SEARCH

SEARCH BY CITATION

References

  • Ahmed M, Lock M, Miller CG & Fraser NW (2002) Regions of the herpes simplex virus type 1 latency-associated transcript that protect cells from apoptosis in vitro and protect neuronal cells in vivo. J Virol 76: 717729.
  • Amelio AL, Giordani NV, Kubat NJ, O'neil JE & Bloom DC (2006) Deacetylation of the herpes simplex virus type 1 latency-associated transcript (LAT) enhancer and a decrease in LAT abundance precede an increase in ICP0 transcriptional permissiveness at early times postexplant. J Virol 80: 20632068.
  • Arthur J, Efstathiou S & Simmons A (1993) Intranuclear foci containing low abundance herpes simplex virus latency-associated transcripts visualized by non-isotopic in situ hybridization. J Gen Virol 74(Pt 7): 13631370.
  • Arthur JL, Scarpini CG, Connor V, Lachmann RH, Tolkovsky AM & Efstathiou S (2001) Herpes simplex virus type 1 promoter activity during latency establishment, maintenance, and reactivation in primary dorsal root neurons in vitro. J Virol 75: 38853895.
  • Bertke AS, Swanson SM, Chen J, Imai Y, Kinchington PR & Margolis TP (2011) A5-positive primary sensory neurons are nonpermissive for productive infection with herpes simplex virus 1 in vitro. J Virol 85: 66696677.
  • Bloom DC, Giordani NV & Kwiatkowski DL (2010) Epigenetic regulation of latent HSV-1 gene expression. Biochim Biophys Acta 1799: 246256.
  • Boehmer PE & Nimonkar AV (2003) Herpes virus replication. IUBMB Life 55: 1322.
  • Boissiere SL, Hughes T & O'Hare P (1999) HCF-dependent nuclear import of VP16. EMBO J 18: 480489.
  • Boss IW, Plaisance KB & Renne R (2009) Role of virus-encoded microRNAs in herpesvirus biology. Trends Microbiol 17: 544553.
  • Boutell C, Sadis S & Everett RD (2002) Herpes simplex virus type 1 immediate-early protein ICP0 and is isolated RING finger domain act as ubiquitin E3 ligases in vitro. J Virol 76: 841850.
  • Branco FJ & Fraser NW (2005) Herpes simplex virus type 1 latency-associated transcript expression protects trigeminal ganglion neurons from apoptosis. J Virol 79: 90199025.
  • Burton EA, Hong C-S & Glorioso JC (2003) The stable 2.0-kilobase intron of the herpes simplex virus type 1 latency-associated transcript does not function as an antisense repressor of ICP0 in nonneuronal cells. J Virol 77: 35163530.
  • Cai W & Schaffer PA (1992) Herpes simplex virus type 1 ICP0 regulates expression of immediate-early, early, and late genes in productively infected cells. J Virol 66: 29042915.
  • Cai W, Astor TL, Liptak LM, Cho C, Coen DM & Schaffer PA (1993) The herpes simplex virus type 1 regulatory protein ICP0 enhances virus replication during acute infection and reactivation from latency. J Virol 67: 75017512.
  • Camarena V, Kobayashi M, Kim JY, Roehm P, Perez R, Gardner J, Wilson AC, Mohhr I & Chao MV (2010) Nature and duration of growth factor signaling through receptor tyrosine kinases regulates HSV-1 latency in neurons. Cell Host Microbe 8: 320330.
  • Carpenter D, Hsiang C, Brown DJ, Jin L, Osorio N, BenMohamed L, Jones C & Wechsler SL (2007) Stable cell lines expressing high levels of the herpes simplex virus type 1 LAT are refractory to caspase 3 activation and DNA laddering following cold shock induced apoptosis. Virology 369: 1218.
  • Carter KL & Roizman B (1996) Alternatively spliced mRNAs predicted to yield frame-shift proteins and stable intron 1 RNAs of the herpes simplex virus 1 regulatory gene alpha 0 accumulate in the cytoplasm of infected cells. P Natl Acad Sci USA 93: 1253512540.
  • Chen SH, Kramer MF, Schaffer PA & Coen DM (1997) A viral function represses accumulation of transcripts from productive-cycle genes in mouse ganglia latently infected with herpes simplex virus. J Virol 71: 58785884.
  • Chen XP, Mata M, Kelley M, Glorioso JC & Fink DJ (2002) The relationship of herpes simplex virus latency associated transcript expression to genome copy number: a quantitative study using laser capture microdissection. J Neurovirol 8: 204210.
  • Chiocca EA, Choi BB, Cai WZ, DeLuca NA, Schaffer PA, DiFiglia M, Breakefield XO & Martuza RL (1990) Transfer and expression of the lacZ gene in rat brain neurons mediated by herpes simplex virus mutants. New Biol 2: 739746.
  • Ciacci-Zanella J, Stone M, Henderson G & Jones C (1999) The latency-related gene of bovine herpesvirus 1 inhibits programmed cell death. J Virol 73: 97349740.
  • Cliffe AR, Garber DA & Knipe DM (2009) Transcription of the herpes simplex virus latency-associated transcript promotes the formation of facultative heterochromatin on lytic promoters. J Virol 83: 81828190.
  • Coleman HM, Connor V, Cheng ZS, Grey F, Preston CM & Efstathiou S (2008) Histone modifications associated with herpes simplex virus type 1 genomes during quiescence and following ICP0-mediated de-repression. J Gen Virol 89: 6877.
  • Colgin MA, Smith RL & Wilcox CL (2001) Inducible cyclic AMP early repressor produces reactivation of latent herpes simplex virus type 1 in neurons in vitro. J Virol 75: 29122920.
  • Cuchet D, Sykes A, Nicolas A, Orr A, Murray I, Sirma H, Heeren J, Bartelt A & Everett RD (2011) PML isoforms I and II participate in PML-dependent restriction of HSV-1 replication. J Cell Sci 124: 280291.
  • Cui C, Griffiths A, Li G, Silva LM, Kramer MF, Gaasterland T, Wang XJ & Coen DM (2006) Prediction and identification of herpes simplex virus 1-encoded microRNAs. J Virol 80: 54995508.
  • Danaher RJ, Jacob RJ & Miller CS (1999) Establishment of a quiescent herpes simplex virus type 1 infection in neurally-differentiated PC12 cells. J Neurovirol 5: 258267.
  • Dasgupta G & Benmohamed L (2011) Of mice and not humans: how reliable are animal models for evaluation of herpes CD8(+)-T cell-epitopes-based immunotherapeutic vaccine candidates? Vaccine 29: 58245836.
  • Deatly AM, Spivack JG, Lavi E, O'Boyle DR & Fraser NW (1988) Latent herpes simplex virus type 1 transcripts in peripheral and central nervous system tissues of mice map to similar regions of the viral genome. J Virol 62: 749756.
  • Decman V, Kinchington PR, Harvey SA & Hendricks RL (2005) Gamma interferon can block herpes simplex virus type 1 reactivation from latency, even in the presence of late gene expression. J Virol 79: 1033910347.
  • Deshmane SL & Fraser NW (1989) During latency, herpes simplex virus type 1 DNA is associated with nucleosomes in a chromatin structure. J Virol 63: 943947.
  • Devi-Rao GB, Goodart SA, Hecht LM, Rochford R, Rice MK & Wagner EK (1991) Relationship between polyadenylated and nonpolyadenylated herpes simplex virus type 1 latency-associated transcripts. J Virol 65: 21792190.
  • Dobson AT, Margolis TP, Sedarati F, Stevens JG & Feldman LT (1990) A latent, nonpathogenic HSV-1-derived vector stably expresses beta-galactosidase in mouse neurons. Neuron 5: 353360.
  • Dressler GR, Rock DL & Fraser NW (1987) Latent herpes simplex virus type 1 DNA is not extensively methylated in vivo. J Gen Virol 68: 17611765.
  • Du T, Zhou G, Khan S, Gu H & Roizman B (2010) Disruption of HDAC/CoREST/REST repressor by dnREST reduces genome silencing and increases virulence of herpes simplex virus. P Natl Acad Sci USA 107: 1590415909.
  • Ecob-Prince MS, Preston CM, Rixon FJ, Hassan K & Kennedy PG (1993) Neurons containing latency-associated transcripts are numerous and widespread in dorsal root ganglia following footpad inoculation of mice with herpes simplex virus type 1 mutant in1814. J Gen Virol 74(Pt 6): 985994.
  • Efstathiou S & Preston CM (2005) Towards an understanding of the molecular basis of herpes simplex virus latency. Virus Res 111: 108119.
  • Efstathiou S, Minson AC, Field HJ, Anderson JR & Wildy P (1986) Detection of herpes simplex virus-specific DNA sequences in latently infected mice and in humans. J Virol 57: 446455.
  • Everett RD (1984) Trans activation of transcription by herpes virus products: requirement for two HSV-1 immediate-early polypeptides for maximum activity. EMBO J 3: 31353141.
  • Everett RD (2000) ICP0, a regulator of herpes simplex virus during lytic and latent infection. Bioessays 22: 761770.
  • Everett RD (2010) Depletion of CoREST does not improve the replication of ICP0 null mutant herpes simplex virus type 1. J Virol 84: 36953698.
  • Everett RD, Cross A & Orr A (1993) A truncated form of herpes simplex virus type 1 immediate-early protein Vmw110 is expressed in a cell type dependent manner. Virology 197: 751756.
  • Everett RD, Boutell C & Orr A (2004) Phenotype of a herpes simplex virus type 1 mutant that fails to express immediate-early regulatory protein ICP0. J Virol 78: 17631774.
  • Everett RD, Rechter S, Papior P, Tavalai N, Stamminger T & Orr A (2006) PML contributes to a cellular mechanism of repression of herpes simplex virus type 1 infection that is inactivated by ICP0. J Virol 80: 79958005.
  • Farrell MJ, Dobson AT & Feldman LT (1991) Herpes simplex virus latency-associated transcript is a stable intron. P Natl Acad Sci USA 88: 790794.
  • Feldman LT, Ellison AR, Voytek CC, Yang L, Krause P & Margolis TP (2002) Spontaneous molecular reactivation of herpes simplex virus type 1 latency in mice. P Natl Acad Sci USA 99: 978983.
  • Ferenczy MW, Ranayhossaini DJ & Deluca NA (2011) Activities of ICP0 involved in the reversal of silencing of quiescent herpes simplex virus 1. J Virol 85: 49935002.
  • Freeman ML, Sheridan BS, Bonneau RH & Hendricks RL (2007) Psychological stress compromises CD8+ T cell control of latent herpes simplex virus type 1 infections. J Immunol 179: 322328.
  • Früh K, Ahn K, Djaballah H, Sempé P, van Endert PM, Tampé R, Peterson PA & Yang Y (1995) A viral inhibitor of peptide transporters for antigen presentation. Nature 375: 415418.
  • Garber DA, Beverley SM & Coen DM (1993) Demonstration of circularization of herpes simplex virus DNA following infection using pulsed field gel electrophoresis. Virology 197: 459462.
  • Garber DA, Schaffer PA & Knipe DM (1997) A LAT-associated function reduces productive-cycle gene expression during acute infection of murine sensory neurons with herpes simplex virus type 1. J Virol 71: 58855893.
  • Gebhardt BM & Halford WP (2005) Evidence that spontaneous reactivation of herpes virus does not occur in mice. Virol J 2: 67.
  • Giordani NV, Neumann DM, Kwiatkowski DL, Bhattacharjee PS, McAnany PK, Hill JM & Bloom DC (2008) During herpes simplex virus type 1 infection of rabbits, the ability to express the latency-associated transcript increases latent-phase transcription of lytic genes. J Virol 82: 60566060.
  • Gu H & Roizman B (2007) Herpes simplex virus-infected cell protein 0 blocks the silencing of viral DNA by dissociating histone deacetylases from the CoREST-REST complex. P Natl Acad Sci USA 104: 1713417139.
  • Gu H & Roizman B (2009) The two functions of herpes simplex virus 1 ICP0, inhibition of silencing by the CoREST/REST/HDAC complex and degradation of PML, are executed in tandem. J Virol 83: 181187.
  • Gu H, Liang Y, Mandel G & Roizman B (2005) Components of the REST/CoREST/histone deacetylase repressor complex are disrupted, modified, and translocated in HSV-1-infected cells. P Natl Acad Sci USA 102: 75717576.
  • Gussow AM, Giordani NV, Tran RK, Imai Y, Kwiatkowski DL, Rall GF, Margolis TP & Bloom DC (2006) Tissue-specific splicing of the herpes simplex virus type 1 latency-associated transcript (LAT) intron in LAT transgenic mice. J Virol 80: 94149423.
  • Hagglund R & Roizman B (2004) Role of ICP0 in the strategy of conquest of the host cell by herpes simplex virus 1. J Virol 78: 21692178.
  • Hagmann M, Georgiev O, Schaffner W & Douville P (1995) Transcription factors interacting with herpes simplex virus alpha gene promoters in sensory neurons. Nucleic Acids Res 23: 49784985.
  • Halford WP & Schaffer PA (2001) ICP0 is required for efficient reactivation of herpes simplex virus type 1 from neuronal latency. J Virol 75: 32403249.
  • Halford WP, Gebhardt BM & Carr DJ (1996) Mechanisms of herpes simplex virus type 1 reactivation. J Virol 70: 50515060.
  • Halford WP, Kemp CD, Isler JA, Davido DJ & Schaffer PA (2001) ICP0, ICP4, or VP16 expressed from adenovirus vectors induces reactivation of latent herpes simplex virus type 1 in primary cultures of latently infected trigeminal ganglion cells. J Virol 75: 61436153.
  • Hamza MA, Higgins DM, Feldman LT & Ruyechan WT (2007) The latency-associated transcript of herpes simplex virus type 1 promotes survival and stimulates axonal regeneration in sympathetic and trigeminal neurons. J Neurovirol 13: 5666.
  • Harris RA, Everett RD, Zhu XX, Silverstein S & Preston CM (1989) Herpes simplex virus type 1 immediate-early protein Vmw110 reactivates latent herpes simplex virus type 2 in an in vitro latency system. J Virol 63: 35133515.
  • Held K, Junker A, Dornmair K, Meinl E, Sinicina I, Brandt T, Theil D & Derfuss T (2011) Expression of herpes simplex virus 1-encoded microRNAs in human trigeminal ganglia and their relation to local T-cell infiltrates. J Virol 85: 96809685.
  • Henderson G, Perng GC, Nesburn AB, Wechsler SL & Jones C (2004) The latency-related gene encoded by bovine herpesvirus 1 can suppress caspase 3 and caspase 9 cleavage during productive infection. J Neurovirol 10: 6470.
  • Henderson G, Jaber T, Carpenter D, Wechsler SL & Jones C (2009) Identification of herpes simplex virus type 1 proteins encoded within the first 1.5 kb of the latency-associated transcript. J Neurovirol 15: 439448.
  • Herrera FJ & Triezenberg SJ (2004) VP16-dependent association of chromatin-modifying coactivators and underrepresentation of histones at immediate-early gene promoters during herpes simplex virus infection. J Virol 78: 96899696.
  • Hill TJ, Field HJ & Blyth WA (1975) Acute and recurrent infection with herpes simplex virus in the mouse: a model for studying latency and recurrent disease. J Gen Virol 28: 341353.
  • Hill TJ, Harbour DA & Blyth WA (1980) Isolation of herpes simplex virus from the skin of clinically normal mice during latent infection. J Gen Virol 47: 205207.
  • Hill A, Jugovic P, York I, Russ G, Bennink J, Yewdell J, Ploegh H & Johnson D (1995) Herpes simplex virus turns off the TAP to evade host immunity. Nature 375: 411415.
  • Honess RW & Roizman B (1974) Regulation of herpesvirus macromolecular synthesis. I. Cascade regulation of the synthesis of three groups of viral proteins. J Virol 14: 819.
  • Hoshino Y, Pesnicak L, Straus SE & Cohen JI (2009) Impairment in reactivation of a latency associated transcript (LAT)-deficient HSV-2 is not solely dependent on the latent viral load or the number of CD8(+) T cells infiltrating the ganglia. Virology 387: 193199.
  • Huang J, Kent JR, Placek B, Whelan KA, Hollow CM, Zeng PY, Fraser NW & Berger SL (2006) Trimethylation of histone H3 lysine 4 by Set1 in the lytic infection of human herpes simplex virus 1. J Virol 80: 57405746.
  • Hunsperger EA & Wilcox CL (2003a) Caspase-3-dependent reactivation of latent herpes simplex virus type 1 in sensory neuronal cultures. J Neurovirol 9: 390398.
  • Hunsperger EA & Wilcox CL (2003b) Capsaicin-induced reactivation of latent herpes simplex virus type 1 in sensory neurons in culture. J Gen Virol 84: 10711078.
  • Imai Y, Apakupakul K, Krause PR, Halford WP & Margolis TP (2009) Investigation of the mechanism by which herpes simplex virus type 1 LAT sequences modulate preferential establishment of latent infection in mouse trigeminal ganglia. J Virol 83: 78737882.
  • Inman M, Perng GC, Henderson G, Ghiasi H, Nesburn AB, Wechsler SL & Jones C (2001) Region of herpes simplex virus type 1 latency-associated transcript sufficient for wild-type spontaneous reactivation promotes cell survival in tissue culture. J Virol 75: 36363646.
  • Jaber T, Henderson G, Li S, Perng G-C, Carpenter D, Wechsler SL & Jones C (2009) Identification of a novel herpes simplex virus type 1 transcript and protein (AL3) expressed during latency. J Gen Virol 90: 23422352.
  • Javier RT, Stevens JG, Dissette VB & Wagner EK (1988) A herpes simplex virus transcript abundant in latently infected neurons is dispensable for establishment of the latent state. Virology 166: 254257.
  • Jerome KR, Fox R, Chen Z, Sears AE, Lee Hy & Corey L (1999) Herpes simplex virus inhibits apoptosis through the action of two genes, Us5 and Us3. J Virol 73: 89508957.
  • Jin L, Perng GC, Mott KR, Osorio N, Naito J, Brick DJ, Carpenter D, Jones C & Wechsler SL (2005) A herpes simplex virus type 1 mutant expressing a baculovirus inhibitor of apoptosis gene in place of latency-associated transcript has a wild-type reactivation phenotype in the mouse. J Virol 79: 1228612295.
  • Jin L, Carpenter D, Moerdyk-Schauwecker M, Vanarsdall AL, Osorio N, Hsiang C, Jones C & Wechsler SL (2008) Cellular FLIP can substitute for the herpes simplex virus type 1 latency-associated transcript gene to support a wild-type virus reactivation phenotype in mice. J Neurovirol 14: 389400.
  • Jurak I, Kramer MF, Mellor JC, van Lint AL, Roth FP, Knipe DM & Coen DM (2010) Numerous conserved and divergent microRNAs expressed by herpes simplex viruses 1 and 2. J Virol 84: 46594672.
  • Jurak I, Griffiths A & Coen DM (2011) Mammalian alphaherpesvirus miRNAs. Biochim Biophys Acta 1809: 641653.
  • Katz JP, Bodin ET & Coen DM (1990) Quantitative polymerase chain reaction analysis of herpes simplex virus DNA in ganglia of mice infected with replication-incompetent mutants. J Virol 64: 42884295.
  • Kent JR, Zeng PY, Atanasiu D, Gardner J, Fraser NW & Berger SL (2004) During lytic infection herpes simplex virus type 1 is associated with histones bearing modifications that correlate with active transcription. J Virol 78: 1017810186.
  • Khanna KM, Lepisto AJ, Decman V & Hendricks RL (2004) Immune control of herpes simplex virus during latency. Curr Opin Immunol 16: 463469.
  • Knickelbein JE, Khanna KM, Yee MB, Baty CJ, Kinchington PR & Hendricks RL (2008) Noncytotoxic lytic granule-mediated CD8+ T cell inhibition of HSV-1 reactivation from neuronal latency. Science 322: 268271.
  • Knipe DM & Cliffe A (2008) Chromatin control of herpes simplex virus lytic and latent infection. Nat Rev Microbiol 6: 211221.
  • Koelle DM & Corey L (2008) Herpes simplex: insights on pathogenesis and possible vaccines. Annu Rev Med 59: 381395.
  • Koelle DM & Wald A (2000) Herpes simplex virus: the importance of asymptomatic shedding. J Antimicrob Chemother 45(Suppl T3): 18.
  • Kolb G & Kristie TM (2008) Association of the cellular coactivator HCF-1 with the Golgi apparatus in sensory neurons. J Virol 82: 95559563.
  • Kramer MF, Chen SH, Knipe DM & Coen DM (1998) Accumulation of viral transcripts and DNA during establishment of latency by herpes simplex virus. J Virol 72: 11771185.
  • Kramer MF, Jurak I, Pesola JM, Boissel S, Knipe DM & Coen DM (2011) Herpes simplex virus 1 microRNAs expressed abundantly during latent infection are not essential for latency in mouse trigeminal ganglia. Virology 417: 239247.
  • Kristie TM (2007) Early events pre-initiation of alphaherpes viral gene expression. Human Herpesviruses: Biology, Therapy, and Immunoprophylaxis (Arvin A, Campadelli-Fiume G, Mocarski E, Moore PS, Roizman B, Whitley R & Yamanishi K, eds). Cambridge University Press, Cambridge.
  • Kristie TM & Roizman B (1988) Differentiation and DNA contact points of host proteins binding at the cis site for virion-mediated induction of alpha genes of herpes simplex virus 1. J Virol 62: 11451157.
  • Kristie TM, Vogel JL & Sears AE (1999) Nuclear localization of the C1 factor (host cell factor) in sensory neurons correlates with reactivation of herpes simplex virus from latency. P Natl Acad Sci USA 96: 12291233.
  • Krummenacher C, Zabolotny JM & Fraser NW (1997) Selection of a nonconsensus branch point is influenced by an RNA stem-loop structure and is important to confer stability to the herpes simplex virus 2-kilobase latency-associated transcript. J Virol 71: 58495860.
  • Kubat NJ, Amelio AL, Giordani NV & Bloom DC (2004a) The herpes simplex virus type 1 latency-associated transcript (LAT) enhancer/rcr is hyperacetylated during latency independently of LAT transcription. J Virol 78: 1250812518.
  • Kubat NJ, Tran RK, McAnany P & Bloom DC (2004b) Specific histone tail modification and not DNA methylation is a determinant of herpes simplex virus type 1 latent gene expression. J Virol 78: 11391149.
  • Kutluay SB & Triezenberg SJ (2009) Role of chromatin during herpesvirus infections. Biochim Biophys Acta 1790: 456466.
  • Kwiatkowski DL, Thompson HW & Bloom DC (2009) The polycomb group protein Bmi1 binds to the herpes simplex virus 1 latent genome and maintains repressive histone marks during latency. J Virol 83: 81738181.
  • Kwon BS, Gangarosa LP, Burch KD, deBack J & Hill JM (1981) Induction of ocular herpes simplex virus shedding by iontophoresis of epinephrine into rabbit cornea. Invest Ophthalmol Vis Sci 21: 442449.
  • Lacasse JJ & Schang LM (2010) During lytic infections, herpes simplex virus type 1 DNA is in complexes with the properties of unstable nucleosomes. J Virol 84: 19201933.
  • Lachmann RH, Sadarangani M, Atkinson HR & Efstathiou S (1999) An analysis of herpes simplex virus gene expression during latency establishment and reactivation. J Gen Virol 80(Pt 5): 12711282.
  • Lakin ND, Palmer R, Lillycrop KA, Howard MK, Burke LC, Thomas NS & Latchman DS (1995) Down regulation of the octamer binding protein Oct-1 during growth arrest and differentiation of a neuronal cell line. Brain Res Mol Brain Res 28: 4754.
  • Latchman DS (1999) Regulation of DNA virus transcription by cellular POU family transcription factors. Rev Med Virol 9: 3138.
  • Lee MG, Wynder C, Cooch N & Shiekhattar R (2005) An essential role for CoREST in nucleosomal histone 3 lysine 4 demethylation. Nature 437: 432435.
  • Leib DA, Bogard CL, Kosz-Vnenchak M, Hicks KA, Coen DM, Knipe DM & Schaffer PA (1989) A deletion mutant of the latency-associated transcript of herpes simplex virus type 1 reactivates from the latent state with reduced frequency. J Virol 63: 28932900.
  • Leopardi R, Van Sant C & Roizman B (1997) The herpes simplex virus 1 protein kinase US3 is required for protection from apoptosis induced by the virus. P Natl Acad Sci USA 94: 78917896.
  • Liang Y, Vogel JL, Narayanan A, Peng H & Kristie TM (2009) Inhibition of the histone demethylase LSD1 blocks alpha-herpesvirus lytic replication and reactivation from latency. Nat Med 15: 13121317.
  • Lillycrop KA, Dent CL, Wheatley SC, Beech MN, Ninkina NN, Wood JN & Latchman DS (1991) The octamer-binding protein Oct-2 represses HSV immediate-early genes in cell lines derived from latently infectable sensory neurons. Neuron 7: 381390.
  • Liu T, Tang Q & Hendricks RL (1996) Inflammatory infiltration of the trigeminal ganglion after herpes simplex virus type 1 corneal infection. J Virol 70: 264271.
  • Lomonte P, Thomas J, Texier P, Caron C, Khochbin S & Epstein AL (2004) Functional interaction between class II histone deacetylases and ICP0 of herpes simplex virus type 1. J Virol 78: 67446757.
  • Mador N, Goldenberg D, Cohen O, Panet A & Steiner I (1998) Herpes simplex virus type 1 latency-associated transcripts suppress viral replication and reduce immediate-early gene mRNA levels in a neuronal cell line. J Virol 72: 50675075.
  • Maggioncalda J, Mehta A, Su YH, Fraser NW & Block TM (1996) Correlation between herpes simplex virus type 1 rate of reactivation from latent infection and the number of infected neurons in trigeminal ganglia. Virology 225: 7281.
  • Margolis TP, Dawson CR & LaVail JH (1992) Herpes simplex viral infection of the mouse trigeminal ganglion. Immunohistochemical analysis of cell populations. Invest Ophthalmol Vis Sci 33: 259267.
  • Margolis TP, Imai Y, Yang L, Vallas V & Krause PR (2007) Herpes simplex virus type 2 (HSV-2) establishes latent infection in a different population of ganglionic neurons than HSV-1: role of latency-associated transcripts. J Virol 81: 18721878.
  • Mark KE, Wald A, Magaret AS, Selke S, Olin L, Huang ML & Corey L (2008) Rapidly cleared episodes of herpes simplex virus reactivation in immunocompetent adults. J Infect Dis 198: 11411149.
  • Marshall KR, Lachmann RH, Efstathiou S, Rinaldi A & Preston CM (2000) Long-term transgene expression in mice infected with a herpes simplex virus type 1 mutant severely impaired for immediate-early gene expression. J Virol 74: 956964.
  • McGeoch DJ, Rixon FJ & Davison AJ (2006) Topics in herpesvirus genomics and evolution. Virus Res 117: 90104.
  • McMahon R & Walsh D (2008) Efficient quiescent infection of normal human diploid fibroblasts with wild-type herpes simplex virus type 1. J Virol 82: 1021810230.
  • Mehta A, Maggioncalda J, Bagasra O, Thikkavarapu S, Saikumari P, Valyi-Nagy T, Fraser NW & Block TM (1995) In situ DNA PCR and RNA hybridization detection of herpes simplex virus sequences in trigeminal ganglia of latently infected mice. Virology 206: 633640.
  • Miller CS, Danaher RJ & Jacob RJ (2006) ICP0 is not required for efficient stress-induced reactivation of herpes simplex virus type 1 from cultured quiescently infected neuronal cells. J Virol 80: 33603368.
  • Moriya A, Yoshiki A, Kita M, Fushiki S & Imanishi J (1994) Heat shock-induced reactivation of herpes simplex virus type 1 in latently infected mouse trigeminal ganglion cells in dissociated culture. Arch Virol 135: 419425.
  • Muylaert I, Tang KW & Elias P (2011) Replication and recombination of herpes simplex virus DNA. J Biol Chem 286: 1561915624.
  • Nevels M, Nitzsche A & Paulus C (2011) How to control an infectious bead string: nucleosome-based regulation and targeting of herpesvirus chromatin. Rev Med Virol 21: 154180.
  • O'Hare P (1993) The virion transactivator of herpes simplex virus. Semin Virol 4: 145155.
  • O'Hare P & Hayward GS (1985) Three trans-acting regulatory proteins of herpes simplex virus modulate immediate-early gene expression in a pathway involving positive and negative feedback regulation. J Virol 56: 723733.
  • O'Neil JE, Loutsch JM, Aguilar JS, Hill JM, Wagner EK & Bloom DC (2004) Wide variations in herpes simplex virus type 1 inoculum dose and latency-associated transcript expression phenotype do not alter the establishment of latency in the rabbit eye model. J Virol 78: 50385044.
  • Orr MT, Mathis MA, Lagunoff M, Sacks JA & Wilson CB (2007) CD8 T cell control of HSV reactivation from latency is abrogated by viral inhibition of MHC class I. Cell Host Microbe 2: 172180.
  • Pebody RG, Andrews N, Brown D et al. (2004) The seroepidemiology of herpes simplex virus type 1 and 2 in Europe. Sex Transm Infect 80: 185191.
  • Peng W, Vitvitskaia O, Carpenter D, Wechsler SL & Jones C (2008) Identification of two small RNAs within the first 1.5-kb of the herpes simplex virus type 1-encoded latency-associated transcript. J Neurovirol 14: 4152.
  • Perkins D, Pereira EFR, Gober M, Yarowsky PJ & Aurelian L (2002) The herpes simplex virus type 2 R1 protein kinase (ICP10 PK) blocks apoptosis in hippocampal neurons, involving activation of the MEK/MAPK survival pathway. J Virol 76: 14351449.
  • Perng GC, Ghiasi H, Slanina SM, Nesburn AB & Wechsler SL (1996) The spontaneous reactivation function of the herpes simplex virus type 1 LAT gene resides completely within the first 1.5 kilobases of the 8.3-kilobase primary transcript. J Virol 70: 976984.
  • Perng GC, Jones C, Ciacci-Zanella J et al. (2000) Virus-induced neuronal apoptosis blocked by the herpes simplex virus latency-associated transcript. Science 287: 15001503.
  • Perng GC, Slanina SM, Ghiasi H, Nesburn AB & Wechsler SL (2001) The effect of latency-associated transcript on the herpes simplex virus type 1 latency-reactivation phenotype is mouse strain-dependent. J Gen Virol 82: 11171122.
  • Perng GC, Maguen B, Jin L et al. (2002) A gene capable of blocking apoptosis can substitute for the herpes simplex virus type 1 latency-associated transcript gene and restore wild-type reactivation levels. J Virol 76: 12241235.
  • Preston CM (2000) Repression of viral transcription during herpes simplex virus latency. J Gen Virol 81: 119.
  • Preston CM, Mabbs R & Nicholl MJ (1997) Construction and characterization of herpes simplex virus type 1 mutants with conditional defects in immediate early gene expression. Virology 229: 228239.
  • Proença JT, Coleman HM, Connor V, Winton DJ & Efstathiou S (2008) A historical analysis of herpes simplex virus promoter activation in vivo reveals distinct populations of latently infected neurones. J Gen Virol 89: 29652974.
  • Proença JT, Coleman HM, Nicoll MP, Connor V, Preston CM, Arthur J & Efstathiou S (2011) An investigation of HSV promoter activity compatible with latency establishment reveals VP16 independent activation of HSV immediate early promoters in sensory neurones. J Gen Virol 92: 25752585.
  • Ramachandran S, Davoli KA, Yee MB, Hendricks RL & Kinchington PR (2010) Delaying the expression of herpes simplex virus type 1 glycoprotein B (gB) to a true late gene alters neurovirulence and inhibits the gB-CD8+ T-cell response in the trigeminal ganglion. J Virol 84: 88118820.
  • Rock DL & Fraser NW (1983) Detection of HSV-1 genome in central nervous system of latently infected mice. Nature 302: 523525.
  • Rock DL, Nesburn AB, Ghiasi H, Ong J, Lewis TL, Lokensgard JR & Wechsler SL (1987) Detection of latency-related viral RNAs in trigeminal ganglia of rabbits latently infected with herpes simplex virus type 1. J Virol 61: 38203826.
  • Rødahl E & Haarr L (1997) Analysis of the 2-kilobase latency-associated transcript expressed in PC12 cells productively infected with herpes simplex virus type 1: evidence for a stable, nonlinear structure. J Virol 71: 17031707.
  • Roizman B (2011) The checkpoints of viral gene expression in productive and latent infection: the role of the HDAC/CoREST/LSD1/REST repressor complex. J Virol 85: 74747482.
  • Roizman B, Knipe D & Whitley R (2007) Herpes simplex viruses. Fields Virology (Knipe D, Howley P, Griffin DE, Lamb RA, Martin MA, Roizman B & Straus SE, eds), pp. 25012601. Lippincott Williams and Wilkins, New York.
  • Samaniego LA, Neiderhiser L & DeLuca NA (1998) Persistence and expression of the herpes simplex virus genome in the absence of immediate-early proteins. J Virol 72: 33073320.
  • Sawtell NM (1997) Comprehensive quantification of herpes simplex virus latency at the single-cell level. J Virol 71: 54235431.
  • Sawtell NM & Thompson RL (1992) Rapid in vivo reactivation of herpes simplex virus in latently infected murine ganglionic neurons after transient hyperthermia. J Virol 66: 21502156.
  • Sawtell NM, Poon DK, Tansky CS & Thompson RL (1998) The latent herpes simplex virus type 1 genome copy number in individual neurons is virus strain specific and correlates with reactivation. J Virol 72: 53435350.
  • Schiffer JT & Corey L (2009) New concepts in understanding genital herpes. Curr Infect Dis Rep 11: 457464.
  • Sedarati F, Izumi KM, Wagner EK & Stevens JG (1989) Herpes simplex virus type 1 latency-associated transcription plays no role in establishment or maintenance of a latent infection in murine sensory neurons. J Virol 63: 44554458.
  • Sedarati F, Margolis TP & Stevens JG (1993) Latent infection can be established with drastically restricted transcription and replication of the HSV-1 genome. Virology 192: 687691.
  • Shen W, Sa e Silva M, Jaber T, Vitvitskaia O, Li S, Henderson G & Jones C (2009) Two small RNAs encoded within the first 1.5 kilobases of the herpes simplex virus type 1 latency-associated transcript can inhibit productive infection and cooperate to inhibit apoptosis. J Virol 83: 91319139.
  • Shi YJ, Matson C, Lan F, Iwase S, Baba T & Shi Y (2005) Regulation of LSD1 histone demethylase activity by its associated factors. Mol Cell 19: 857864.
  • Simmons A & Tscharke DC (1992) Anti-CD8 impairs clearance of herpes simplex virus from the nervous system: implications for the fate of virally infected neurons. J Exp Med 175: 13371344.
  • Slobedman B, Efstathiou S & Simmons A (1994) Quantitative analysis of herpes simplex virus DNA and transcriptional activity in ganglia of mice latently infected with wild-type and thymidine kinase-deficient viral strains. J Gen Virol 75(Pt 9): 24692474.
  • Smith RL, Pizer LI, Johnson EM & Wilcox CL (1992) Activation of second-messenger pathways reactivates latent herpes simplex virus in neuronal cultures. Virology 188: 311318.
  • Smith RW, Malik P & Clements JB (2005) The herpes simplex virus ICP27 protein: a multifunctional post-transcriptional regulator of gene expression. Biochem Soc Trans 33: 499501.
  • Speck PG & Simmons A (1992) Synchronous appearance of antigen-positive and latently infected neurons in spinal ganglia of mice infected with a virulent strain of herpes simplex virus. J Gen Virol 73(Pt 5): 12811285.
  • Steiner I, Spivack JG, Lirette RP, Brown SM, MacLean AR, Subak-Sharpe JH & Fraser NW (1989) Herpes simplex virus type 1 latency-associated transcripts are evidently not essential for latent infection. EMBO J 8: 505511.
  • Steiner I, Spivack JG, Deshmane SL, Ace CI, Preston CM & Fraser NW (1990) A herpes simplex virus type 1 mutant containing a nontransinducing Vmw65 protein establishes latent infection in vivo in the absence of viral replication and reactivates efficiently from explanted trigeminal ganglia. J Virol 64: 16301638.
  • Stevens JG, Wagner EK, Devi-Rao GB, Cook ML & Feldman LT (1987) RNA complementary to a herpesvirus alpha gene mRNA is prominent in latently infected neurons. Science 235: 10561059.
  • Stow EC & Stow ND (1989) Complementation of a herpes simplex virus type 1 Vmw110 deletion mutant by human cytomegalovirus. J Gen Virol 70(Pt 3): 695704.
  • Strang BL & Stow ND (2005) Circularization of the herpes simplex virus type 1 genome upon lytic infection. J Virol 79: 1248712494.
  • Tang S, Bertke AS, Patel A, Wang K, Cohen JI & Krause PR (2008) An acutely and latently expressed herpes simplex virus 2 viral microRNA inhibits expression of ICP34.5, a viral neurovirulence factor. P Nat Acad Sci USA 105: 1093110936.
  • Tang S, Patel A & Krause PR (2009) Novel less-abundant viral microRNAs encoded by herpes simplex virus 2 latency-associated transcript and their roles in regulating ICP34.5 and ICP0 mRNAs. J Virol 83: 14331442.
  • Terry-Allison T, Smith CA & DeLuca NA (2007) Relaxed repression of herpes simplex virus type 1 genomes in Murine trigeminal neurons. J Virol 81: 1239412405.
  • Theil D, Derfuss T, Paripovic I, Herberger S, Meinl E, Schueler O, Strupp M, Arbusow V & Brandt T (2003) Latent herpesvirus infection in human trigeminal ganglia causes chronic immune response. Am J Pathol 163: 21792184.
  • Thomas SK, Gough G, Latchman DS, R S & Coffin RS (1999) Herpes simplex virus latency-associated transcript encodes a protein which greatly enhances virus growth, can compensate for deficiencies in immediate-early gene expression, and is likely to function during reactivation from virus latency. J Virol 73: 66186625.
  • Thompson RL & Sawtell NM (1997) The herpes simplex virus type 1 latency-associated transcript gene regulates the establishment of latency. J Virol 71: 54325440.
  • Thompson RL & Sawtell NM (2000) Replication of herpes simplex virus type 1 within trigeminal ganglia is required for high frequency but not high viral genome copy number latency. J Virol 74: 965974.
  • Thompson RL & Sawtell NM (2001) Herpes simplex virus type 1 latency-associated transcript gene promotes neuronal survival. J Virol 75: 66606675.
  • Thompson RL & Sawtell NM (2006) Evidence that the herpes simplex virus type 1 ICP0 protein does not initiate reactivation from latency in vivo. J Virol 80: 1091910930.
  • Thompson RL & Sawtell NM (2010) Therapeutic implications of new insights into the critical role of VP16 in initiating the earliest stages of HSV reactivation from latency. Future Med Chem 2: 10991105.
  • Thompson RL, Preston CM & Sawtell NM (2009) De novo synthesis of VP16 coordinates the exit from HSV latency in vivo. PLoS Pathog 5: e1000352.
  • Tumbar T, Sudlow G & Belmont AS (1999) Large-scale chromatin unfolding and remodeling induced by VP16 acidic activation domain. J Cell Biol 145: 13411354.
  • Umbach JL & Cullen BR (2009) The role of RNAi and microRNAs in animal virus replication and antiviral immunity. Genes Dev 23: 11511164.
  • Umbach JL, Kramer MF, Jurak I, Karnowski HW, Coen DM & Cullen BR (2008) MicroRNAs expressed by herpes simplex virus 1 during latent infection regulate viral mRNAs. Nature 454: 780783.
  • Umbach JL, Nagel MA, Cohrs RJ, Gilden DH & Cullen BR (2009) Analysis of human alphaherpesvirus microRNA expression in latently infected human trigeminal ganglia. J Virol 83: 1067710683.
  • Umbach JL, Wang K, Tang S, Krause PR, Mont EK, Cohen JI & Cullen BR (2010) Identification of viral microRNAs expressed in human sacral ganglia latently infected with herpes simplex virus 2. J Virol 84: 11891192.
  • Valyi-Nagy T, Deshmane S, Dillner A & Fraser NW (1991) Induction of cellular transcription factors in trigeminal ganglia of mice by corneal scarification, herpes simplex virus type 1 infection, and explantation of trigeminal ganglia. J Virol 65: 41424152.
  • Van Sant C, Hagglund R, Lopez P & Roizman B (2001) The infected cell protein 0 of herpes simplex virus 1 dynamically interacts with proteasomes, binds and activates the cdc34 E2 ubiquitin-conjugating enzyme, and possesses in vitro E3 ubiquitin ligase activity. P Natl Acad Sci USA 98: 88158820.
  • Wagner EK & Bloom DC (1997) Experimental investigation of herpes simplex virus latency. Clin Microbiol Rev 10: 419443.
  • Wakim LM, Jones CM, Gebhardt T, Preston CM & Carbone FR (2008) CD8(+) T-cell attenuation of cutaneous herpes simplex virus infection reduces the average viral copy number of the ensuing latent infection. Immunol Cell Biol 86: 666675.
  • Wald A & Corey L (2007) Persistence in the population: epidemiology, transmission. Human Herpesviruses: Biology, Therapy, and Immunoprophylaxis (Arvin A, Campadelli-Fiume G, Mocarski E, Moore PS, Roizman B, Whitley R & Yamanishi K, eds). Cambridge University Press, Cambridge.
  • Wald A, Zeh J, Selke S, Warren T, Ryncarz AJ, Ashley R, Krieger JN & Corey L (2000) Reactivation of genital herpes simplex virus type 2 infection in asymptomatic seropositive persons. N Engl J Med 342: 844850.
  • Wang K, Lau TY, Morales M, Mont EK & Straus SE (2005a) Laser-capture microdissection: refining estimates of the quantity and distribution of latent herpes simplex virus 1 and varicella-zoster virus DNA in human trigeminal Ganglia at the single-cell level. J Virol 79: 1407914087.
  • Wang QY, Zhou C, Johnson KE, Colgrove RC, Coen DM & Knipe DM (2005b) Herpesviral latency-associated transcript gene promotes assembly of heterochromatin on viral lytic-gene promoters in latent infection. P Natl Acad Sci USA 102: 1605516059.
  • Weber PC & Wigdahl B (1992) Identification of dominant-negative mutants of the herpes simplex virus type 1 immediate-early protein ICP0. J Virol 66: 22612267.
  • Weber PC, Kenny JJ & Wigdahl B (1992) Antiviral properties of a dominant negative mutant of the herpes simplex virus type 1 regulatory protein ICP0. J Gen Virol 73(Pt 11): 29552961.
  • Whitlow Z & Kristie TM (2009) Recruitment of the transcriptional coactivator HCF-1 to viral immediate-early promoters during initiation of reactivation from latency of herpes simplex virus type 1. J Virol 83: 95919595.
  • Wilcox CL & Johnson EM (1987) Nerve growth factor deprivation results in the reactivation of latent herpes simplex virus in vitro. J Virol 61: 23112315.
  • Wilcox CL & Johnson EM (1988) Characterization of nerve growth factor-dependent herpes simplex virus latency in neurons in vitro. J Virol 62: 393399.
  • Wilcox CL, Smith RL, Freed CR & Johnson EM Jr (1990) Nerve growth factor-dependence of herpes simplex virus latency in peripheral sympathetic and sensory neurons in vitro. J Neurosci 10: 12681275.
  • Wilcox CL, Smith RL, Everett RD & Mysofski D (1997) The herpes simplex virus type 1 immediate-early protein ICP0 is necessary for the efficient establishment of latent infection. J Virol 71: 67776785.
  • Wu TT, Su YH, Block TM & Taylor JM (1996) Evidence that two latency-associated transcripts of herpes simplex virus type 1 are nonlinear. J Virol 70: 59625967.
  • Wu TT, Su YH, Block TM & Taylor JM (1998) Atypical splicing of the latency-associated transcripts of herpes simplex type 1. Virology 243: 140149.
  • Wysocka J & Herr W (2003) The herpes simplex virus VP16-induced complex: the makings of a regulatory switch. Trends Biochem Sci 28: 294304.
  • Xu F, Schillinger JA, Sternberg MR, Johnson RE, Lee FK, Nahmias AJ & Markowitz LE (2002) Seroprevalence and coinfection with herpes simplex virus type 1 and type 2 in the United States, 1988–1994. J Infect Dis 185: 10191024.
  • Yang L, Voytek CC & Margolis TP (2000) Immunohistochemical analysis of primary sensory neurons latently infected with herpes simplex virus type 1. J Virol 74: 209217.
  • Yeh L & Schaffer PA (1993) A novel class of transcripts expressed with late kinetics in the absence of ICP4 spans the junction between the long and short segments of the herpes simplex virus type 1 genome. J Virol 67: 73737382.
  • Zabolotny JM, Krummenacher C & Fraser NW (1997) The herpes simplex virus type 1 2.0-kilobase latency-associated transcript is a stable intron which branches at a guanosine. J Virol 71: 41994208.
  • Zhou G, Galvan V, Campadelli-Fiume G & Roizman B (2000) Glycoprotein D or J delivered in trans blocks apoptosis in SK-N-SH cells induced by a herpes simplex virus 1 mutant lacking intact genes expressing both glycoproteins. J Virol 74: 1178211791.
  • Zwaagstra JC, Ghiasi H, Slanina SM, Nesburn AB, Wheatley SC, Lillycrop K, Wood J, Latchman DS, Patel K & Wechsler SL (1990) Activity of herpes simplex virus type 1 latency-associated transcript (LAT) promoter in neuron-derived cells: evidence for neuron specificity and for a large LAT transcript. J Virol 64: 50195028.