• 1
    Mayer R. J., The meteoric rise of regulated intracellular proteolysis, Nat. Rev. Mol. Cell Biol., 1: 145148, 2000.
  • 2
    Rubin D. M., Finley D., Proteolysis. The proteasome: a protein-degrading organelle?, Curr. Biol., 5: 854858, 1995.
  • 3
    Rock K. L., Gramm C., Rothstein L., Clark K., Stein R., Dick L., Hwang D., Goldberg A. L., Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules, Cell, 78: 76171, 1994.
  • 4
    Hochstrasser M., Johnson P. R., Arendt C. S., Amerik A. Y., Swaminathan S., Swanson R., Li S. J., Laney J., Pals-Rylaarsdam R., Nowak J., Connerly P. L., The Saccharomyces cerevisiae ubiquitin-proteasome system, Philos. Trans. R. Soc. Lond B Biol. Sci., 354: 15131522, 1999.
  • 5
    Drexler H. C. A., Programmed cell death and the proteasome, Apoptosis, 3: 17, 1998.
  • 6
    Orlowski R. Z., The role of the ubiquitinproteasome pathway in apoptosis., Cell Death Differ, 6: 303313 1999.
  • 7
    Grimm L. M., Osborne B. A., Apoptosis and the proteasome, Results Probl Cell Differ, 23: 20928, 1999.
  • 8
    Wojcik C., Proteasomes in apoptosis: villains or guardians?, Cell Mol. Life Sci., 56: 908917, 1999.
  • 9
    Jesenberger V., Jentsch S., Deadly encounter: ubiquitin meets apoptosis, Nat. Rev. Mol. Cell Biol., 3: 112121, 2002.
  • 10
    Etlinger J. D., Goldberg A. L., A soluble ATP-dependent proteolytic system responsible for the degradation of abnormal proteins in reticulocytes, Proc. Natl. Acad. Sci. U. S. A, 74: 5458, 1977.
  • 11
    Hershko A., Ciechanover A., Varshavsky A., Basic Medical Research Award. The ubiquitin system, Nat. Med., 6: 10731081, 2000.
  • 12
    Wu R. S., Kohn K. W., Bonner W. M., Metabolism of ubiquitinated histones, J. Biol. Chem., 256: 591620, 1981.
  • 13
    Strous G. J., Govers R., The ubiquitin-proteasome system and endocytosis, J. Cell Sci., 112: 141723, 1999.
  • 14
    Finley D., Bartel B., Varshavsky A., The tails of ubiquitin precursors are ribosomal proteins whose fusion to ubiquitin facilitates ribosome biogenesis, Nature, 338: 394401, 1989.
  • 15
    Ciechanover A., Hod Y., Hershko A., A heat-stable polypeptide component of an ATP-dependent proteolytic system from reticulocytes, Biochem. Biophys. Res. Commun., 81: 11005, 1978.
  • 16
    Hershko A., Ciechanover A., The ubiquitin system, Annu. Rev. Biochem., 67: 42579, 1998.
  • 17
    Ciechanover A., Breitschopf K., Hatoum O. A., Bengal E., Degradation of MyoD by the ubiquitin pathway: regulation by specific DNA-binding and identification of a novel site for ubiquitination, Mol. Biol. Rep., 26: 5964, 1999.
  • 18
    Pickart C. M., Mechanisms underlying ubiquitination, Annu. Rev. Biochem., 70: 503533, 2001.
  • 19
    Pickart C. M., Ubiquitin in chains, Trends Biochem. Sci., 25: 544548, 2000.
  • 20
    Coffino P., Antizyme, a mediator of ubiquitinindependent proteasomal degradation, Biochimie, 83: 3193232001.
  • 21
    Kamitani T., Kito K., Fukuda-Kamitani T., Yeh E. T., Targeting of NEDD8 and its conjugates for proteasomal degradation by NUB1, J. Biol. Chem., 276: 4665546660, 2001.
  • 22
    Andrea A. D., Pellman D., Deubiquitinating enzymes: a new class of biological regulators, Crit. Rev. Biochem. Mol. Biol., 33: 33752, 1998.
  • 23
    Wilkinson K. D., Regulation of ubiquitin-dependent processes by deubiquitinating enzymes, FASEB J., 11: 124556, 1997.
  • 24
    Hendil K. B., The 19 S multicatalytic “prosome” proteinase is a constitutive enzyme in HeLa cells, Biochem. Int., 17: 4717, 1988.
  • 25
    Arrigo A. P., Tanaka K., Goldberg A. L., Welch W. J., Identity of the 19S ‘prosome’ particle with the large multifunctional protease complex of mammalian cells (the proteasome), Nature, 331: 1924, 1988.
  • 26
    Bochtler M., Ditzel L., Groll M., Hartmann C., Huber R., The proteasome, Annu. Rev. Biophys. Biomol. Struct., 28: 295317, 1999.
  • 27
    Demartino G. N., Slaughter C. A., The proteasome, a novel protease regulated by multiple mechanisms, J. Biol. Chem., 274: 221236, 1999.
  • 28
    Groll M., Ditzel L., Lowe J., Stock D., Bochtler M., Bartunik H. D., Huber R., Structure of 20S proteasome from yeast at 2.4 A resolution [see comments], Nature, 386: 46371, 1997.
  • 29
    Wilk S., Orlowski M., Cation-sensitive neutral endopeptidase: isolation and specificity of the bovine pituitary enzyme., J. Neurochem., 35: 117282, 1980.
  • 30
    Wilk S., Orlowski M., Evidence that pituitary cation-sensitive neutral endopeptidase is a multicatalytic protease complex, J. Neurochem., 40: 8429, 1983.
  • 31
    Orlowski M., Wilk S., Catalytic activities of the 20 S proteasome, a multicatalytic proteinase complex, Arch. Biochem. Biophys., 383: 116, 2000.
  • 32
    Lowe J., Stock D., Jap B., Zwickl P., Baumeister W., Huber R., Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4 A resolution [see comments], Science, 268: 5339, 1995.
  • 33
    Fenteany G., Standaert R. F., Lane W. S., Choi S., Corey E. J., Schreiber S. L., Inhibition of proteasome activities and subunit-specific amino-terminal threonine modification by lactacystin, Science, 268: 72631, 1995.
  • 34
    Arendt C. S., Hochstrasser M., Identification of the yeast 20S proteasome catalytic centers and subunit interactions required for active-site formation, Proc. Natl. Acad. Sci. U S A, 94: 715661, 1997.
  • 35
    Fruh K., Gossen M., Wang K., Bujard H., Peterson P. A., Yang Y., Displacement of housekeeping proteasome subunits by MHC-encoded LMPs: a newly discovered mechanism for modulating the multicatalytic proteinase complex, EMBO J., 13: 323644, 1994.
  • 36
    Fruh K., Yang Y., Antigen presentation by MHC class I and its regulation by interferon gamma, Curr. Opin. Immunol., 11: 7681, 1999.
  • 37
    Kloetzel P. M., Soza A., Stohwasser R., The role of the proteasome system and the proteasome activator PA28 complex in the cellular immune response, Biol. Chem., 380: 2937, 1999.
  • 38
    Demartino G. N., Proske R. J., Moomaw C. R., Strong A. A., Song X., Hisamatsu H., Tanaka K., Slaughter C. A., Identification, purification, and characterization of a PA700-dependent activator of the proteasome, J. Biol. Chem., 271: 31128, 1996.
  • 39
    Glickman M. H., Rubin D. M, Coux O., Wefes I., Pfeifer G., Cjeka Z., Baumeister W., Fried V. A., Finley D., A subcomplex of the proteasome regulatory particle required for ubiquitin-conjugate degradation and related to the COP9-signalosome and eIF3, Cell, 94: 61523, 1998.
  • 40
    Glickman M. H., Rubin D. M., Fried V. A., Finley D., The regulatory particle of the Saccharomyces cerevisiae proteasome, Mol. Cell. Biol., 18: 314962, 1998.
  • 41
    Dubiel W., Pratt G., Ferrell K., Rechsteiner M., Purification of an 11 S regulator of the multicatalytic proteinase., J. Biol. Chem., 267: 2236922377, 1992.
  • 42
    Ma C. P., Slaughter C. A., Demartino G. N., Identification, purification, and characterization of a protein activator (PA28) of the 20 S proteasome (macropain), J. Biol. Chem., 267: 1051510523, 1992.
  • 43
    Rechsteiner M., Realini C., Ustrell V., The proteasome activator 11 S REG (PA28) and class I antigen presentation, Biochem. J., 345 Pt 1: 115, 2000.
  • 44
    Tanahashi N., Yokota K., Ahn J. Y., Chung C. H., Fujiwara T., Takahashi E., Demartino G. N., Slaughter C. A., Toyonaga T., Yamamura K., Shimbara N., Tanaka K., Molecular properties of the proteasome activator PA28 family proteins and gamma-interferon regulation, Genes Cells, 2: 195211, 1997.
  • 45
    Chu-Ping M., Slaughter C. A., Demartino G. N., Purification and characterization of a protein inhibitor of the 20S proteasome (macropain), Biochim. Biophys. Acta, 1119: 30311, 1992.
  • 46
    Scherrer K., Prosomes, subcomplexes of untranslated mRNP, Molec. Biol. Rep., 14: 19, 1990.
  • 47
    Pamnani V., Haas B., Puhler G., Sanger H. L., Baumeister W., Proteasome-associated RNAs are non-specific, Eur. J. Biochem., 225: 5119, 1994.
  • 48
    Seemuller E., Lupas A., Stock D., Lowe J., Huber R., Baumeister W., Proteasome from Thermoplasma acidophilum: a threonine protease, Science, 268: 579582, 1995.
  • 49
    Lee D. H., Goldberg A. L., Proteasome inhibitors: valuable new tools for cell biologists., Trends Cell Biol, 8: 397403, 1998.
  • 50
    Wojcik C., Inhibition of the proteasome as a therapeutic approach, Drug Discov. Today, 4: 188192, 1999.
  • 51
    Kisselev A. F., Goldberg A. L., Proteasome inhibitors: from research tools to drug candidates, Chem. Biol., 8: 739758, 2001.
  • 52
    Orlowski M., The multicatalytic proteinase complex, a major extralysosomal proteolytic system, Biochemistry, 29: 1028997, 1990.
  • 53
    Figueiredo-Pereira M. E., Berg K. A, Wilk S., A new inhibitor of the chymotrypsin-like activity of the multicatalytic proteinase complex (20S proteasome) induces accumulation of ubiquitin-protein conjugates in a neuronal cell, J. Neurochem., 63: 157881, 1994.
  • 54
    Spaltenstein A., Leban J. J., Huang J. J., Reinhardt K. R., Viveros O. H., Sigafoos J., Crouch R., Design and synthesis of novel protease inhibitors. Tripeptide a', b'-epoxyketones as nanomolar inactivators of the proteasome., Tetrahedron Lett., 37: 13436, 1996.
  • 55
    Iqbal M., Chatterjee S., Kauer J. C., Das M., Messina P., Freed B., Biazzo W., Siman R., Potent inhibitors of proteasome, J. Med. Chem., 38: 22767, 1995.
  • 56
    Lum R. T., Kerwar S. S., Meyer S. M., Nelson M. G., Schow S. R., Schiffman D., Wick M. M., Joly A., A new class of proteasome inhibitors that prevent NFkB activation., Biochem. Pharmacol., 55: 13911397, 1998.
  • 57
    Adams J., Proteasome inhibition in cancer: development of PS-341, Semin. Oncol., 28: 613619, 2001.
  • 58
    Meng L., Mohan R., Kwok B. H., Elofsson M., Sin N., Crews C. M., Epoxomicin, a potent and selective proteasome inhibitor, exhibits in vivo antiinflammatory activity, Proc. Natl. Acad. Sci. USA, 96: 1040310408, 1999.
  • 59
    Meng L., Kwok B. H., Sin N., Crews C. M., Eponemycin exerts its antitumor effect through the inhibition of proteasome function, Cancer Res, 59: 2798801, 1999.
  • 60
    Kroll M., Arenzana-Seisdedos F., Bachelerie F., Thomas D., Friguet B., Conconi M., The secondary fungal metabolite gliotoxin targets proteolytic activities of the proteasome, Chem. Biol., 6: 68998, 1999.
  • 61
    Nam S., Smith D. M., Dou Q. P., Tannic Acid Potently Inhibits Tumor Cell Proteasome Activity, Increases p27 and Bax Expression, and Induces G(1) Arrest and Apoptosis, Cancer Epidemiol. Biomarkers Prev., 10: 10831088, 2001.
  • 62
    Andre P., Groettrup M., Klenerman P., de Giuli R., Booth B. L., Jr., Cerundolo V., Bonneville M., Jotereau F., Zinkernagel R. M., Lotteau V., An inhibitor of HIV-1 protease modulates proteasome activity, antigen presentation, and T cell responses, Proc. Natl. Acad. Sci. USA, 95: 131204, 1998.
  • 63
    Rao S., Porter D. C., Chen X., Herliczek T., Lowe M., Keyomarsi K., Lovastatin-mediated G1 arrest is through inhibition of the proteasome, independent of hydroxymethyl glutaryl-CoA reductase, Proc. Natl. Acad. Sci. USA, 96: 7797802, 1999.
  • 64
    Wojcik C., Bury M., Stoklosa T., Giermasz A., Feleszko W., Mlynarczuk I., Pleban E., Basak G., Omura S., Jakobisiak M., Lovastatin and simvastatin are modulators of the proteasome, Int. J. Biochem. Cell Biol., 32: 957965, 2000.
  • 65
    Isoe T., Naito M., Hirai R., Tsuruo T., Inhibition of ubiquitin-ATP-dependent proteolysis and ubiquitination by cisplatin, Anticancer Res., 11: 19059, 1991.
  • 66
    Isoe T., Naito M., Shirai A., Hirai R., Tsuruo T., Inhibition of different steps of the ubiquitin system by cisplatin and aclarubicin, Biochim. Biophys. Acta, 1117: 1315, 1992.
  • 67
    Figueiredo-Pereira M. E., Chen W. E., Li J., Johdo O., The antitumor drug aclacinomycin A, which inhibits the degradation of ubiquitinated proteins, shows selectivity for the chymotrypsinlike activity of the bovine pituitary 20 S proteasome, J. Biol. Chem., 271: 164559, 1996.
  • 68
    Kiyomiya K., Matsuo S., Kurebe M., Proteasome is a carrier to translocate doxorubicin from cytoplasm into nucleus, Life Sci., 62: 185360, 1998.
  • 69
    Piccinini M., Tazartes O., Mezzatesta C., Ricotti E., Bedino S., Grosso F., Dianzani U., Tovo P. A., Mostert M., Musso A., Rinaudo M. T., Proteasomes are a target of the anti-tumour drug vinblastine, Biochem. J., 356: 835841, 2001.
  • 70
    Schwartz L. M., Myer A., Kosz L., Engelstein M., Maier C., Activation of polyubiquitin gene expression during developmentally programmed cell death, Neuron, 5: 4119, 1990.
  • 71
    Imajoh-Ohmi S., Kawaguchi T., Sugiyama S., Tanaka K., Omura S., Kikuchi H., Lactacystin, a specific inhibitor of the proteasome, induces apoptosis in human monoblast U937 cells, Biochem Biophys Res Comm, 217: 10707, 1995.
  • 72
    Almond J. B., Snowden R. T., Hunter A., Dinsdale D., Cain K., Cohen G. M., Proteasome inhibitor-induced apoptosis of B-chronic lymphocytic leukaemia cells involves cytochrome c release and caspase activation, accompanied by formation of an approximately 700 kDa Apaf-1 containing apoptosome complex, Leukemia, 15: 13881397, 2001.
  • 73
    Soligo D., Servida F., Delia D., Fontanella E., Lamorte G., Caneva L. Fumiatti R., Lambertenghi D. G., The apoptogenic response of human myeloid leukaemia cell lines and of normal and malignant haematopoietic progenitor cells to the proteasome inhibitor PSI, Br. J. Haematol., 113: 126135, 2001.
  • 74
    Bold R. J., Virudachalam S., McConkey D. J., Chemosensitization of pancreatic cancer by inhibition of the 26S proteasome, J. Surg. Res., 100: 1117, 2001.
  • 75
    Lee M., Hyun D. H., Marshall K. A., Ellerby L. M., Bredesen D. E., Jenner P., Halliwell B., Effect of overexpression of Bcl-2 on cellular oxidative damage, nitric oxide production, antioxidant defenses, and the proteasome, Free Radic. Biol. Med., 31: 15501559, 2001.
  • 76
    Traenckner E. B., Wilk S. Baeuerle P.A., A proteasome inhibitor prevents activation of NF-kappa B and stabilizes a newly phosphorylated form of I kappa B-alpha that is still bound to NF-kappa B, EMBO J., 13: 543341, 1994.
  • 77
    Wang C. Y., Mayo M. W., Baldwin A. S. Jr., TNF-and cancer therapy-induced apoptosis: potentiation by inhibition of NFkB., Science, 274: 787789, 1996.
  • 78
    Delic J., Masdehors P., Omura S., Cosset J. M., Dumont J., Binet J. L., Magdelenat H., The proteasome inhibitor lactacystin induces apoptosis and sensitizes chemo- and radioresistant human chronic lymphocytic leukaemia lymphocytes to TNF-alpha-initiated apoptosis, Br. J. Canc., 77: 11037, 1998.
  • 79
    Fujita E., Mukasa T., Tsukahara T., Arahata K., Omura S., Momoi T., Enhancement of CPP32-like activity in the TNF-treated U937 cells by the proteasome inhibitors, Biochem Biophys. Res. Comm., 224: 749, 1996.
  • 80
    Fujihara S., Ward C., Dransfield I., Hay R., Uings I., Hayes B., Farrow S., Haslett C., Rossi A., Inhibition of nuclear factor-B activation un-masks the ability of TNF-α to induce human eosinophil apoptosis, Eur. J. Immunol., 32: 457466, 2002.
  • 81
    Franco A. V., Zhang X. D., van Berkel E., Sanders J. E., Zhang X. Y., Thomas W. D., Nguyen T., Hersey P., The role of NF-kappa B in TNF-related apoptosis-inducing ligand (TRAIL)- induced apoptosis of melanoma cells, J. Immunol., 166: 53375345, 2001.
  • 82
    Yabe T., Wilson D., Schwartz J. P., NFκB activation is required for the neuroprotective effects of pigment epithelium-derived factor (PEDF) on cerebellar granule neurons, J. Biol. Chem., 2001.
  • 83
    Elliott P. J., Pien C. S., McCormack T. A., Chapman I. D., Adams J., Proteasome inhibition: A novel mechanism to combat asthma, J. Allergy Clin. Immunol., 104: 294300, 1999.
  • 84
    Wojcik C., Schroeter D., Stoehr M., Wilk S., Paweletz N., An inhibitor of the chymotrypsin-like activity of the multicatalytic proteinase complex (20S proteasome) induces arrest in G2-phase and metaphase in HeLa cells, Europ. J. Cell. Biol., 70: 1728, 1996.
  • 85
    Machiels B. M., Henfling M. E., Gerards W. L., Broers J. L., Bloemendal H., Ramaekers F. C., Schutte B., Detailed analysis of cell cycle kinetics upon proteasome inhibition, Cytometry, 28: 243252, 1997.
  • 86
    Hershko A., Roles of ubiquitin-mediated proteolysis in cell cycle control, Curr. Opin. Cell Biol., 9: 78899, 1997.
  • 87
    Shah S. A., Potter M. W., McDade T. P., Ricciardi R., Perugini R. A., Elliott P. J., Adams J., Callery M. P., 26S proteasome inhibition induces apoptosis and limits growth of human pancreatic cancer, J. Cell Biochem., 82: 110122, 2001.
  • 88
    Shen Y., White E., p53-dependent apoptosis pathways, Adv. Cancer Res., 82: 5584, 2001.
  • 89
    Wang X. W., Role of p53 and apoptosis in carcinogenesis, Anticancer Res., 19: 47594771, 1999.
  • 90
    Burns T. F., El Deiry W. S., The p53 pathway and apoptosis, J. Cell Physiol., 181: 231239, 1999.
  • 91
    Fang S., Jensen J. P., Ludwig R. L., Vousden K. H., Weissman A. M., Mdm2 is a RING fingerdependent ubiquitin protein ligase for itself and p53, J. Biol. Chem., 275: 89458951, 2000.
  • 92
    Cho J. W., Park J. C., Lee J. C., Kwon T. K., Park J. W., Baek W. K., Suh S. I., Suh M. H., The levels of MDM2 protein are decreased by a proteasomemediated proteolysis prior to caspase-3-dependent pRb and PARP cleavages, J. Korean Med. Sci., 16: 135139, 2001.
  • 93
    MacLaren A. P., Chapman R. S., Wyllie A. H., Watson C. J., p53-dependent apoptosis induced by proteasome inhibition in mammary epithelial cells, Cell Death. Differ., 8: 210218, 2001.
  • 94
    Herrmann J. L., Briones F. Jr., Brisbay S., Logothetis C. J., McDonnell T. J., Prostate carcinoma cell death resulting from inhibition of proteasome activity is independent of functional Bcl-2 and p53, Oncogene, 17: 288999, 1998.
  • 95
    An B., Goldfarb R. H., Siman R., Dou Q. P., Novel dipeptidyl proteasome inhibitors overcome Bcl-2 protective function and selectively accumulate the cyclin-dependent kinase inhibitor p27 and induce apoptosis in transformed, but not normal, human fibroblasts, Cell Death Differ., 5: 106275, 1998.
  • 96
    Wagenknecht B., Hermisson M., Eitel K. Weller M., Proteasome inhibitors induce p53/p21-independent apoptosis in human glioma cells, Cell Physiol. Biochem., 9: 117125, 1999.
  • 97
    Seluanov A., Gorbunova V., Falcovitz A., Sigal A., Milyavsky M., Zurer I., Shohat G., Goldfinger N., Rotter V., Change of the death pathway in senescent human fibroblasts in response to DNA damage is caused by an inability to stabilize p53, Mol. Cell Biol., 21: 15521564, 2001.
  • 98
    Fukazawa T., Fujiwara T., Uno F., Teraishi F., Kadowaki Y., Itoshima T., Takata Y., Kagawa S., Roth J. A., Tschopp J., Tanaka N., Accelerated degradation of cellular FLIP protein through the ubiquitin- proteasome pathway in p53-mediated apoptosis of human cancer cells, Oncogene, 20: 52255231, 2001.
  • 99
    Gregory M. A., Hann S. R., c-Myc proteolysis by the ubiquitin-proteasome pathway: stabilization of c-Myc in Burkitt's lymphoma cells, Mol. Cell Biol., 20: 24232435, 2000.
  • 100
    Tani E., Kitagawa H., Ikemoto H., Matsumoto T., Proteasome inhibitors induce Fas-mediated apoptosis by c-Myc accumulation and subsequent induction of FasL message in human glioma cells, FEBS Lett., 504: 5358, 2001.
  • 101
    Kim K., Proteasome inhibitors sensitize human vascular smooth muscle cells to Fas (CD95)-mediated death, Biochem. Biophys. Res. Commun., 281: 305310, 2001.
  • 102
    Suzuki Y., Nakabayashi Y., Takahashi R., Ubiquitin-protein ligase activity of X-linked inhibitor of apoptosis protein promotes proteasomal degradation of caspase-3 and enhances its antiapoptotic effect in Fas-induced cell death, Proc. Natl. Acad. Sci. USA, 98: 86628667, 2001.
  • 103
    Tenev T., Marani M., McNeish I., Lemoine N. R., Pro-caspase-3 overexpression sensitises ovarian cancer cells to proteasome inhibitors, Cell Death. Differ., 8: 256264, 2001.
  • 104
    Martin M. C., Dransfield I., Haslett C., Rossi A. G., Cyclic AMP regulation of neutrophil apoptosis occurs via a novel PKA- independent signaling pathway, J. Biol. Chem., 2001.
  • 105
    Lee M. H., Hyun D. H., Jenner P., Halliwell B., Effect of proteasome inhibition on cellular oxidative damage, antioxidant defences and nitric oxide production, J. Neurochem., 78: 3241, 2001.
  • 106
    Pleban E., Bury M., Mlynarczuk I., Wojcik C., Effects of proteasome inhibitor PSI on neoplastic and non-transformed cell lines, Folia Histochem. Cytobiol., 39: 133134, 2001.
  • 107
    Sadoul R., Fernandez P. A., Quiquerez A. L., Martinou I., Maki M., Schroter M., Becherer J. D., Irmler M., Tschopp J., Martinou J. C., Involvement of the proteasome in the programmed cell death of NGF-deprived sympathetic neurons, EMBO J., 15: 384552, 1996.
  • 108
    Grimm L. M., Goldberg A. L., Poirier G. G., Schwartz L. M., Osborne B. A., Proteasomes play an essential role in thymocyte apoptosis, EMBO J., 15: 383544, 1996.
  • 109
    Tabata M., Tabata R., Grabowski D. R., Bukowski R. M., Ganapathi M. K., Ganapathi R., Roles of NF-kappaB and 26 S proteasome in apoptotic cell death induced by topoisomerase I and II poisons in human nonsmall cell lung carcinoma, J. Biol. Chem., 276: 80298036, 2001.
  • 110
    Tanimoto Y., Kizaki H., Proteasome inhibitors block ras/ERK signaling pathway resulting in the downregulation of Fas ligand expression during activation-induced cell death in T cells, J. Biochem., 131: 319326, 2002.
  • 111
    Dallaporta B., Pablo M., Maisse C., Daugas E., Loeffler M., Zamzami N., Kroemer G., Proteasome activation as a critical event of thymocyte apoptosis, Cell Death. Differ., 7: 368373, 2000.
  • 112
    Distelhorst C. W., Recent insights into the mechanism of glucocorticosteroid-induced apoptosis, Cell Death. Differ., 9: 619, 2002.
  • 113
    Wallace A. D., Cidlowski J. A., Proteasome-mediated glucocorticoid receptor degradation restricts transcriptional signaling by glucocorticoids, J. Biol. Chem., 276: 4271442721, 2001.
  • 114
    Hirsch T., Dallaporta B., Zamzami N., Susin S. A., Ravagnan L., Marzo I., Brenner C., Kroemer G., Proteasome activation occurs at an early, premitochondrial step of thymocyte apoptosis, J. Immunol., 161: 3540, 1998.
  • 115
    Beyette J., Mason G. G., Murray R. Z., Cohen G. M., Rivett A. J., Proteasome activities decrease during dexamethasone-induced apoptosis of thymocytes, Biochem J, 332: 31520, 1998.
  • 116
    He H., Qi X. M., Grossmann J., Distelhorst C. W., c-Fos degradation by the proteasome. An early, Bcl-2-regulated step in apoptosis, J. Biol. Chem., 273: 250159, 1998.
  • 117
    Ivanov V. N., Nikolic-Zugic J., Biochemical and kinetic characterization of the glucocorticoid-induced apoptosis of immature CD4+CD8+ thymocytes, Int. Immunol., 10: 180717, 1998.
  • 118
    Grassilli E., Benatti F., Dansi P., Giammarioli A. M., Malorni W., Franceschi C., Desiderio M. A., Inhibition of proteasome function prevents thymocyte apoptosis: involvement of ornithine decarboxylase, Biochem. Biophys. Res. Comm., 250: 2937, 1998.
  • 119
    Gil-Gomez G., Berns A., Brady H. J., A link between cell cycle and cell death: Bax and Bcl-2 modulate Cdk2 activation during thymocyte apoptosis, EMBO J., 17: 72097218, 1998.
  • 120
    Yang Y., Fang S., Jensen J. P., Weissman A. M., Ashwell J. D., Ubiquitin protein ligase activity of IAPs and their degradation in proteasomes in response to apoptotic stimuli, Science, 288: 874877, 2000.
  • 121
    Bannerman D. D., Tupper J. C., Ricketts W. A., Bennett C. F., Winn R. K., Harlan J. M., A constitutive cytoprotective pathway protects endothelial cells from lipopolysaccharide-induced apoptosis, J. Biol. Chem., 276: 1492414932, 2001.
  • 122
    Richter B. W., Duckett C. S., The IAP proteins: caspase inhibitors and beyond, Sci. STKE., 2000: E1-2000.
  • 123
    Yang Y. L., Li X. M., The IAP family: endogenous caspase inhibitors with multiple biological activities, Cell Res., 10: 169177, 2000.
  • 124
    Mahoney J. A., Odin J. A., White S. M., Shaffer D., Koff A., Casciola-Rosen L., Rosen A., The human homologue of the yeast polyubiquitination factor Ufd2p is cleaved by caspase 6 and granzyme B during apoptosis, Biochem. J., 361: 587595, 2002.
  • 125
    Koegl M., Hoppe T., Schlenker S., Ulrich H. D., Mayer T. U., Jentsch S., A novel ubiquitination factor, E4, is involved in multiubiquitin chain assembly, Cell, 96: 635644, 1999.
  • 126
    Pizzuti A., Novelli G., Ratti A., Amati F., Mari A., Calabrese G., Nicolis S., Silani V., Marino B., Scarlato G., Ottolenghi S., Dallapiccola B., UFD1L, a developmentally expressed ubiquitination gene, is deleted in CATCH 22 syndrome, Hum. Mol. Genet., 6: 259265, 1997.
  • 127
    Dai R. M., Li C. C., Valosin-containing protein is a multi-ubiquitin chain-targeting factor required in ubiquitin-proteasome degradation, Nat. Cell Biol., 3: 740744, 2001.
  • 128
    Ye Y., Meyer H. H., Rapoport T. A., The AAA ATPase Cdc48/p97 and its partners transport proteins from the ER into the cytosol, Nature, 414: 652656, 2001.
  • 129
    Araya R., Takahashi R., Nomura Y., Yeast twohybrid screening using constitutive-active caspase-7 as bait in the identification of PA28gamma as an effector caspase substrate, Cell Death. Differ., 9: 322328, 2002.
  • 130
    Li J., Gao X., Ortega J., Nazif T., Joss L., Bogyo M., Steven A. C., Rechsteiner M., Lysine 188 substitutions convert the pattern of proteasome activation by REGgamma to that of REGs alpha and beta, EMBO J., 20: 33593369, 2001.
  • 131
    Murata S., Kawahara H., Tohma S., Yamamoto K., Kasahara M., Nabeshima Y., Tanaka K., Chiba T., Growth retardation in mice lacking the proteasome activator PA28gamma, J. Biol. Chem., 274: 3821138215, 1999.
  • 132
    Mullally J. E., Moos P. J., Edes K., Fitzpatrick F. A., Cyclopentenone prostaglandins of the J series inhibit the ubiquitin isopeptidase activity of the proteasome pathway, J. Biol. Chem., 276: 3036630373, 2001.
  • 133
    Migone T. S., Humbert M., Rascle A., Sanden D., D'Andrea A., Johnston J. A., The deubiquitinating enzyme DUB-2 prolongs cytokine-induced signal transducers and activators of transcription activation and suppresses apoptosis following cytokine withdrawal, Blood, 98: 19351941, 2001.
  • 134
    Mimnaugh E. G., Kayastha G., McGovern N. B., Hwang S. G., Marcu M. G., Trepel J., Cai S. Y., Marchesi V. T., Neckers L., Caspase-dependent deubiquitination of monoubiquitinated nucleosomal histone H2A induced by diverse apoptogenic stimuli, Cell Death. Differ., 8: 11821196, 2001.
  • 135
    Neves D. D., Rehen S. K., Linden R., Differentiation-dependent sensitivity to cell death induced in the developing retina by inhibitors of the ubiquitin-proteasome proteolytic pathway, Eur. J. Neurosci., 13: 19381944, 2001.
  • 136
    Guzman M. L., Neering S. J., Upchurch D., Grimes B., Howard D. S., Rizzieri D. A., Luger S. M., Jordan C. T., Nuclear factor-kappaB is constitutively activated in primitive human acute myelogenous leukemia cells, Blood, 98: 23012307, 2001.
  • 137
    Perletti L., Kopf E., Carre L., Davidson I., Coordinate regulation of RARgamma2, TBP, and TAFII135 by targeted proteolysis during retinoic acid-induced differentiation of F9 embryonal carcinoma cells, BMC. Mol. Biol., 2: 2: 4 2001.
  • 138
    Wójcik C., Schroeter D., Wilk S., Lamprecht J., Paweletz N., Ubiquitin-mediated proteolysis centers in HeLa cells: indication from studies of an inhibitor of the chymotrypsin-like activity of the proteasome, Eur. J. Cell Biol., 71: 3118, 1996.
  • 139
    Johnston J. A., Ward C. L., Kopito R. R., Aggresomes: a cellular response to misfolded proteins, J. Cell Biol., 143: 188398, 1998.
  • 140
    Wojcik C., An inhibitor of the chymotrypsin-like activity of the proteasome (PSI) induces similar morphological changes in various cell lines, Folia Histochem. Cytobiol., 35: 211214, 1997.
  • 141
    Wojcik C., On the spatial organization of ubiquitindependent proteolysis in HeLa cells, Folia Histochem. Cytobiol., 35: 117118, 1997.
  • 142
    Rideout H. J., Larsen K. E., Sulzer D., Stefanis L., Proteasomal inhibition leads to formation of ubiquitin/alpha-synuclein-immunoreactive inclusions in PC12 cells, J. Neurochem., 78: 899908, 2001.
  • 143
    Bence N. F., Sampat R. M., Kopito R. R., Impairment of the ubiquitin-proteasome system by protein aggregation, Science, 292: 15521555, 2001.
  • 144
    Volbracht C., Leist M., Kolb S. A., Nicotera P., Apoptosis in caspase-inhibited neurons, Mol. Med., 7: 3648, 2001.
  • 145
    Kuusisto E., Suuronen T., Salminen A., Ubiquitinbinding protein p62 expression is induced during apoptosis and proteasomal inhibition in neuronal cells, Biochem. Biophys. Res. Commun., 280: 223228, 2001.
  • 146
    Hauser H. P., Bardroff M., Pyrowolakis G., Jentsch S., A giant ubiquitin-conjugating enzyme related to IAP apoptosis inhibitors, J. Cell Biol., 141: 141522, 1998.
  • 147
    de Vrij F. M., Sluijs J. A., Gregori L., Fischer D. F., Hermens W. T., Goldgaber D., Verhaagen J., van Leeuwen F. W., Hol E. M., Mutant ubiquitin expressed in Alzheimer's disease causes neuronal death, FASEB J., 15: 26802688, 2001.
  • 148
    Tanaka Y., Engelender S., Igarashi S., Rao R. K., Wanner T., Tanzi R. E., Sawa A., Dawson L., Dawson T. M., Ross C. A., Inducible expression of mutant alpha-synuclein decreases proteasome activity and increases sensitivity to mitochondria-dependent apoptosis, Hum. Mol. Genet., 10: 919926, 2001.
  • 149
    Anton L. C., Schubert U., Bacik I., Princiotta M. F., Wearsch P.A. Gibbs J., Day P. M., Realini C, Rechsteiner M. C., Bennink J. R., Yewdell J. W., Intracellular localization of proteasomal degradation of a viral antigen, J. Cell Biol., 146: 113124, 1999.
  • 150
    Jana N. R., Zemskov E. A., Wang G., Nukina N., Altered proteasomal function due to the expression of polyglutamine- expanded truncated N-terminal huntingtin induces apoptosis by caspase activation through mitochondrial cytochrome c release, Hum. Mol. Genet., 10: 10491059, 2001.
  • 151
    Sherman M. Y., Goldberg A. L., Cellular defenses against unfolded proteins: a cell biologist thinks about neurodegenerative diseases, Neuron, 29: 1532, 2001.
  • 152
    Kopito R. R., Aggresomes, inclusion bodies and protein aggregation, Trends Cell Biol., 10: 524530, 2000.
  • 153
    Matsuzawa S., Takayama S., Froesch B. A., Zapata J. M., Reed J. C., p53-inducible human homologue of Drosophila seven in absentia (Siah) inhibits cell growth: suppression by Bag-1, EMBO J., 17: 273647, 1998.
  • 154
    Sondermann H., Scheufler C., Schneider C., Hohfeld J., Hartl F. U., Moarefi I., Structure of a Bag/Hsc70 complex: convergent functional evolution of Hsp70 nucleotide exchange factors, Science, 291: 15531557, 2001.
  • 155
    Luders J., Demand J., Hohfeld J., The ubiquitinrelated BAG-1 provides a link between the molecular chaperones Hsc70/Hsp70 and the proteasome, J. Biol. Chem., 275: 46134617, 2000.
  • 156
    Murata S., Minami Y., Minami M., Chiba T., Tanaka K., CHIP is a chaperone-dependent E3 ligase that ubiquitylates unfolded protein, EMBO Rep., 2: 11331138, 2001.
  • 157
    Demand J., Alberti S., Patterson C., Hohfeld J., Cooperation of a ubiquitin domain protein and an E3 ubiquitin ligase during chaperone/proteasome coupling, Curr. Biol., 11: 15691577, 2001.
  • 158
    Fabunmi R. P., Wigley W. C., Thomas P. J., Demartino G. N., Activity and regulation of the centrosome-associated proteasome, J. Biol. Chem., 275: 409413, 2000.
  • 159
    Wigley W. C., Fabunmi R. P., Lee M. G., Marino C. R., Muallem S., Demartino G. N., Thomas P. J., Dynamic association of proteasomal machinery with the centrosome, J. Cell Biol., 145: 481490, 1999.
  • 160
    Ashok B. T., Kim E., Mittelman A., Tiwari R. K., Proteasome inhibitors differentially affect heat shock protein response in cancer cells, Int. J. Mol. Med., 8: 385390, 2001.
  • 161
    Kobayashi Y., Sobue G., Protective effect of chaperones on polyglutamine diseases, Brain Res. Bull., 56: 165168, 2001.
  • 162
    Nimmanapalli R., O'Bryan E., Bhalla K., Geldanamycin and its analogue 17-allylamino-17-demethoxygeldanamycin lowers Bcr-Abl levels and induces apoptosis and differentiation of Bcr- Ablpositive human leukemic blasts, Cancer Res., 61: 17991804, 2001.
  • 163
    Pajonk F., McBride W. H., The Proteasome in Cancer Biology and Treatment, Radiat. Res., 156: 447459, 2001.
  • 164
    Shah S. A., Potter M. W., Callery M. P., Ubiquitin proteasome pathway: implications and advances in cancer therapy, Surg. Oncol., 10: 4352, 2001.
  • 165
    Orlowski R. Z., Eswara J. R., Lafond-Walker A., Grever M. R., Orlowski M., Dang C. V., Tumor growth inhibition induced in a murine model of human Burkitt's lymphoma by a proteasome inhibitor, Cancer Res, 58: 43428, 1998.
  • 166
    Stoklosa T., Golab J., Wójcik C., Jalili A., Marczak M., Giermasz A., Januszko P., Balkowiec E., Jakóbisiak M., Wilk S., Antitumor effect of proteasome inhibitor dependent on p53 induction and angiogenesis inhibition, Third Workshop on Proteasomes, Clermont-Ferrand, France, March 1999.
  • 167
    Sunwoo J. B., Chen Z., Dong G., Yeh N., Crowl B. C., Sausville E., Adams J., Elliott P., van Waes C., Novel proteasome inhibitor PS-341 inhibits activation of nuclear factor- kappa B, cell survival, tumor growth, and angiogenesis in squamous cell carcinoma, Clin. Cancer Res., 7: 14191428, 2001.
  • 168
    Sun J., Nam S., Lee C. S., Li B., Coppola D., Hamilton A. D., Dou Q. P., Sebti S. M., CEP1612, a dipeptidyl proteasome inhibitor, induces p21WAF1 and p27KIP1 expression and apoptosis and inhibits the growth of the human lung adenocarcinoma A-549 in nude mice, Cancer Res., 61: 12801284, 2001.
  • 169
    Hideshima T., Richardson P., Chauhan D., Palombella V. J., Elliott P. J., Adams J., Anderson K. C., The proteasome inhibitor PS-341 inhibits growth, induces apoptosis, and overcomes drug resistance in human multiple myeloma cells, Cancer Res., 61: 30713076, 2001.
  • 170
    Meiners S., Laule M., Rother W., Guenther C., Prauka I., Muschick P., Baumann G., Kloetzel P. M., Stangl K., Ubiquitin-proteasome pathway as a new target for the prevention of restenosis, Circulation, 105: 483489, 2002.
  • 171
    Pervan M., Pajonk F., Sun J. R., Withers H. R., McBride W. H., Molecular pathways that modify tumor radiation response, Am. J. Clin. Oncol., 24: 481485, 2001.
  • 172
    Russo S. M., Tepper J. E., Baldwin A. S. Jr., Liu R., Adams J., Elliott P., Cusack J. C. Jr., Enhancement of radiosensitivity by proteasome inhibition: implications for a role of NF-kappaB, Int. J. Radiat. Oncol. Biol. Phys., 50: 183193, 2001.
  • 173
    Oyaizu H., Adachi Y., Okumura T., Okigaki M., Oyaizu N., Taketani S., Ikebukuro K., Fukuhara S., Ikehara S., Proteasome inhibitor 1 enhances paclitaxel-induced apoptosis in human lung adenocarcinoma cell line, Oncol. Rep., 8: 825829, 2001.
  • 174
    Cusack J. C. Jr., Liu R., Houston M., Abendroth K., Elliott P. J., Adams J., Baldwin A. S. Jr., Enhanced chemosensitivity to CPT-11 with proteasome inhibitor PS-341: implications for systemic nuclear factorkappaB inhibition, Cancer Res., 61: 35353540, 2001.
  • 175
    Milligan S. A., Nopajaroonsri C., Inhibition of NF-kappa B with proteasome inhibitors enhances apoptosis in human lung adenocarcinoma cells in vitro Anticancer Res., 21: 3944, 2001.
  • 176
    Golab J., Stoklosa T., Czajka A., Dabrowska A., Jakobisiak M., Zagozdzon R., Wojcik C., Marczak M., Wilk S., Synergistic antitumor effects of a selective proteasome inhibitor and TNF in mice, Anticancer Res., 20: 17171721, 2000.
  • 177
    Wojcik C., Mlynarczuk I., Hoser G., Kawiak J., Stoklosa T., Golab J., Wilk S., A combination of retinoic acid and proteasome inhibitors for the treatment of leukemias is potentially dangerous., Blood, 94: 18271828, 1999.
  • 178
    Brophy V. A., Tavare J. M., Rivett A. J., Treatment of COS-7 cells with proteasome inhibitors or gammainterferon reduces the increase in caspase 3 activity associated with staurosporine-induced apoptosis, Arch. Biochem. Biophys., 397: 199205, 2002.
  • 179
    Stoklosa T., Wójcik C., Golab J., Giermasz A., Wilk S., Inhibition of proteasome, apoptosis and sensitization to tumour necrosis factor alpha: do they always go together?, Br. J. Cancer, 79: 375376, 1999.
  • 180
    Glas R., Bogyo M., McMaster J. S., Gaczynska M., Ploegh H. L., A proteolytic system that compensates for loss of proteasome function, Nature, 392: 618622, 1998.
  • 181
    Wang E. W., Kessler B. M., Borodovsky A., Cravatt B. F., Bogyo M., Ploegh H. L., Glas R., Integration of the ubiquitin-proteasome pathway with a cytosolic oligopeptidase activity, Proc. Natl. Acad. Sci. USA, 97: 99909995, 2000.
  • 182
    Geier E., Pfeifer G., Wilm M., Lucchiari-Hartz M., Baumeister W., Eichmann K., Niedermann G., A giant protease with potential to substitute for some functions of the proteasome, Science, 283: 97881, 1999.
  • 183
    Bury M., Mlynarczuk I., Pleban E., Hoser G, Kawiak J., Wojcik C., Effects of an inhibitor of tripeptidyl peptidase II (Ala-Ala-Phe-chloromethylketone) and its combination with an inhibitor of the chymotrypsin-like activity of the proteasome (PSI) on apoptosis, cell cycle and proteasome activity in U937 cells, Folia Histochem. Cytobiol., 39: 131132, 2001.
  • 184
    Princiotta M. F., Schubert U., Chen W., Bennink J. R., Myung J., Crews C. M., Yewdell J. W., Cells adapted to the proteasome inhibitor 4-hydroxy- 5-iodo-3- nitrophenylacetyl-Leu-Leu-leucinal-vinyl sulfone require enzymatically active proteasomes for continued survival, Proc. Natl. Acad. Sci. USA, 98: 513518, 2001.
  • 185
    Gavioli R., Frisan T., Vertuani S., Bornkamm G. W., Masucci M. G., c-myc overexpression activates alternative pathways for intracellular proteolysis in lymphoma cells, Nat. Cell Biol., 3: 283288, 2001.
  • 186
    Wojcik C., Demartino G. N., Analysis of Drosophila 26 S proteasome using RNA interference, J. Biol. Chem., 277: 61886197, 2002.
  • 187
    Tomkinson B., Tripeptidyl peptidases: enzymes that count, Trends Biochem. Sci., 24: 355359, 1999.
  • 188
    Huang Y., Shin N. H., Sun Y., Wang K. K., Molecular cloning and characterization of a novel caspase-3 variant that attenuates apoptosis induced by proteasome inhibition, Biochem. Biophys. Res. Commun., 283: 762769, 2001.
  • 189
    Adams J., Palombella V. J., Sausville E. A., Johnson J., Destree A., Lazarus D. D., Maas J., Pien C. S., Prakash S., Elliott P. J., Proteasome inhibitors: a novel class of potent and effective antitumor agents, Cancer Res, 59: 261522, 1999.
  • 190
    Wójcik C., Ubiquitin- and proteasome-dependent proteolytic pathway as an emerging theapeutic target, Emerging Therapeutic Targets, 4: 123, 2000.
  • 191
    Luo H., Wu Y., Qi S., Wan X., Chen H., Wu J., A proteasome inhibitor effectively prevents mouse heart allograft rejection, Transplantation, 72: 196202, 2001.