Host-selective toxins produced by the plant pathogenic fungus Alternaria alternata


Correspondence: Takashi Tsuge, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan. Tel.: +81 52 789 4030; fax: +81 52 789 4030; e-mail:


Host-selective toxins (HSTs) produced by fungal plant pathogens are generally low-molecular-weight secondary metabolites with a diverse range of structures that function as effectors controlling pathogenicity or virulence in certain plant–pathogen interactions. There are now seven known diseases caused by Alternaria alternata in which HSTs are responsible for fungal pathogenesis. The pathogens have been defined as pathotypes of A. alternata because of morphological similarity but pathological differences. Chemical structures of HSTs from six pathotypes have been determined. The role of A. alternata HSTs in pathogenesis has been studied extensively, and discovery of the release of HSTs from germinating conidia prior to penetration aids in understanding the early participation of HSTs to induce susceptibility of host cells by suppressing their defence reactions. Many attempts have been made to find the target sites of A. alternata HSTs, and four cellular components, plasma membrane, mitochondrion, chloroplast and a metabolically important enzyme, have been identified as the primary sites of each HST action, leading to elucidation of the molecular mechanisms of HST sensitivity in host plants. Studies of the molecular genetics of HST production have identified supernumerary chromosomes encoding HST gene clusters and have provided new insights into the evolution of A. alternata pathotypes.