• 1
    Vaux D.L. and Korsmeyer S.J., Cell death in development, Cell, 96: 245, 1999.
  • 2
    Kerr J.F., Wyllie A.H., Currie A.R., Apoptosis: a basic biological phenomenon with wide range implications in tissue kinetics, Br. J. Cancer, 26: 239, 1972.
  • 3
    Thompson C. B., Apoptosis in the pathogenesis and treatment of disease, Science, 267: 1456, 1995.
  • 4
    Thornberry N.A. and Lazebnik Y., Caspases: Enemies Within, Science, 281: 1312, 1998.
  • 5
    Adams J.M., Cory S., The Bcl-2 Protein Family: Arbiters of Cell Survival, Science, 281: 1322, 1998.
  • 6
    Chao D.T., Korsmeyer S.J., Bcl-2 family: regulators of cell death, Annu. Rev. Immunol., 16: 395, 1998.
  • 7
    Tsujimoto Y., Cossman J., Jaffe E., Croce C.M., Involvement of the bcl-2 gene in human follicular lymphoma, Science, 228: 1440, 1985.
  • 8
    Hockenbery D., Nunez G., Milliman C., Schreiber R.D., SKorsmeyer. J., Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death, Nature, 348: 334, 1990.
  • 9
    Gulbing E., Jekle A., Ferlinz K., Grassme H., Lang F., Physiology of apoptosis, Am. J. Physiol. Renal. Physiol., 279: F605, 2000.
  • 10
    Haunstetter A., Izumo S., Apoptosis. Basic Mechanisms and Implications for Cardiovascular Disease, Circ. Res., 82: 1111, 1998.
  • 11
    Puthalakath H., Strasser A., Keeping killers on a tight leash: transcriptional and post-translational control of the pro-apoptotic activity of BH3-only proteins, Cell Death Differ., 9: 505, 2002.
  • 12
    Nguyen M., Millar D.G., Yong V.W., Korsmeyer S.J., Shore G.C., Targeting of Bcl-2 to the mitochondrial outer membrane by a COOH- terminal signal anchor sequence, J. Biol. Chem., 268: 25265, 1993.
  • 13
    Krajewski S., Bodrug S., Gascoyne R., Berean K., Krajewska M., Reed J.C., Immunohistochemical analysis of Mcl-1 and Bcl-2 proteins in normal and neoplastic lymph nodes, Am. J. Pathol., 145: 515, 1994.
  • 14
    Zhu W., Cowie A., Wasfy G.W., Penn L.Z., Leber B., and Andrews D.W., Bcl-2 mutants with restricted subcellular location reveal spatially distinct pathways for apoptosis in different cell types, EMBO J., 15: 4130, 1996.
  • 15
    Krajewski S., Tanaka S., Takayama S., Schibler M.J., Fenton W., Reed J.C., Investigation of the subcellular distribution of the bcl-2 oncoprotein: Residence in the nuclear envelope, endoplasmic reticulum, and outer mitochondrial membranes, Cancer Res., 53: 4701, 1993.
  • 16
    Wolter K.G., Hsu Y.T., Smith C.L., Nechushtan A., Xi X.G., Youle R.J., Movement of Bax from the cytosol to mito-chondria during apoptosis, J. Cell Biol., 139: 1281, 1997.
  • 17
    Hsu Y.T., Wolter K.G., and Youle R.J., Cytosol-to-membrane redistribution of Bax and Bcl-X(L) during apoptosis, Proc. Natl. Acad. Sci., 94: 3668, 1997.
  • 18
    Goping I.S., Gross A., Lavoie J.N., Nguyen M., Jemmerson R., Roth K., Korsmeyer S.J., Shore G.C., Regulated targeting of BAX to mitochondria, J. Cell Biol., 143: 207, 1998.
  • 19
    Griffiths G.J., Dubrez L., Morgan C.P., Jones N.A, Whitehouse J., Corfe B.M., Dive C., Hickman J.A., Cell damage-induced conformational changes of the pro-apoptotic protein Bak in vivo precede the onset of apoptosis, J. Cell Biol., 144: 903, 1999.
  • 20
    Matter M.L., Ruoslahti E., A signaling pathway from the α5β1 and αvβ3 integrins that elevates bcl-2 transcription, J. Biol. Chem., 276: 27757, 2001.
  • 21
    Haendeler J., Messmer U.K., Brüne B., Neugebauer E., Dimmeler S., Endotoxic shock leads to apoptosis in vivo and reduces Bcl-2, Shock, 6: 405, 1996.
  • 22
    Krajewski S., Mai J.K., Krajewska M., Sikorska M., Mossakowski M.J., Reed J.C., Upregulation of bax protein levels in neurons following cerebral ischemia, J. Neurosci., 15: 6364, 1995.
  • 23
    Inohara N., Ding L., Chen S., Nunez G., Harakiri, a novel regulator of cell death, encodes a protein that activates apoptosis and interacts selectively with survival-promoting proteins Bcl-2 and Bcl-X(L), EMBO J., 16: 1686, 1997.
  • 24
    Miyashita T., Reed J.C., Tumor suppressor p53 is a direct transcriptional activator of the human bax gene, Cell, 80: 293, 1995.
  • 25
    Gross A., Mcdonnell J.M., Korsmeyer S.J., Bcl-2 family members and the mitochondria in apoptosis, Genes & Development, 13: 1899, 1999.
  • 26
    Oltvai Z.N., Milliman C.L., Korsmeyer S.J., Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death, Cell, 74: 609, 1993.
  • 27
    Sato T., Hanada M., Bodrug S., Irie S., Iwama N., Boise L.H., Thompson C.B., Golemis E., Fong L., Wang H.G., Reed J.C., Interactions among members of the Bcl-2 protein family analyzed with a yeast two-hybrid system, Proc. Natl. Acad. Sci. USA, 91: 9238, 1994.
  • 28
    Gross A., Jockel J., Wei M.C., Korsmeyer S.J., Enforced dimerization of BAX results in its translocation, mitochondrial dysfunction and apoptosis, EMBO J., 17: 3878, 1998.
  • 29
    Zha J., Harada H., Yang E., Jockel J., and Korsmeyer S.J., Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14-3-3 not BCL-X(L), Cell, 87: 619, 1996.
  • 30
    Muchmore S.W., Sattler M., Liang H., Meadows R.P., Harlan J.E., Yoon H.S., Nettesheim D., Chang B.S., Thompson C.B., Wong S.L., Ng S.L., Fesik S.W., X-ray and NMR structure of human Bcl-xL, an inhibitor of programmed cell death, Nature, 381: 335, 1996.
  • 31
    Sattler M., Liang H., Nettesheim D., Meadows R.P., Harlan J.E., Eberstadt M., Yoon H.S., Shuker S.B., Chang B.S., Minn A.J., Thompson C.B., Fesik S.W., Structure of Bcl-XL-Bak peptide complex: recognition between regulators of apoptosis, Science, 275: 983, 1997.
  • 32
    McDonnell J.M., Fushman D., Milliman C.L., Korsmeyer S.J., Cowburn D., Solution structure of the proapoptotic molecule BID: A structural basis for apoptotic agonists and antagonists, Cell, 96: 625, 1999.
  • 33
    Condorelli F., Salomoni P., Cotteret S., Cesi V., Srinivasula M.S., Alnemri E.S., Calabretta B., Caspase Cleavage Enhances the Apoptosis-Inducing Effects of BAD, Mol. Cell. Biol., 21: 3025, 2001.
  • 34
    Ayllón V., Fleischer A., Cayla X., Garcýa A., Rebollo A., Segregation of Bad from Lipid Rafts Is Implicated in the Induction of Apoptosis, J. Immunol., 168: 3387, 2002.
  • 35
    Kelekar A., Chang B.S., Harlan J.E., Fesik S.W., Thompson C.B., Bad is a BH3 domain-containing protein that forms an in activating dimer with Bcl-XL, Mol. Cell. Biol., 17: 7040, 1997.
  • 36
    Zha J., Harada H., Osipov K., Jockel J., Waksman G., Korsmeyer S.J., BH3 domain of BAD is required for heterodimerization with BCL-XL and proapoptotic activity, J. Biol. Chem., 272: 24101, 1997.
  • 37
    Klumpp S., Krieglstein J., Serine/threonine protein phosphatases in apoptosis, Curr. Opin. Pharmacol., 2: 458, 2002.
  • 38
    Datta S.R., Dudek H., Tao X., Masters S., Fu H., Gotoh Y., Greenberg M.E., Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery, Cell, 91: 231, 1997.
  • 39
    del Peso L., Gonzalez-Garcia M., Page C., Herrera R., Nunez G., Interleukin-3-induced phosphorylation of BAD through the protein kinase Akt, Science, 278: 689, 1997.
  • 40
    Cardone, M.H., Roy N., Stennicke H.R., Salvesen G.S., Franke T.F., Stanbridge E., Frisch S., Reed J.C., Regulation of cell death protease caspase-9 by phosphorylation, Science, 282: 1318, 1998.
  • 41
    She Q.B., Ma W.Y., Zhong S., Dong Z, Activation of JNK1, RSK2, and MSK1 is involved in Serine 112 phosphorylation of Bad by ultraviolet B radiation, J. Biol. Chem., 5: 24039, 2002.
  • 42
    Harada H., Becknell B., Wilm M., Mann M., Huang L.J., Taylor S.S., Scott J.D., Korsmeyer S.J., Phosphorylation and inactivation of BAD by mitochondria-anchored protein kinase A, Mol. Cell, 3: 413, 1999.
  • 43
    Brichese L, Barboule N, Heliez C, Valette A, Bcl-2 phosphorylation and proteasome-dependent degradation induced by Paclitaxel treatment: consequences on sensitivity of isolated mitochondria to Bid, Exp. Cell. Res., 1: 1101, 2002.
  • 44
    Ito T., Deng X., Carr B., and May W.S., Bcl-2 phosphorylation required for anti-apoptosis function, J. Biol. Chem, 272: 11671, 1997.
  • 45
    Poommipanit P.B., Chen B., Oltvai Z.N., Interleukin- 3 induces the phosphorylation of a distinct fraction of Bcl- 2, J. Biol. Chem., 274: 1033, 1999.
  • 46
    Breitschopf K., Haendeler J., Malchow P., Zeiher A. M., Dimmeler S., Posttranslational Modification of Bcl-2 Facilitates its Proteasome-Dependent Degradation: Molecular Characterization of the Involved signaling Pathway, Mol. Cell. Biol., 20: 1886, 2000.
  • 47
    Wang K., Yin X.M., Chao D.T., Milliman C.L., Korsmeyer S.J., BID: A novel BH3 domain-only death agonist. Genes & Dev., 10: 2859, 1996.
  • 48
    Li H., Zhu H., Xu C.J., Yuan J., Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis, Cell, 94: 491, 1998.
  • 49
    Blomgren K., Zhu C., Wang X., Karlsson J.O., Leverin A.L., Bahr B.A., Mallard C., Hagberg H., Synergistic activation of caspase-3 by calpain after neonatal hypoxiaischemia: a mechanism of “pathological apoptosis”?, Biol. Chem., 276: 10191, 2001.
  • 50
    Barry M., Heibein J.A., Pinkoski M.J., Lee S.-F., Moyer R.W., Green D.R., Bleackley R.C., Granzyme B short-circuits the need for caspase 8 activity during granule-mediated cytotoxic T-lymphocyte killing by directly cleaving Bid, Mol. Cell. Biol., 20: 3781, 2000.
  • 51
    Gross A., Yin X.M., Wang K., Wei M.C., Jockel J., Milliman C., Erdjument-Bromage H., Tempst P., Korsmeyer S.J., Caspase cleaved BID targets mitochondria and is required for cytochrome c release, while BCL-XL prevents this release but not tumor necrosis factor-R1/Fas death, J. Biol. Chem., 274: 1156, 1999.
  • 52
    Korsmeyer S. J., Wei M.C., Saito M., Weiler S., Oh K.J., Schlesinger P.H., Pro-apoptotic cascade activates BID, which oligomerizes BAK or BAX into pores that result in the release of cytochrome c, Cell Death Differ., 7: 1166, 2000.
  • 53
    Mandic A., Viktorsson K., Strandberg L., Heiden T., Maria C. Hansson J., Shoshan L.S., Calpain-Mediated Bid Cleavage and Calpain-Independent Bak Modulation: Two Separate Pathways in Cisplatin-Induced Apoptosis, Mol. Cel. Biol., 22: 3003, 2002.
  • 54
    Velthuis J.H., Rouschop K.M., De Bont H.J., Mulder G.J., Nagelkerke J.F., Distinct Intracellular Signaling in Tumor Necrosis Factor-related Apoptosis-inducing Ligand- and CD95 Ligand-mediated Apoptosis, J. Biol. Chem., 5: 24631, 2002.
  • 55
    Chou J.J., Li H., Salvesen G.S., Yuan J., Wagner G., Solution structure of BID, an intracellular amplifier of apoptotic signaling, Cell, 96: 615, 1999.
  • 56
    Darnell J.E., Lodish H.F., Baltimore D., Molecular Cell Biology, W.H. Freeman, New York , 1990.
  • 57
    Desagher S., Osen-Sand A., Nichols A., Eskes R., Montessuit S., Lauper S., Maundrell K., Antonsson B., Martinou J.C., Bid-induced conformational change of Bax is responsible for mitochondrial cytochrome c release during apoptosis, J. Cell Biol., 144: 891, 1999.
  • 58
    Cheng, E.H., Kirsch D.G., Clem R.J., Ravi R., Kastan M.B., Bedi A., Ueno K., Hardwick J.M., Conversion of Bcl-2 to a Bax-like death effector by caspases, Science, 278: 1966, 1997.
  • 59
    Clem, R.J., Cheng E.H., Karp C.L., Kirsch D.G., Ueno K., Takahashi A., Kastan M.B., Griffin D.E., Earnshaw W.C., Veliuona M.A., Hardwick J.M., Modulation of cell death by Bcl-XL through caspase interaction, Proc. Natl. Acad. Sci., 95: 554, 1998.
  • 60
    Grandgirard D., Studer E., Monney L., Belser T., Fellay I., Borner C., Michel M.R., Alphaviruses induce apoptosis in Bcl-2-overexpressing cells: evidence for a caspase-mediated, proteolytic inactivation of Bcl-2, EMBO J., 17: 1268, 1998.
  • 61
    Puthalakath H., Huang D.C., O'Reilly L.A., King S.M., and Strasser A., The proapoptotic activity of the Bcl-2 family member Bim is regulated by interaction with the dynein motor complex, Mol. Cell, 3: 287, 1999.
  • 62
    Zong W-X, Lindsten T., Ross A.J., MacGregor G.R., Thompson C.B., BH3-only proteins that bind pro-survival Bcl-2 family members fail to induce apoptosis in the absence of Bax and Bak, Genes & Development, 15: 1481, 2001.