SEARCH

SEARCH BY CITATION

References

  • Arenas I, Bravo A, Soberón M & Gómez I (2010) Role of alkaline phosphatase from Manduca sexta in the mechanism of action of Bacillus thuringiensis Cry1Ab toxin. J Biol Chem 285: 1249712503.
  • Aronson AI, Chaoxian G & Wu L (1999) Aggregation of Bacillus thuringiensis Cry1A toxin upon binding to target insect larval midgut vesicles. Appl Environ Microbiol 65: 25032507.
  • Atsumi S, Inoue Y, Ishizaka1 T, Mizuno E, Yoshizawa Y, Kitami M & Sato R (2008) Location of the Bombyx mori 175kDa cadherin-like protein-binding site on Bacillus thuringiensis Cry1Aa toxin. FEBS J 275: 49134926.
  • Bagla P (2010) Hardy cotton-munching pests are latest blow to GM crops. Science 327: 1439.
  • Baxter SW, Badenes-Perez FR, Morrison A, Vogel H, Crickmore N, Kain W, Wang P, Heckel DG & Jiggins CD (2011) Parallel evolution of Bt toxin resistance in Lepidoptera. Genetics 189: 675679.
  • Bayyareddy K, Andacht TM, Abdullah MA & Adang MJ (2009) Proteomic identification of Bacillus thuringiensis subsp. israelensis toxin Cry4Ba binding proteins in midgut membranes from Aedes (Stegomyia) aegypti Linnaeus (Diptera, Culicidae) larvae. Insect Biochem Mol Biol 39: 279286.
  • Boonserm P, Davis P, Ellar DJ & Li J (2005) Crystal structure of the mosquito-larvicidal toxin Cry4Ba and its biological implications. J Mol Biol 348: 363382.
  • Boonserm P, Mo M, Angsuthanasombat C & Lescar J (2006) Structure of the functional form of the mosquito larvicidal Cry4Aa toxin from Bacillus thuringiensis at a 2.8 Angstrom resolution. J Bacteriol 188: 33913401.
  • Bravo A & Soberón M (2008) How to cope with insect resistance to Bt toxins? Trends Biotechnol 26: 573579.
  • Bravo A, Jansens S & Peferoen M (1992) Immunocytochemical localization of Bacillus thuringiensis insecticidal crystal proteins in intoxicated insects. J Invertebr Pathol 60: 237247.
  • Bravo A, Gómez I, Conde J, Muñoz-Garay C, Sánchez J, Miranda R, Zhuang M, Gill SS & Soberón M (2004) Oligomerization triggers binding of a Bacillus thuringiensis Cry1Ab pore-forming toxin to aminopeptidase N receptor leading to insertion into membrane microdomains. Biochim Biophys Acta 1667: 3846.
  • Bravo A, Gill SS & Soberón M (2007) Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon 49: 423435.
  • Bravo A, Del Rincon-Castro MC, Ibarra JE & Soberón M (2011) Towards a healthy control of insect pest: potential use of microbial insecticides. Green Trends in Insect Control (López O & Fernandez-Bolaños JG, eds), pp. 266299. Royal Society of Chemistry, London.
  • Carmona D, Rodríguez-Almazán C, Muñoz-Garay C, Portugal L, Pérez C, de Maagd RA, Bakker P, Soberón M & Bravo A (2011) In vivo heteroligomer formation of Bt Cry toxins. PLoS ONE 6: e19952.
  • Carroll J & Ellar DJ (1993) An analysis of Bacillus thuringiensis insecticidal δ-endotoxins action on insect-midgut-membrane permeability using a light-scattering assay. Eur J Biochem 214: 771778.
  • Carroll J & Ellar DJ (1997) Analysis of the large aqueous pores produced by a Bacillus thuringiensis protein insecticide in Manduca sexta midgut-brush-border-membrane vesicles. Eur J Biochem 245: 797804.
  • Charles JF & Nielsen Le-Roux C (2000) Mosquitocidal bacterial toxins: diversity, mode of action and resistance phenomena. Mem Inst Oswaldo Cruz 95: 201206.
  • Chen J, Hua G, Jurat-Fuentes JL, Abdullah MA & Adang MJ (2007) Synergism of Bacillus thuringiensis toxins by a fragment of a toxin-binding cadherin. P Natl Acad Sci USA 104: 1390113906.
  • Coux F, Vachon V, Rang C et al. (2001) Role of interdomain salt bridges in the pore-forming ability of the Bacillus thuringiensis toxins Cry1Aa and cry1Ac. J Biol Chem 276: 3554635551.
  • Crickmore N, Bone EJ, Williams JA & Ellar DJ (1995) Contribution of the individual components of the δ-endotoxin crystal to the mosquitocidal activity of Bacillus thuringiensis subsp. israelensis. FEMS Microbiol Lett 131: 249254.
  • Crickmore N, Zeigler DR, Schnepf E, Van Rie J, Lereclus D, Baum J, Bravo A & Dean DH (2011) Bacillus thuringiensis toxin nomenclature. http://www.lifesci.sussex.ac.uk/home/Neil_Crickmore/Bt/index.html
  • de Maagd RA, Bravo A & Crickmore N (2001) How Bacillus thuringiensis has evolved specific toxins to colonize the insect world. Trends Genet 17: 193199.
  • Dean M, Hamon Y & Chimini G (2001) The human ATP-binding cassette (ABC) transporter superfamily. J Lipid Res 42: 10071017.
  • Devine GJ & Furlong MJ (2007) Insecticide use: contexts and ecological consequences. Agric Human Values 24: 281306.
  • Dhurua S & Gujar GT (2011) Field-evolved resistance to Bt toxin Cry1Ac in the pink bollworm, Pectinophora gossypiella (Saunders) (Lepidoptera: Gelechiidae), from India. Pest Manag Sci 67: 898903.
  • Downes S, Parker T & Mahon R (2010) Incipient resistance of Helicoverpa puntigera to the Cry2Ab Bt toxin in Bollgard II cotton. PLoS ONE 5: e12567.
  • English L, Readdy TL & Bastian AE (1991) Delta-endotoxin-induced leakage of 86Rb+-K+ and H2O from phospholipids vesicles is catalyzed by reconstituted midgut membrane. Insect Biochem 21: 177184.
  • Escriche B, Tabashnik B, Finson N & Ferré J (1995) Immunohistochemical detection of binding of Cry1A crystal proteins of Bacillus thuringiensis in highly resistant strains of Plutella xylostella (L.) from Hawaii. Biochem Biophys Res Commun 212: 388395.
  • Fabrick JA, Mathew LG, Tabashnik BE & Li X (2011) Insertion of an intact CR1 retrotransposon in a cadherin gene liked with Bt resistance in the pink bollworm, Pectinophora gossypiella. Insect Mol Biol 20: 651665.
  • Federici BA & Bauer LS (1998) Cyt1Aa protein of Bacillus thuringiensis is toxic to the cottonwood leaf beetle, Chrysomela scripta and suppresses high levels of resistance to Cry3Aa. Appl Environ Microbiol 64: 43684371.
  • Fernandez-Luna MT, Tabashnik B, Lanz-Mendoza H, Bravo A, Soberón M & Miranda-Rios J (2010) Single-concentration tests show synergism among Bacillus thuringiensis subsp. israelensis toxins against the malaria vector mosquito Anopheles albimanus. J Invertebr Pathol 104: 231233.
  • Ferré J & Van Rie J (2002) Biochemistry and genetics of insect resistance to Bacillus thuringiensis. Annu Rev Entomol 47: 501533.
  • Ferré J, Real MD, Van Rie J, Jansens S & Peferoen M (1991) Resistance to the Bacillus thuringiensis bioinsecticide in a field population of Plutella xylostella is due to a change in a midgut membrane receptor. P Natl Acad Sci USA 88: 51195123.
  • Ffrench-Constant RH & Bowen DJ (2000) Novel insecticidal toxins from nematode-symbiotic bacteria. Cell Mol Life Sci 57: 828833.
  • Franklin MT, Nieman CL, Janmaat AF, Soberón M, Bravo A, Tabashnik BE & Myers JH (2009) Modified Bacillus thuringiensis toxins and a hybrid B. thuringiensis strain counter greenhouse-selected resistance in Trichoplusia ni. Appl Environ Microbiol 75: 57395741.
  • Gahan LJ, Gould F & Heckel DG (2001) Identification of a gene associated with Bt resistance in Heliothis virescens. Science 293: 857860.
  • Gahan LJ, Pauchet Y, Vogel H & Heckel DG (2010) An ABC transporter mutation is correlated with insect resistance to Bacillus thuringiensis Cry1Ac toxin. PLoS Genet 6: e1001248.
  • Galitsky N, Cody V, Wojtczak A, Debashis G, Luft JR, Pangborn W & English L (2001) Structure of insecticidal bacterial d-endotoxin Cry3Bb1 of Bacillus thuringiensis. Acta Crystallogr D Boil Crystallogr 57: 11011109.
  • Gassmann AJ, Petzold-Maxwell JL, Keweshan RS & Dunbar MW (2011) Field-evolved resistance to Bt maize by western corn rootworm. PLoS ONE 6: e22629.
  • Girard F, Vachon V, Préfontaine G, Marceau L, Su Y, Larouche G, Vincent G, Schwartz JL, Masson L & Laprade R (2008) Cysteine scanning mutagenesis of α-4 a putative pore lining helix of the Bacillus thuringiensis insecticidal toxin Cry1Aa. Appl Environ Microbiol 74: 25652572.
  • Girard F, Vachon V, Lebel G, Préfontaine G, Schwartz JL, Masson L & Laprade R (2009) Chemical modification of Bacillus thuringiensis Cry1Aa toxin single cysteine mutants reveals the importance of domain I structural elements in the mechanism of pore formation. Biochem Biophys Acta 1788: 575580.
  • Gómez I, Sánchez J, Miranda R, Bravo A & Soberón M (2002) Cadherin-like receptor binding facilitates proteolytic cleavage of helix α-1 in domain I and oligomer pre-pore formation of Bacillus thuringiensis Cry1Ab toxin. FEBS Lett 513: 242246.
  • Gómez I, Arenas I, Benitez I, Miranda-Ríos J, Becerri B, Grande R, Almagro JC, Bravo A & Soberón M (2006) Specific epitopes of domains II and III of Bacillus thuringiensis Cry1Ab toxin involved in the sequential interaction with cadherin and aminopeptidase-N receptors in Manduca sexta. J Biol Chem 281: 3403234039.
  • Griffits JS, Haslam SM, Yang T, Garczynski SF, Mulloy B, Morris H, Cremer PS, Dell A, Adang MJ & Aroian RV (2005) Glycolipids as receptors for Bacillus thuringiensis crystal toxin. Science 307: 922925.
  • Grochulski P, Masson L, Borisova S, Pusztai-Carey M, Schwartz JL, Brousseau R & Cygler M (1995) Bacillus thuringiensis CryIA(a) insecticidal toxin: crystal structure and channel formation. J Mol Biol 254: 447464.
  • Groulx N, McGuire H, Laprade R, Schwartz JL & Blunck R (2011) Single molecule fluorescence study of the Bacillus thuringiensis toxin Cry1Aa reveals tetramerization. J Biol Chem 286: 4227442282.
  • Guerchicoff A, Delécluse A & Rubinstein CP (2001) The Bacillus thuringiensis cyt genes for hemolytic endotoxins constitute a gene family. Appl Environ Microbiol 67: 10901096.
  • Gunning RV, Dang HT, Kemp FC, Nicholson IC & Moores GD (2005) New resistance mechanism in Helicoverpa armigera threatens transgenic crops expressing Bacillus thuringiensis Cry1Ac toxin. Appl Environ Microbiol 71: 25582563.
  • Guo S, Ye S, Liu Y et al. (2009) Crystal structure of Bacillus thuringiensis Cry8Ea1: an insecticidal toxin toxic to underground pests, the larvae of Holotrichia parallela. J Struct Biol 168: 259266.
  • Haider MZ & Ellar DJ (1989) Mechanism of action of Bacillus thuringiensis insecticidal δ-endotoxin: interaction with phospholipids vesicles. Biochim Biophys Acta 978: 216222.
  • Heckel DG, Gahan LJ, Baxter SW, Zhao J-Z, Shelton AM, Gould F & Tabashnik BE (2007) The diversity of Bt resistance genes in species of Lepidoptera. J Invertebr Pathol 95: 192197.
  • Hendrickx K, De Loof A & Van Mellart H (1990) Effect of Bacillus thuringiensis delta-endotoxin on the permeability of brush border membrane vesicles from tobacco hornworm (Manduca sexta) midgut. Comp Biochem Physiol 95C: 241245.
  • Hernandez-Martinez P, Navarro-Cerrillo G, Caccia S, de Maagd RA, Moar WJ, Ferré J, Escriche B & Herrero S (2010) Constitutive activation of the midgut response to Bacillus thuringiensis in Bt-resistant Spodoptera exigua. PLoS ONE 17: e12795.
  • Herrero S, Gechev T, Bakker PL, Moar WJ & de Maagd RA (2005) Bacillus thuringiensis Cry1Ca-resistant Spodoptera exigua lacks expression of one of four Aminopeptidase N genes. BMC Genomics 24: 696.
  • Herrero S, Gonzalez-Cabrera J, Ferré J, Bakker PL & de Maagd R (2004) Mutations in the Bacillus thuringiensis Cry1Ca toxin demonstrate the role of domain II and III in specificity towards Spodoptera exigua larvae. Biochem J 384: 507513.
  • Hua G, Zhang R, Abdullah MA & Adang MJ (2008) Anopheles gambiae cadherin AgCad1 binds the Cry4Ba toxin of Bacillus thuringiensis israelensis and a fragment of AgCad1 synergizes toxicity. Biochemistry 47: 51015110.
  • Hurst MR, Jones SM, Tan B & Jackson TA (2007) Induced expression of the Serratia entomophila Sep proteins shows activity towards the larvae of the New Zealand grass grub Costelytra zealandica. FEMS Microbiol Lett 275: 160167.
  • James C (2010) Global status of commercialized biotech/GM crops. ISAAA Briefs 42: (ISAAA, Ithaca, NY, 2011).
  • Janmaat AF & Myers J (2003) Rapid evolution and the cost of resistance to Bacillus thuringiensis in greenhouse populations of cabbage loopers Trichoplusia ni. Proc Biol Sci 270: 22632270.
  • Janmaat AF, Wang P, Kain W, Zhao JZ & Myers J (2004) Inheritance of resistance to Bacillus thuringiensis subs kurstaki in Trichoplusia ni. Appl Environ Microbiol 70: 58595867.
  • Jiménez-Juárez A, Muñoz-Garay C, Gómez I, Saab-Rincon G, Damian-Alamazo JY, Gill SS, Soberón M & Bravo A (2007) Bacillus thuringiensis Cry1Ab mutants affecting oligomer formation are non-toxic to Manduca sexta larvae. J Biol Chem 282: 2122221229.
  • Johnson DE, Oppert B & Mc Gaughey WH (1998) Spore coat protein synergizes Bacillus thuringiensis crystal toxicity for indianmeal moth. Curr Microbiol 36: 278282.
  • Jurat-Fuentes JL, Gould FL & Adang MJ (2002) Altered glycosylation of 63- and 68-kilodalton microvillar proteins in Heliothis virescens correlates with reduced Cry1 toxin binding, decreased pore formation and increased resistance to Bacillus thuringiensis Cry1 toxins. Appl Environ Microbiol 68: 57115717.
  • Jurat-Fuentes JL, Gould FL & Adang MJ (2003) Dual resistance to Bacillus thuringiensis Cry1Ac and Cry2Aa toxins in Heliothis virescens suggest multiple mechanism of resistance. Appl Environ Microbiol 69: 58985906.
  • Jurat-Fuentes JL, Gahan LJ, Gould FL, Heckel DG & Adang MJ (2004) The HevCaLP protein mediates binding specificity of the Cry1A class of Bacillus thuringiensis toxins in Heliothis virescens. Biochemistry 43: 1429914305.
  • Jurat-Fuentes JL, Karumbaiah L, Jakka SRK et al. (2011) Reduced levels of membrane-bound alkaline phosphatase are common to lepidopteran strains resistant to Cry toxins from Bacillus thuringiensis. PLoS ONE 6: e17606.
  • Keller M, Sneh B, Strizhov N, Prudovsky E, Regev A, Koncz C, Schell J & Zilberstein A (1996) Digestion of delta-endotoxin by gut proteases may explain reduced sensitivity of advanced instar larvae of Spodoptera littoralis to Cry1C. Insect Biochem Mol Biol 26: 365373.
  • Khajuria C, Buschman LL, Chen MS, Siegfried BD & Zhu KY (2011) Identification of a novel aminopeptidase P-like gene (OnAPP) possibly involved in Bt toxicity and resistance in a major corn pest (Ostrinia nubilalis). PLoS ONE 6: e23983.
  • Knowles BH & Ellar DJ (1987) Colloid-osmotic lysis is a general feature of the mechanism of action of Bacillus thuringiensis delta-endotoxins with different insect specificity. Biochim Biophys Acta 924: 509518.
  • Krishnamoorthy M, Jurat-Fuentes JL, McNall RJ, Andacht T & Adang MJ (2007) Identification of novel Cry1Ac binding proteins in midgut membranes from Heliothis virescens using proteomic analyses. Insect Biochem Mol Biol 37: 189201.
  • Kruger MJ, Van Rensburg JBJ & Van den Berg J (2009) Perspective on the development of stem borer resistance to Bt maize and refuge compliance at the Vaalharts irrigation scheme in South Africa. Crop Prot 28: 684689.
  • Kumar AS & Aronson AI (1999) Analysis of mutations in a pore forming region essential for insecticidal activity of a Bacillus thuringiensis delta-endotoxin. J Bacteriol 181: 61036107.
  • Labbé R, Caveney S & Donly C (2011) Genetic analysis of the xenobiotic resistance-associated ABC gene subfamilies of the Lepidoptera. Insect Mol Biol 20: 243256.
  • Lee MK, Curtiss A, Alcantara E & Dean DH (1996) Synergistic effect of the Bacillus thuringiensis toxins CryIAa and CryIAc on the gypsy moth Lymantria dispar. Appl Environ Microbiol 62: 583586.
  • Li J, Carrol J & Ellar DJ (1991) Crystal structure of insecticidal δ-endotoxin from Bacillus thuringiensis at 2.5 Å resolution. Nature 353: 815821.
  • Li H, Oppert B, Higgins RA, Huang F, Zhu KY & Bushman LL (2004) Comparative analysis of proteinase activities of Bacillus thuringiensis-resistant and -susceptible Ostrinia nubilalis (Lepidoptera: Crambidae). Insect Biochem Mol Biol 34: 753762.
  • Li H, Oppert B, Higgins RA, Huang F, Bushman LL & Zhu KY (2005) Susceptibility of dipel-resistant and -susceptible Ostrinia nubilalis (Lepidoptera:Crambidae) to individual Bacillus thuringiensis protoxins. J Econ Entomol 98: 13331340.
  • Li H, Bushman LL, Huang F, Zhu KY, Bonning B & Oppert B (2007) Dipel-selected Ostrinia nubilalis larvae are not resistant to transgenic corn expressing Bacillus thuringiensis Cry1Ab. J Econ Entomol 100: 18621870.
  • Liebig B, Stetson DL & Dean DH (1995) Quantification of the effect of Bacillus thuringiensis toxins on short-circuit current in the midgut of Bombyx mori. J Insect Physiol 41: 1722.
  • Likitvivatanavong S, Katzenmeier G & Angsuthanasombat C (2006) Asn183 in helix α5 is essential for oligomerization and toxicity of the Bacillus thuringiensis Cry4Ba toxin. Arch Biochem Biophys 445: 4655.
  • Liu F, Xu Z, Zhu YC, Huang F, Wang Y, Li H, Gao C, Zhou W & Shen J (2010) Evidence of field-evolved resistance to Cry1Ac-expressing Bt cotton in Helicoverpa armigera (Lepidoptera:Noctuidae) in northern China. Pest Manag Sci 66: 155161.
  • Liu S, Zhou S, Tian L, Gou E, Luan Y, Zhang J & Li S (2011) Genome-wide identification and characterization of ATP-binding cassette transporters in silkworm, Bombyx mori. BMC Genomics 12: 491.
  • Long Y, Li Q, Zhong S, Wang Y & Cui Z (2011) Molecular characterization and functions of zebra fish ABCC2 in cellular efflux of heavy metals. Comp Biochem Physiol C 153: 381391.
  • Lorence A, Darszon A, Díaz C, Liévano A, Quintero R & Bravo A (1995) Delta-endotoxins induce cation channels in Spodoptera frugiperda brush border membrane in suspension and in planar lipid bilayers. FEBS Lett 360: 353356.
  • Loseva OI, Tiktopulo EI, Vasiliev VD, Nikulin AD, Dobritsa AP & Potekhin SA (2001) Structure or Cry3A delta endotoxin within phospholipids membranes. Biochemistry 40: 1414314151.
  • Ma G, Roberts H, Sarjan M, Featherstone N, Lahnstein J, Akhurst R & Schmidt O (2005) Is the mature endotoxin Cry1Ac from Bacillus thuringiensis inactivated by coagulation reaction in the gut lumen of resistant Helicoverpa armigera larvae? Insect Biochem Mol Biol 35: 729739.
  • Ma G, Rahman MM, Grant W, Schmidt O & Asgari S (2012) Insect tolerance to the crystal toxins Cry1ac and Cry2Ab is mediated by binding of monomeric toxin to lipophorin glycolipids causing oligomerization and sequestration reactions. Dev Comp Immunol 37: 184192.
  • Masson L, Lu YJ, Mazza A, Brosseau R & Adang MJ (1995a) The Cry1A(c) receptor purified from Manduca sexta displays multiple specificities. J Biol Chem 270: 2030920315.
  • Masson L, Mazza A, Brousseau R & Tabashnik B (1995b) Kinetics of Bacillus thuringiensis toxin binding with brush border membrane vesicles from susceptible and resistant larvae of Plutella xylostella. J Biol Chem 270: 1188711896.
  • Masson L, Tabashnik BE, Liu YB, Brousseau R & &Schwartz JL (1999) Helix 4 of the Bacillus thuringiensis Cry1Aa toxin lines the lumen of the ion channel. J Biol Chem 274: 3199632000.
  • McGaughey WH (1985) Insect resistance to the biological insecticide Bacillus thuringiensis. Science 229: 193195.
  • McNall RJ & Adang MJ (2003) Identification of novel Bacillus thuringiensis Cry1Ac binding proteins in Manduca sexta midgut through proteomic analysis. Insect Biochem Mol Biol 33: 9991010.
  • Moar W, Roush R, Shelton A, Ferré J, MacIntosh S, Leonard BR & Abel C (2008) Field-evolved resistance to Bt toxins. Nat Biotechnol 26: 10721074.
  • Morin S, Biggs RW, Shriver L et al. (2003) Three cadherin alleles associated with resistance to Bacillus thuringiensis in pink bollworm. P Natl Acad Sci USA 100: 50045009.
  • Morse RJ, Yamamoto T & Stroud RM (2001) Structure of Cry2Aa suggests an unexpected receptor binding epitope. Structure 9: 409417.
  • Muñoz-Garay C, Sánchez J, Darszon A, de Maagd RA, Bakker P, Soberón M & Bravo A (2006) Permeability changes of Manduca sexta midgut brush border membranes induced by oligomeric structures of different Cry toxins. J Membr Biol 212: 6168.
  • Muñóz-Garay C, Portugal L, Pardo-López L et al. (2009) Characterization of the mechanism of action of the genetically modified Cry1AbMod toxin that is active against Cry1Ab-resistant insects. Biochim Biophys Acta 1788: 22292237.
  • Nair MS & Dean DH (2008) All domains of Cry1A toxins insert into insect brush border membranes. J Biol Chem 283: 2632426331.
  • Oppert B, Kramer KJ, Beeman RW, Johnson D & McGaughey WH (1997) Proteinase-mediated insect resistance to Bacillus thuringiensis toxins. J Biol Chem 272: 2347323476.
  • Ounjai P, Unger VM, Sigworth FJ & Angsuthanasombat C (2007) Two conformational states of the membrane-associated Bacillus thuringiensis Cry4Ba delta-endotoxin complex revealed by electron crystallography: implications for toxin-pore formation. Biochem Biophys Res Commun 361: 890895.
  • Pacheco S, Gómez I, Gill SS, Bravo A & Soberón M (2009a) Enhancement of insecticidal activity of Bacillus thuringiensis Cry1A toxins by fragments of a toxin-binding cadherin correlates with oligomer formation. Peptides 30: 583588.
  • Pacheco S, Gómez I, Arenas I, Saab-Rincon G, Rodriguez-Almazan C, Gill SS, Bravo A & Soberón M (2009b) Domain II loop 3 of Bacillus thuringiensis Cry1Ab toxin is involved in a “ping-pong” binding mechanism with Manduca sexta aminopetidase-N and cadherin receptors. J Biol Chem 284: 3275032757.
  • Pardo-López L, Gómez I, Rausell C, Sánchez J, Soberón M & Bravo A (2006) Structural changes of the Cry1Ac oligomeric pre-pore from Bacillus thuringiensis induced by N-acetylgalactosamine facilitates toxin membrane insertion. Biochemistry 45: 1032910336.
  • Park Y, Abdullah MA, Taylor MD, Rahman K & Adang MJ (2009) Enhancement of Bacillus thuringiensis Cry3Aa and Cry3Bb toxicities to coleopteran larvae by a toxin-binding fragment of an insect cadherin. Appl Environ Microbiol 75: 30863092.
  • Parker MW & Feil SC (2005) Pore forming proteins toxins: from structure to function. Prog Biophys Mol Biol 88: 91142.
  • Payen L, Sparfiel I, Courtois A, Vernhet L, Guillouzo A & Fardel O (2002) The drug efflux pump MRP2: regulation of expression in physiopathological situations and by endogenous and exogenous compounds. Cell Biol Toxicol 18: 221233.
  • Pérez C, Fernandez LE, Sun J, Folch JL, Gill SS, Soberón M & Bravo A (2005) Bti Cry11Aa and Cyt1Aa toxins interactions support the synergism-model that Cyt1Aa functions as membrane-bound receptor. P Natl Acad Sci USA 102: 1830318308.
  • Pérez C, Muñoz-Garay C, Portugal LC, Sánchez J, Gill SS, Soberón M & Bravo A (2007) Bacillus thuringiensis subsp. israelensis Cyt1Aa enhances activity of Cry11Aa toxin by facilitating the formation of a pre-pore oligomeric structure. Cell Microbiol 9: 29312937.
  • Pigott CR & Ellar DJ (2007) Role of receptors in Bacillus thuringiensis crystal toxin activity. Microbiol Mol Biol Rev 71: 255281.
  • Poncet S, Delecluse A, Klier A & Rapoport G (1995) Evaluation of synergistic interaction among CryIVA, CryIVB and CryIVD toxic components of B. thuringiensis subs israelensis crystals. J Invertebr Pathol 66: 131135.
  • Porta H, Jiménez G, Cordoba E, León P, Soberón M & Bravo A (2011) Tobacco plants expressing the Cry1AbMod toxin suppress tolerance to Cry1Ab toxin of Manduca sexta cadherin-silenced larvae. Insect Biochem Mol Biol 41: 513519.
  • Puntheeranurak T, Stroh C, Zhu R, Angsuthanasombat C & Hinterdorfer P (2005) Structure and distribution of the Bacillus thuringiensis Cry4Ba toxin in lipid membranes. Ultramicroscopy 105: 115124.
  • Qaim M & Zilberman D (2003) Yield effects of genetically modified crops in developing countries. Science 299: 900902.
  • Rahman MM, Roberts HL, Sarjan M, Asgari S & Schmidt O (2004) Induction and transmission of Bacillus thuringiensis tolerance in the flour moth Ephestia kuehniella. P Natl Acad Sci USA 101: 26962699.
  • Rajagopal R, Sivakumar S, Agrawai N, Malhotra P & Bhatnagar RK (2002) Silencing of midgut aminopeptidase N of Spodoptera litura by double-stranded RNA establishes its role as Bacillus thuringiensis toxin receptor. J Biol Chem 277: 4684946851.
  • Rausell C, García-Robles I, Sánchez J, Muñoz-Garay C, Martínez-Ramírez AC, Real MD & Bravo A (2004a) Role of toxin activation on binding and pore formation activity of the Bacillus thuringiensis Cry3 toxins in membranes of Leptinotarsa decemlineata [Say]. Biochem Biophys Acta 1660: 99105.
  • Rausell C, Muñoz-Garay C, Miranda-CassoLuengo R, Gómez I, Rudiño-Piñera E, Soberón M & Bravo A (2004b) Tryptophan spectroscopy studies and black lipid bilayer analysis indicate that the oligomeric structure of Cry1Ab toxin from Bacillus thuringiensis is the membrane-insertion intermediate. Biochemistry 43: 166174.
  • Rausell C, Pardo-López L, Sánchez J, Muñoz-Garay C, Morera C, Soberón M & Bravo A (2004c) Unfolding events in the water-soluble monomeric Cry1Ab toxin during transition to oligomeric pre-pore and membrane inserted pore channel. J Biol Chem 279: 5516855175.
  • Rodríguez-Almazán CR, Zavala LE, Muñoz-Garay C, Jiménez-Juárez N, Pacheco S, Masson L, Soberón M & Bravo A (2009) Dominant negative mutants of Bacillus thuringiensis Cry1Ab toxin function as anti-toxins: demonstration of the role of oligomerization in toxicity. PLoS ONE 4: e5545.
  • Rodríguez-Almazán C, Reyes EZ, Zuñiga-Navarrete F, Muñoz-Garay C, Gómez I, Evans AE, Likitvivatanavong S, Bravo A, Gill SS & Soberón M (2012) Cadherin binding is not a limiting step for Bacillus thuringiensis subs. israelensis Cry4Ba toxicity to Aedes aegypti larvae. Biochem J 443: 711717.
  • Rupar MJ, Donovan WP, Tan Y & Slaney AC (2000) Bacillus thuringiensis CryET29 compositions toxic to coleopteran insects and ctenocephalides SPP. United States Patent 6,093,695. Presented 25 July 2000.
  • Schwartz JL, Garneau L, Savaria D, Masson L, Brousseau R & Rousseau E (1993) Lepidopteran-specific crystal toxins from Bacillus thuringiensis form cation and anion selective channels in planar lipid bilayers. J Membr Biol 132: 5362.
  • Schwartz JL, Juteau M, Grochulski P, Cygler M, Préfontaine G, Brousseau R & Masson L (1997) Restriction of intramolecular movements within the Cry1Aa toxin molecule of Bacillus thuringiensis through disulfide bond engineering. FEBS Lett 410: 397402.
  • Sellman BR, Mourez M & Collier RJ (2001) Dominant-negative mutants of a toxin subunit: an approach to therapy of anthrax. Science 292: 695697.
  • Sharma A, Nain V, Lakhanpaul S & Kumar PA (2010) Synergistic activity between Bacillus thuringiensis Cry1Ab and Cry1Ac toxins against maize stem borer (Chilo partellus Swinhoe). Lett Appl Microbiol 51: 4247.
  • Soberón M, Pardo-López L, López I, Gómez I, Tabashnik B & Bravo A (2007) Engineering modified Bt toxins to counter insect resistance. Science 318: 16401642.
  • Soberón M, Gill SS & Bravo A (2009) Signaling versus punching hole: how do Bacillus thuringiensis toxins kill insect midgut cells? Cell Mol Life Sci 66: 13371349.
  • Storer NP, Babcock JM, Schlenz M, Meade T, Thompson GD, Bing JW & Huckaba RM (2010) Discovery and characterization of field resistance to Bt Maize: Spodoptera frugiperda (Lepidoptera: Noctuidae) in Puerto Rico. J Econ Entomol 103: 10311038.
  • Tabashnik BE, Finson N, Johnson MW & Heckel DG (1994a) Cross-resistance to Bacillus thuringiensis toxin Cry1F in the diamondback moth (Plutella xylostella). Appl Environ Microbiol 60: 46274629.
  • Tabashnik BE, Finson N, Groeters FR, Moar WJ, Johnson MW, Luo K & Adang MJ (1994b) Reversal of resistance to Bacillus thuringiensis in Plutella xylostella. P Natl Acad Sci USA 91: 41204124.
  • Tabashnik BE, Liu Y-B, Malvar T, Heckel DG, Masson L, Ballester V, Granero F, Mensua JL & Ferré J (1997) Global variation in the genetic and biochemical basis of diamondback moth resistance to Bacillus thuringiensis. P Natl Acad Sci USA 94: 1278012785.
  • Tabashnik BE, Gassman AJ, Crowdwer DW & Carriere Y (2008) Insect resistance to Bt crops: evidence versus theory. Nat Biotechnol 26: 199202.
  • Tabashnik BE, Unnithan GC, Masson L, Crowder DW, Li X & Carriere Y (2009) Asymmetrical cross-resistance between Bacillus thuringiensis toxins Cry1Ac and Cry2Ab in pink bollworm. P Natl Acad Sci USA 106: 1188911894.
  • Tabashnik BE, Sisterson MS, Ellsworth PC et al. (2010) Suppressing resistance to Bt cotton with sterile insect releases. Nat Biotechnol 28: 13041307.
  • Tabashnik BE, Huang F, Ghimire MN et al. (2011) Efficacy of genetically modified Bt toxins against insects with different mechanisms of resistance. Nat Biotechnol 29: 11281131.
  • Tiewsiri K & Wang P (2011) Differential alteration of two aminopeptidases N associated with resistance to Bacillus thuringiensis toxin Cry1Ac in cabbage looper. P Natl Acad Sci USA 108: 1403714042.
  • Tigue NJ, Jacoby J & Ellar DJ (2001) The alpha-helix 4 residue, Asn135, is involved in the oligomerization of Cry1Ac1 and Cry1Ab5 Bacillus thuringiensis toxins. Appl Environ Microbiol 67: 57155720.
  • Tomimoto K, Hayakawa T & Hori H (2006) Pronase digestion of brush border membrane-bound Cry1Aa shows that almost the whole activated Cry1Aa molecule penetrates into the membrane. Comp Biochem Physiol 144B: 413422.
  • Upadhyay SK & Singh PK (2011) Role of alkaline phosphatase in insecticidal action of Cry1Ac against Helicoverpa armigera larvae. Biotechnol Lett 33: 20272036.
  • Vachon V, Prefontaine G, Coux F, Rang C, Marceau L, Masson L, Broussea R, Frutos R, Schwartz JL & Laprade R (2002) Role of helix 3 in pore formation by Bacillus thuringiensis insecticidal toxin Cry1Aa. Biochemistry 41: 61786184.
  • Vachon V, Prefontaine G, Rang C, Coux F, Juteau M, Schwartz JL, Brousseau R, Frutos R, Laprade R & Masson L (2004) Helix 4 mutants of the Bacillus thuringiensis insecticidal toxin Cry1Aa display altered pore-forming abilities. Appl Environ Microbiol 70: 61236130.
  • Vadlamudi RK, Weber E, Ji I, Ji TH & Bulla LA Jr (1995) Cloning and expression of a receptor for an insecticidal toxin of Bacillus thuringiensis. J Biol Chem 270: 54905494.
  • van Rensburg JBJ (2007) First report of field resistance by stem borer Busseola fusca (Fuller) to Bt-transgenic maize. S Afr J Plant Soil 24: 147e151.
  • Vié V, Van Mau N, Pomarède P et al. (2001) Lipid-induced pore formation of the Bacillus thuringiensis Cry1Aa insecticidal toxin. J Membr Biol 180: 195203.
  • Vinion-Dubiel A, McClain MS, Czajkowsky DM et al. (1999) A dominant negative mutant of Helicobacter pylori vacuolating toxin Vac A inhibits VacA-induced cell vacuolation. J Biol Chem 274: 3773637742.
  • Wai SN, Westermark M, Oscarsson J, Jass J, Maier E, Benz R & Uhlin BE (2003) Characterization of dominantly negative mutant ClyA Cytotoxin proteins in Escherichia coli. J Bacteriol 185: 54915499.
  • Wan P, Huang Y, Wu H, Huang M, Cong S, Tabashnik BE & Wu K (2012) Increased frequency of pink bollworm resistance to Bt toxin Cry1Ac in China. PLoS ONE 7: e29975.
  • Wang P, Zhao JZ, Rodrigo-Simón A, Kain W, Janmaat AF, Shelton AM, Ferré J & Myers J (2007) Mechanism of resistance to Bacillus thuringiensis toxin Cry1Ac in a greenhouse population of the cabbage looper, Trichoplusia ni. Appl Environ Microbiol 73: 11991207.
  • Wirth M, Georghiou GP & Federici BA (1997) CytA enables CryIV endotoxins of Bacillus thuringiensis to overcome high levels of CryIV resistance in the mosquito Cules quinquiefasciatus. P Natl Acad Sci USA 94: 1053610540.
  • Xu X, Yu L & Wu Y (2005) Disruption of a cadherin gene associated with resistance to Cry1Ac δ-endotoxin of Bacillus thuringiensis in Helicoverpa armigera. Appl Environ Microbiol 71: 948954.
  • Yang Y, Zhu YC, Ottea J, Husseneder C, Leonard BR, Abel C, Luttrell R & Huang F (2011) Down regulation of a gene for cadherin, but not alkaline phosphatase, associated with Cry1Ab resistance in sugarcane borer Diatraea saccharalis. PLoS ONE 6: e25783.
  • Zavala LE, Pardo-López L, Cantón PE, Gómez I, Soberón M & Bravo A (2011) Domains II and III of Bacillus thuringiensis Cry1Ab toxin remain exposed to the solvent after insertion of part of domain I into the membrane. J Biol Chem 286: 1910919117.
  • Zhang X, Candas M, Griko NB, Taussig R & Bulla Jr LA (2006) A mechanism of cell death involving an adenylyl cyclase/PKA signaling pathway is induced by the Cry1Ab toxin of Bacillus thuringiensis. P Natl Acad Sci USA 103: 98979902.
  • Zhang S, Cheng H, Gao Y, Wang G, Liang G & Wu K (2009) Mutation of an aminopeptidase N gene is associated with Helicoverpa armigera resistance to Bacillus thuringiensis Cry1Ac toxin. Insect Biochem Mol Biol 39: 421429.
  • Zhang H, Yin W, Zhao J, Jin L, Yang Y, Wu S, Tabashnik BE & Wu Y (2011) Early warning of cotton bollworm resistance associated with intensive planting of Bt cotton in China. PLoS ONE 6: e22874.
  • Zhuang M, Oltean DI, Gómez I, Pullikuth AK, Soberón M, Bravo A & Gill SS (2002) Heliothis virescens and Manduca sexta lipid rafts are involved in Cry1A toxin binding to the midgut epithelium and subsequent pore formation. J Biol Chem 277: 1386313872.