Multi-species biofilms: living with friendly neighbors

Authors

  • Sivan Elias,

    1. The Bacterial Biofilm Research Laboratory, The Institute for Nanotechnology and Advanced Materials, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
    Search for more papers by this author
  • Ehud Banin

    Corresponding author
    • The Bacterial Biofilm Research Laboratory, The Institute for Nanotechnology and Advanced Materials, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
    Search for more papers by this author

Correspondence: Ehud Banin, The Bacterial Biofilm Research Laboratory, The Institute for Nanotechnology and Advanced Materials, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel. Tel.: +972 3 531 7288; fax: +972 3 738 4058; e-mail: ehud.banin@biu.ac.il

Abstract

Our knowledge regarding the nature and development of microbial biofilms has grown significantly since the first report of these communities by Antonie van Leeuwenhoek in the late 1600s. Nevertheless, most biofilm studies examine mono-species cultures, whereas nearly all biofilm communities in nature comprise a variety of microorganisms. The species that constitute a mixed biofilm and the interactions between these microorganisms critically influence the development and shape of the community. In this review, we focus on interactions occurring within a multi-species biofilm and their effects on the nature of the mixed community. In general, interspecies interactions involve communication, typically via quorum sensing, and metabolic cooperation or competition. Interactions among species within a biofilm can be antagonistic, such as competition over nutrients and growth inhibition, or synergistic. The latter can result in the development of several beneficial phenotypes. These include the promotion of biofilm formation by co-aggregation, metabolic cooperation where one species utilizes a metabolite produced by a neighboring species, and increased resistance to antibiotics or host immune responses compared to the mono-species biofilms. These beneficial interactions in mixed biofilms have important environmental, industrial, and clinical implications. The latter, for example, impacts the course and treatment of biofilm-related infections, such as those manifested in the lungs of cystic fibrosis patients.

Ancillary