drinkall J, Jamieson BJ, Wright R & Parry JD (2008) Toxic effects of Streptomyces griseus spores and exudate on gill pathology of freshwater fish. Ecotox Environ Safe 72: 173181.
  • Lezhava A, Kameoka D, Sugino H, Goshi K, Shinkawa H, Nimi O, Horinouchi S, Beppu T. & Kinashi H. (1997) Chromosomal deletions in Streptomyces griseus that remove the afsA locus. Mol Gen Genet 253: 478483.
  • Li W, Wu J, Tao W et al. (2007) A genetic and bioinformatic analysis of Streptomyces coelicolor genes containing TTA codons, possible targets for regulation by a developmentally significant tRNA. FEMS Microbiol Lett 266: 2028.
  • López D & Kolter R (2010) Extracellular signals that define distinct and coexisting cell states in Bacillus subtilis. FEMS Microbiol Rev, in press.
  • Loria R, Bignell DR, Moll S, Huguet-Tapia JC, Joshi MV, Johnson EG, Seipke RF & Gibson DM (2008) Thaxtomin biosynthesis: the path to plant pathogenicity in the genus Streptomyces. Antonie van Leeuwenhoek 94: 310.
  • Luirink J, Von Heijne G, Houben E & De Gier JW (2005) Biogenesis of inner membrane proteins in Escherichia coli. Annu Rev Microbiol 59: 329355.
  • Maeda K, Kawamura K, Kondo SI, Aoyagi T, Takeuchi T & Umezawa H (1971) The structure and activity of leupeptins and related analogs. J Antibiot 24: 402404.
  • McCann PA & Pogell BM (1979) Pamamycin: a new antibiotic and stimulator of aerial mycelia formation. J Antibiot 32: 673678.
  • Menéndez N, Braña AF, Salas JA & Méndez C (2007) Involvement of a chromomycin ABC transporter system in secretion of a deacetylated precursor during chromomycin biosynthesis. Microbiology 153: 30613070.
  • Merrick M (1976) A morphological and genetic mapping study of bald colony mutants of Streptomyces coelicolor. J Gen Microbiol 96: 299315.
  • Metsä-Ketelá M, Halo L, Munukka E, Mäntsälä P & Ylihonko K (2002) Molecular evolution of aromatic polyketides and comparative sequence analysis of polyketide ketosynthase and 16S ribosomal DNA genes from various Streptomyces species. Appl Environ Microb 68: 44724479.
  • Miguélez EM, Hardisson C & Manzanal MB (1999) Hyphal death during colony development in Streptomyces antibioticus: morphological evidence for the existence of a process of cell deletion in a multicellular prokaryote. J Cell Biol 145: 515525.
  • Mitsui Y, Satow Y, Sakamaki T & Iitaka Y (1977) Crystal structure of a protein proteinase inhibitor, Streptomyces subtilisin inhibitor. J Biochem 82: 295298.
  • Miyadoh S (1997) Atlas of Actinomycetes. The Society for Actinomycetes, Japan.
  • Moormann M, Schlochtermeier A & Schrempf H (1993) Biochemical characterization of a protease involved in the processing of a Streptomyces reticuli cellulase (Avicelase). Appl Environ Microb 59: 15731578.
  • Mueller UG, Dash D, Rabeling C & Rodrigues A. (2008) Coevolution between attine ants and actinomycete bacteria: a reevaluation. Evolution 62: 28942912.
  • Muzzarelli RA (1999) Native, industrial and fossil chitins. Chitin and Chitinases, 87 (JollesP & MuzzarelliRAA, eds), pp. 16. Birkhäuser Verlag, Basel.
  • Natsume M, Tazawa J, Abe H, Kudo Y, Kondo S & Marumo S (1995) Transient increase in intracellular calcium in Streptomyces alboniger produced by pamamycin-607, an aerial mycelium-inducing substance. Biosci Biotech Bioch 59: 152154.
  • Nguyen KT, Tenor J, Stettler H, Nguyen LT, Nguyen LD & Thompson CJ (2003) Colonial differentiation in Streptomyces coelicolor depends on translation of a specific codon within the adpA gene. J Bacteriol 185: 72917296.
  • Nicieza RG, Huergo J, Connolly BA & Sánchez J (1999) Purification, characterization, and role of nucleases and serine proteases in Streptomyces differentiation. J Biol Chem 274: 2036620375.
  • Nishida H, Ohnishi Y, Beppu T & Horinouch S (2007) Evolution of gamma-butyrolactone synthases and receptors in Streptomyces. Environ Microbiol 9: 19861994.
  • Nodwell JR & Losick R (1998) Purification of an extracellular signaling molecule involved in production of aerial mycelium by Streptomyces coelicolor. J Bacteriol 180: 13341337.
  • Notredame C, Higgins DG & Heringa J (2000) T-Coffee: a novel method for fast and accurate multiple sequence alignment. J Mol Biol 302: 205217.
  • Obata S, Taguchi S, Kumugai I & Miura KI (1989) Molecular cloning and nucleotide sequence determination of gene encoding Streptomyces subtilisin inhibitor (SSI). J Biochem 105: 367371.
  • Ochman H, Elwyn S & Moran NA (1999) Calibrating bacterial evolution. P Natl Acad Sci USA 96: 1263812643.
  • Oda K, Oyama H, Ito S, Fukiharu M, Miyagawa Y, Takahashi S, Hirose M, Kikuchi M, Nakayama T & Shibano M (2001) Cloning and rational mutagenesis of kexstatin I, a potent proteinaceous inhibitor of Kex2 proteinase. Biochem J 355: 339346.
  • Oh EA, Kim MS, Chi WJ, Kim JH & Hong SK (2007) Characterization of the sgtR1 and sgtR2 genes and their role in regulating expression of the sprT gene encoding Streptomyces griseus trypsin. FEMS Microbiol Lett 276: 7582.
  • Ohnishi Y & Horinouchi S (2004) The A-factor regulatory cascade that leads to morphological development and secondary metabolism in Streptomyces. Biofilms 1: 319328.
  • Ohnishi Y, Yamazaki H, Kato J, Tomono A & Horinouchi S (2005) AdpA, a central transcriptional regulator in the A-factor regulatory cascade that leads to morphological development and secondary metabolism in Streptomyces griseus. Biosci Biotech Bioch 69: 431439.
  • Ohnishi Y, Ishikawa J, Hara H, Suzuki H, Ikenoya M, Ikeda H, Yamashita A, Hattori M & Horinouchi S (2008) Genome sequence of the streptomycin-producing microorganism Streptomyces griseus IFO 13350. J Bacteriol 190: 40504060.
  • Ōmura S (1992) The expanded horizon for microbial metabolites–a review. Gene 115: 141149.
  • Pagé N, Kluepfel D, Shareck F & Morosoli R (1996) Effect of signal peptide alterations and replacement on export of xylanase A in Streptomyceslividans. Appl Environ Microb 62: 109114.
  • Palacín A, De La Fuente R, Valle I, Rivas LA & Mellado RP (2003) Streptomyces lividans contains a minimal functional signal recognition particle that is involved in protein secretion. Microbiology 149: 24352442.
  • Pallen MJ (2002) The ESAT-6/WXG100 superfamily – and a new Gram-positive secretion system? Trends Microbiol 10: 209212.
  • Pallen MJ, Lam AC, Antonio M & Dunbar K. (2001) An embarrassment of sortases – a richness of substrates? Trends Microbiol 9: 97102.
  • Pasternack R, Dorsch S, Otterbach JT, Robenek IR, Wolf S & Fuchsbauer HL (1998) Bacterial pro-transglutaminase from Streptoverticillium mobaraense. Purification, characterisation and sequence of the zymogen. Eur J Biochem 257: 570576.
  • Peterson F, Zähner H, Metzger JW, Freund S & Hummel RP (1993) Germicidin, an autoregulative germination inhibitor of Streptomyces viridochromogenes NRRL B-1551. J Antibiot 46: 11261138.
  • Pym AS, Brodin P, Majlessi L et al. (2003) Recombinant BCG exporting ESAT-6 confers enhanced protection against tuberculosis. Nature Med 9: 533539.
  • Quirós LM, Aguirrezabalaga I, Olano C, Méndez C & Salas JA (1998) Two glycosyltransferases and a glycoside are involved in oleandomycin modification during its biosynthesis by Streptomyces antibioticus. Mol Microbiol 28: 11771186.
  • Raghavan S, Manzanillo P, Chan K, Dovey C & Cox JS (2008) Secreted transcription factor controls Mycobacterium tuberculosis virulence. Nature 454: 717721.
  • Recio E, Colinas A, Rumbero A, Aparicio JF & Martín JF (2004) PI factor, a novel type quorum-sensing inducer elicits pimaricin production in Streptomyces natalensis. J Biol Chem 279: 4158641593.
  • Ren Z, Zhang D, Yu M, Zhao Q, Du G, Chen W & Wu J (2008) Identification of the gene encoding transglutaminase zymogen from Streptomyces hygroscopicus and its expression in Escherichia coli (article in Chinese). Wei Sheng Wu Xue Bao 48: 480485.
  • Rho YT & Lee KJ (1994) Kinetic characterization of sporulation in Streptomyces albidoflavus SMF301 during submerged culture. Microbiology 140: 20612065.
  • Rho YT, Kim JW & Lee KJ (1990) Effects of culture environments on alkaline protease biosynthesis in Streptomyces sp. Kor J Microbiol 28: 162168.
  • Rigali S, Nothaft H, Noens EE et al. (2006) The sugar phosphotransferase system of Streptomyces coelicolor is regulated by the GntR-family regulator DasR and links N-acetyl glucosamine metabolism to the control of development. Mol Microbiol 61: 12371251.
  • Rigali S, Titgemeyer F, Barends S, Mulder S, Thomae AW, Hopwood DA & Van Wezel GP (2008) Feast or famine: the global regulator DasR links nutrient stress to antibiotic production by Streptomyces. EMBO Reports 9: 670675.
  • Rockwell NC, Krysan DJ, Komiyama T & Fuller RS (2002) Precursor processing by kex2/furin proteases. Chem Rev 102: 45254548.
  • Rose RW, Bruser T, Kissinger JC & Pohlschroder M (2002) Adaptation of protein secretion to extremely high-salt conditions by extensive use of the twin-arginine translocation pathway. Mol Microbiol 45: 943950.
  • Ruiz-Arribas A, Sánchez P, Calvete JJ, Raida M, Fernández-Abalos JM & Santamaría RI (1997) Analysis of xysA, a gene from Streptomyceshalstedii JM8 that encodes a 45-kilodalton modular xylanase, Xys1. Appl Environ Microb 63: 29832988.
  • Ruiz-Herrera J & San-Blas G (2003) Chitin synthesis as target for antifungal drugs. Curr Drug Targets Infect Disord 3: 7791.
  • Saito A & Schrempf H (2004) Mutational analysis of the binding affinity and transport activity for N-acetylglucosamine of the novel ABC transporter Ngc in the chitin-degrader Streptomyces olivaceoviridis. Mol Genet Genomics 271: 545553.
  • Saito A, Shinya T, Miyamoto K et al. (2007) The dasABC gene cluster, adjacent to dasR, encodes a novel ABC transporter for the uptake of N,N′-diacetylchitobiose in Streptomyces coelicolor A3(2). Appl Environ Microb 73: 30003008.
  • Saito A, Fujii T, Shinya T, Shibuya N, Ando A & Miyashita K (2008) The msiK gene, encoding the ATP-hydrolysing component of N,N′-diacetylchitobiose ABC transporters, is essential for induction of chitinase production in Streptomyces coelicolor A3(2). Microbiology 154: 33583365.
  • Schaerlaekens K, Schierova M, Lammertyn E, Geukens N, Anné J & Van Mellaert L (2001) Twin-arginine translocation pathway in Streptomyces lividans. J Bacteriol 183: 67276732.
  • Schaerlaekens K, Van Mellaert L, Lammertyn E, Geukens N & Anné J (2004) The importance of the Tat-dependent protein secretion pathway in Streptomyces as revealed by phenotypic changes in tat deletion mutants and genome analysis. Microbiology 150: 2131.
  • Schäfer A, Konrad R, Kuhnigk T, Kämpfer P, Hertel H & König H (1996) Hemicellulose-degrading bacteria and yeasts from the termite gut. Appl Bacteriol 80: 7178.
  • Schlatter D, Fubuh A, Xiao K, Hernandez D, Hobbie S & Kinkel L (2009) Resource amendments influence density and competitive phenotypes of Streptomyces in soil. Microb Ecol 57: 413420.
  • Schlochtermeier A, Niemeyer F & Schrempf H (1992a) Biochemical and electron microscopic studies of the Streptomyces reticuli cellulase (Avicelase) in its mycelium-associated and extracellular forms. Appl Environ Microb 58: 32403248.
  • Schlochtermeier A, Walter S, Schröder J, Moormann M & Schrempf H (1992b) The gene encoding the cellulase (Avicelase) Cel1 from Streptomyces reticuli and analysis of protein domains. Mol Microbiol 6: 36113621.
  • Schlösser A & Schrempf H (1996) A lipid-anchored binding protein is a component of an ATP-dependent cellobiose/-triose transport system from the cellulose degrader Streptomyces reticuli. Eur J Biochem 242: 332338.
  • Schlösser A, Kampers T & Schrempf H (1997) The Streptomyces ATP-binding component MsiK assists in cellobiose and maltose transport. J Bacteriol 179: 20922095.
  • Schlösser A, Jantos J, Hackmann K & Schrempf H (1999) Characterization of the binding protein-dependent cellobiose and cellotriose transport system of the cellulose degrader Streptomyces reticuli. Appl Environ Microb 65: 26362643.
  • Schlösser A, Aldekamp T & Schrempf H (2000) Binding characteristics of CebR, the regulator of the ceb operon required for cellobiose/cellotriose uptake in Streptomyces reticuli. FEMS Microbiol Lett 190: 127132.
  • Schmidt S, Adolf F & Fuchsbauer HL (2008) The transglutaminase activating metalloprotease inhibitor from Streptomyces mobaraensis is a glutamine and lysine donor substrate of the intrinsic transglutaminase. FEBS Lett 582: 31323138.
  • Schnellmann J, Zeltins A, Blaak H & Schrempf H (1994) The novel lectin-like protein CHB1 is encoded by a chitin-inducible Streptomycesolivaceoviridis gene and binds specifically to crystalline α-chitin of fungi and other organisms. Mol Microbiol 13: 807819.
  • Scholtmeijer K, De Vocht ML, Rink R, Robillard GT & Wösten HA (2009) Assembly of the fungal SC3 hydrophobin into functional amyloid fibrils depends on its concentration and is promoted by cell wall polysaccharides. J Biol Chem 284: 2630926314.
  • Schrempf H (2001) Recognition and degradation of chitin by streptomycetes. Antonie van Leeuwenhoek 79: 285289.
  • Schrempf H (2007) Biology of streptomycetes. The Prokaryotes, A Handbook on the Biology of Bacteria. 3rd edn (DworkinM, FalkowS, RosenbergE, SchleiferK-H & StackebrandtE, eds) Springer Verlag, New York, NY.
  • Schrey SD, Salo V, Raudaskoski M, Hampp R, Nehls U & Tarkka MT (2007) Interaction with mycorrhiza helper bacterium Streptomyces sp. AcH 505 modifies organisation of actin cytoskeleton in the ectomycorrhizal fungus Amanita muscaria (fly agaric). Curr Genet 52: 7785.
  • Scott JJ, Oh DC, Yuceer MC, Klepzig KD, Clardy J & Currie CR (2008) Bacterial protection of beetle–fungus mutualism. Science 322: 63.
  • Seipke RF & Loria R (2008) Streptomyces scabies 87-22 possesses a functional tomatinase. J Bacteriol 190: 76847692.
  • Seluanov A & Bibi E (1997) FtsY, the prokaryotic signal recognition particle receptor homologue, is essential for biogenesis of membrane proteins. J Biol Chem 272: 20532055.
  • Selvin J (2009) Exploring the antagonistic producer Streptomyces MSI051: implications of polyketide synthase gene type II and a ubiquitous defense enzyme phospholipase A2 in the host sponge Dendrilla nigra. Curr Microbiol 58: 459463.
  • Shen XL, Dong HJ, Hou XP, Guan WJ & Li YQ (2008) FtsY affects sporulation and antibiotic production by whiH in Streptomyces coelicolor. Curr Microbiol 56: 6165.
  • Shin HS & Lee KJ (1986) Regulation of extracellular alkaline proteases biosynthesis in a strain of Streptomyces sp. Kor J Microbiol 24: 3237.
  • Siemieniewicz KW & Schrempf H (2007) Concerted responses between the chitin-binding protein secreting Streptomyces olivaceoviridis and Aspergillus proliferans. Microbiology 153: 593600.
  • Siemieniewicz KW, Kajla MK & Schrempf H (2007) Elucidating the biosynthesis of chitin filaments and their configuration with specific proteins and electron microscopy. Macromol Biosci 7: 4047.
  • Singh PS, Shin YC, Park CS & Chung YR (1999) Biological control of Fusarium wilt of cucumber by chitinolytic bacteria. Phytopathology 89: 9299.
  • Smucker RA & Pfister RM (1978) Characteristics of Streptomyces coelicolor A3(2) aerial spore rodlet mosaic. Can J Microbiol 24: 397408.
  • Stanley SA, Raghavan S, Hwang WW & Cox JS (2003) Acute infection and macrophage subversion by Mycobacterium tuberculosis require a specialized secretion system. P Natl Acad Sci USA 100: 1300113006.
  • Suzuki S, Nakanishi E, Furihata K, Miyamoto K, Tsujibo H, Watanabe T, Ohnishi Y, Horinouchi S, Nagasawa H & Sakuda S (2008) Chitinase inhibitor allosamidin promotes chitinase production of Streptomyces generally. Int J Biol Macromol 43: 1319.
  • Svergun DI, Becirevic A, Schrempf H, Koch MHJ & Grüber G (2000) Solution structure and conformational changes of the Streptomyces chitin-binding protein (CHB1). Biochemistry 39: 1067710683.
  • Sweeney PJ & Walker JM (1993) Pronase (EC 3.4.24.4). Methods Mol Biol 16: 271276.
  • Szabó G, Vályi-Nagy T & Vitális S (1962) A new factor regulating life cycle of Streptomyces griseus. Genetics of Microorganisms, Proceedings of a Symposium on Heredity and Variability of Microorganisms (TimakovaVD, ed), pp. 282292. State Publishing House on Medical Literature, Moscow.
  • Szabó PT, Kele Z, Birkó Z, Szeszák F, Biró S & Janáky T (1999) Identification of factor C protein from Streptomyces griseus by microelectrospray mass spectrometry. J Mass Spectrom 34: 13121316.
  • Szeszak F, Vitális S, Tóth F, Valu G, Fachet J & Szabó G (1990) Detection and determination of factor C – a regulatory protein – in Streptomyces strains by antiserum and monoclonal antibody. Arch Microbiol 154: 8284.
  • Szumska D, Pieles G, Essalmani R et al. (2008) ACTERL/caudal regression/Currarino syndrome-like malformations in mice with mutation in the proprotein convertase Pcsk5. Genes Dev 22: 14651477.
  • Taguchi S, Kikuchi H, Suzuki M, Kojima S, Terabe M, Miura K, Nakase T & Momose H (1993) Streptomyces subtilisin inhibitor-like proteins are distributed widely in streptomycetes. Appl Environ Microb 59: 43384341.
  • Taguchi S, Suzuki M, Kojima S & Momose H (1995) Streptomyces serine protease (SAM-P20): recombinant production, characterization, and interaction with endogenous protease inhibitor. J Bacteriol 177: 66386643.
  • Takano E (2006) Gamma-butyrolactones: Streptomyces signalling molecules regulating antibiotic production and differentiation. Curr Opin Microbiol 9: 287294.
  • Takano E, Tao M, Long F et al. (2003) A rare leucine codon in adpA is implicated in the morphological defect of bldA mutants of Streptomyces coelicolor. Mol Microbiol 50: 475486.
  • Takeuchi Y, Satow Y, Nakamura KT & Mitsui Y (1991) Refined crystal structure of the complex of subtilisin BPN and Streptomyces subtilisin inhibitor at 1.8 Å resolution. J Mol Biol 221: 309325.
  • Takeuchi Y, Nonaka T, Nakamura KT, Kojima S & Miura KI (1992) Crystal structure of an engineered subtilisin inhibitor complexed with bovine trypsin. P Natl Acad Sci USA 89: 44074411.
  • Tarao M, Jezbera J & Hahn MW (2009) Involvement of cell surface structures in size-independent grazing resistance of freshwater Actinobacteria. Appl Environ Microb 75: 47204726.
  • Tillotson RD, Wösten HA, Richter M & Willey JM (1998) A surface active protein involved in aerial hyphae formation in the filamentous fungus Schizophillum commune restores the capacity of a bald mutant of the filamentous bacterium Streptomyces coelicolor to erect aerial structures. Mol Microbiol 30: 595602.
  • Tokala RK, Strap JL, Jung CM, Crawford DL, Salove MH, Deobald LA, Bailey JF & Morra MJ (2002) Novel plant–microbe rhizosphere interaction involving Streptomyces lydicus WYEC108 and the pea plant (Pisum sativum). Appl Environ Microb 68: 21612171.
  • Tomono A, Tsai Y, Ohnishi Y & Horinouchi S (2005) Three chymotrypsin genes are members of the AdpA regulon in the A-factor regulatory cascade in Streptomyces griseus. J Bacteriol 187: 63416353.
  • Trepanier NK, Nguyen GD, Leedell PJ & Leskiw BK (1997) Use of polymerase chain reaction to identify a leucyl tRNA in Streptomyces coelicolor. Gene 193: 5963.
  • Tsai TY & Lee YH (1998) Roles of copper ligands in the activation and secretion of Streptomyces tyrosinase. J Biol Chem 273: 1924319250.
  • Tsujibo H, Ohtsuki T, Iio T, Yamazaki I, Miyamoto K, Sugiyama M & Inamori Y (1997) Cloning and sequence analysis of genes encoding xylanases and acetyl xylan esterase from Streptomyces thermoviolaceus OPC-520. Appl Environ Microb l63: 661664.
  • Ueda K, Oinuma K, Ikeda G, Hosono K, Ohnishi Y, Horinouchi S & Beppu T (2002) AmfS, an extracellular peptidic morphogen in Streptomyces griseus. J Bacteriol 184: 14881492.
  • Ueda K, Lipkind GM, Zhou A et al. (2003) Mutational analysis of predicted interactions between the catalytic and P domains of prohormone convertase 3 (PC3/PC1). P Natl Acad Sci USA 100: 56225627.
  • Ueda K, Takano H, Nishimoto M, Inaba H & Beppu T (2005) Dual transcriptional control of amfTSBA, which regulates the onset of cellular differentiation in Streptomyces griseus. J Bacteriol 187: 135142.
  • Umezawa H (1982) Low-molecular-weight enzyme inhibitors from microbial origin. Annu Rev Microbiol 36: 7599.
  • Van Keulen G, Jonkers HM, Claessen D, Dijkhuizen L & Wösten HA (2003) Differentiation and anaerobiosis in standing liquid cultures of Streptomyces coelicolor. J Bacteriol 185: 14551458.
  • Van Mellaert L, Lammertyn E, Schacht S et al. (1998) Molecular characterization of a novel subtilisin inhibitor protein produced by Streptomyces venezuelae CBS762.70. DNA Seq 9: 1930.
  • Ventura M, Canchaya C, Tauch A, Chandra G, Fitzgerald GF, Chater KF & Van Sinderen D (2007) Genomics of Actinobacteria: tracing the evolutionary history of an ancient phylum. Microbiol Mol Biol R 71: 495548.
  • Vionis A, Niemeyer F, Karagouni AD & Schrempf H (1996) Production and processing of a 59 KDa exochitinase during growth of Streptomyceslividans pCHIO12 in soil microcosms amended with crab or fungal chitin. Appl Environ Microb 62: 17741780.
  • Vivian A (1971) Genetic control of fertility in Streptomyces coelicolor A3(2): plasmid involvement in the interconversion of UF and IF strains. J Gen Microbiol 69: 353364.
  • Vujaklija D, Horinouchi S & Beppu T (1993) Detection of an A-factor-responsive protein that binds to the upstream activation sequence of strR, a regulatory gene for streptomycin biosynthesis in Streptomyces griseus. J Bacteriol 175: 26522661.
  • Walter S & Schrempf H (1996) The synthesis of the Streptomyces reticuli cellulase (Avicelase) is regulated by both activation and repression. Mol Gen Genet 251: 186195.
  • Walter S & Schrempf H (2003) Oligomerization, membrane anchoring, and cellulose-binding characteristics of AbpS, a receptor-like Streptomyces protein. J Biol Chem 278: 2663926647.
  • Walter S & Schrempf H (2008) Characteristics of the surface-located carbohydrate-binding protein CbpC from Streptomyces coelicolor A3(2). Arch Microbiol 190: 119127.
  • Walter S, Wellmann E & Schrempf H (1998) The cell wall-anchored Streptomyces reticuli Avicel-binding protein (AbpS) and its gene. J Bacteriol 180: 16471654.
  • Wang F, Xiao X, Saito A & Schrempf H (2002) Streptomyces olivaceoviridis possesses a phosphotransferase system that mediates specific, phosphoenolpyruvate-dependent uptake of N-acetylglucosamine. Mol Genet Genomics 268: 344351.
  • Wang L & Vining LC (2003) Control of growth, secondary metabolism and sporulation in Streptomyces venezuelae ISP2530 by jadW(1), a member of the afsA family of gamma-butyrolactone regulatory genes. Microbiology 149: 19912004.
  • Washizu K, Ando K, Koikeda S, Hirose S, Matsuura A, Takagi H, Motoki M & Takeuchi K (1994) Molecular cloning of the gene for microbial transglutaminase from Streptoverticillium and its expression in Streptomyces lividans. Biosci Biotech Bioch 58: 8287.
  • Widdick DA, Dilks K, Chandra G, Bottrill A, Naldrett M, Pohlschroder M & Palmer T (2006) The twin-arginine translocation pathway is a major route of protein export in Streptomyces coelicolor. P Natl Acad Sci USA 103: 1792717932.
  • Widdick DA, Eijlander RT, Van Dijl JM, Kuipers OP & Palmer T (2008) A facile reporter system for the experimental identification of twin-arginine translocation (Tat) signal peptides from all kingdoms of life. J Mol Biol 375: 595603.
  • Wildermuth H (1970) Development and organization of the aerial mycelium in Streptomyces coelicolor. J Gen Microbiol 60: 4350.
  • Wildermuth W, Wehrli E & Horne RW (1971) The surface structure of spores and aerial mycelium in Streptomyces coelicolor. J Ultrastruct Res 35: 168180.
  • Willey J, Schwedock J & Losick R (1993) Multiple extracellular signals govern the production of a morphogenetic protein involved in aerial mycelium formation by Streptomyces coelicolor. Genes Dev 7: 895903.
  • Willey J, Willems A, Kodani S & Nodwell JR (2006) Morphogenetic surfactants and their role in the formation of aerial hyphae in Streptomyces coelicolor. Mol Microbiol 59: 731742.
  • Wos M & Pollard P (2006) Sensitive and meaningful measures of bacterial metabolic activity using NADH fluorescence. Water Res 40: 20842092.
  • Wösten HA & Willey JM (2000) Surface-active proteins enable microbial aerial hyphae to grow into the air. Microbiology 146: 767773.
  • Xiao X, Wang F, Saito A, Majka J, Schlösser A & Schrempf H (2002) The novel Streptomyces olivaceoviridis ABC transporter Ngc mediates uptake of N-acetylglucosamine and N,N′-diacetylchitobiose. Mol Genet Genomics 267: 429439.
  • Xie F, Chao Y, Yang Z, Yang J, Xue Z, Luo Y & Qian S (2009) Purification and characterization of four keratinases produced by Streptomyces sp strain 16 in native human foot skin medium. Bioresource Technol 101: 344350.
  • Xu H, Chater KF, Deng Z & Tao M (2008a) A cellulose synthase-like protein involved in hyphal tip growth and morphological differentiation in Streptomyces. J Bacteriol 190: 49714978.
  • Xu XP, Wang ZJ, Fan KQ, Wang SL, Jia CJ, Han H, Ramalingam E & Yang KQ (2008b) Localization of the ActIII actinorhodin polyketide reductase to the cell wall. FEMS Microbiol Lett 287: 1521.
  • Yamanaka K, Oikawa H, Ogawa H, Hosono K, Shinmachi F, Takano H, Sakuda S, Beppu T & Ueda K (2005) Desferrioxamine E produced by Streptomyces griseus stimulates growth and development of Streptomyces tanashiensis. Microbiology 151: 28992905.
  • Yamazaki H, Tomono A, Ohnishi Y & Horinouchi S (2004) DNA binding specificity of AdpA, a transcriptional activator in the A-factor regulatory cascade in Streptomyces griseus. Mol Microbiol 53: 555572.
  • Yim G, Wang HH & Davies J (2007) Antibiotics as signalling molecules. Philos T Roy Soc B 362: 11951200.
  • Yuan L & Cole GT (1989) Characterization of a proteinase inhibitor isolated from the fungal pathogen Coccidioides immitis. Biochem J 257: 729736.
  • Zeltins A & Schrempf H (1995) Visualization of α-chitin with a specific chitin-binding protein (CHB1) from Streptomycesolivaceoviridis. Anal Biochem 231: 287294.
  • Zeltins A & Schrempf H (1997) Specific interaction of the Streptomyces chitin-binding protein CHB1 with α-chitin: the role of individual tryptophan residues. Eur J Biochem 246: 557564.
  • Zhang D, Wang M, Du G, Zhao Q, Wu J & Chen J (2008a) Surfactant protein of the Streptomyces subtilisin inhibitor family inhibits transglutaminase activation in Streptomyces hygroscopicus. J Agr Food Chem 56: 34033408.
  • Zhang D, Wang M, Du G, Zhao Q, Wu J & Chen J (2008b) Two different proteases from Streptomyces hygroscopicus are involved in transglutaminase activation. J Agr Food Chem 56: 1026110264.
  • Zhao L, Beyer NJ, Borisova SA & Liu HW (2003) Glucosylation as part of a self-resistance mechanism in methymycin/picromycin producing strain Streptomyces venezuelae. Biochemistry 42: 1479414804.
  • Zotzel J, Keller P & Fuchsbauer HL (2003a) Transglutaminase from Streptomyces mobaraensis is activated by an endogenous metalloprotease. Eur J Biochem 270: 32143222.
  • Zotzel J, Pasternack R, Pelzer C, Ziegert D, Mainusch M & Fuchsbauer HL (2003b) Activated transglutaminase from Streptomyces mobaraensis is processed by tripeptidyl aminopeptidase in the final step. Eur J Biochem 270: 41494155.
  • Zou P & Schrempf H (2000) The heme-independent manganese-peroxidase activity depends on the presence of the C-terminal domain within the Streptomyces reticuli catalase-peroxidase CpeB. Eur J Biochem 267: 28402849.