• 1
    Reddi A. H., Regulation of cartilage and bone differentiation by bone morphogenetic proteins, Curr. Opin. Cell Biol., 4: 850855, 1992.
  • 2
    Ripamonti U., Ramoshebi L. N., Patton J., Matsaba, T, Teare J., Renton L., Soluble Signals and Insoluble Substrata: Novel Molecular Cues Instructing the Induction of Bone. In: MassaroE. J., RogersJ. M., eds., The Skeleton. Humana Press, Totowa , New Jersey , 2004, pp. 217227.
  • 3
    Reddi A. H., Symbiosis of biotechnology and biomaterials: Applications in tissue engineering of bone and cartilage. J. Cell. Biochem., 56: 192195, 1994.
  • 4
    Reddi A. H., BMPs: Action in flesh and bone. Nat. Med., 3: 837838, 1997.
  • 5
    Reddi A. H., Role of morphogenetic proteins in skeletal tissue engineering and regeneration. Nat. Biotechnol., 16: 247252, 1998.
  • 6
    Reddi A. H., Morphogenesis and tissue engineering of bone and cartilage: inductive signals, stem cells, and biomimetic biomaterials, Tissue Eng., 6: 351359, 2000.
  • 7
    Ripamonti U., Ma S., Cunningham N., Yeates L., Reddi A. H., Initiation of bone regeneration in adult baboons by osteogenin, a bone morphogenetic protein. Matrix, 12: 369380, 1992.
  • 8
    Ripamonti U., Duneas N., Tissue morphogenesis and regeneration by bone morphogenetic proteins. Plast. Reconstr. Surg., 101: 227239, 1998.
  • 9
    Ripamonti U., Ramoshebi L. N., Matsaba T., Tasker J., Crooks J., Teare J., Bone induction by BMPs/OPs and related family members in primates. The critical role of delivery systems. J. Bone Joint Surg. Am., 83-A: S1 116SI 127, 2001.
  • 10
    Ripamonti U., Osteogenic Proteins of the TGF-β Superfamily. In: HenryH. L., NormanA. W., eds., Encyclopedia of Hormones, Academic Press, USA , 2003, pp. 8086.
  • 11
    Ripamonti U., Tissue engineering of bone by novel substrata instructing gene expression during the de novo bone formation, Science in Africa, 2002.
  • 12
    Ripamonti U., Ramoshebi L. N., Patton J., Matsaba T., Teare J., Renton L. Sculpturing the architecture of mineralized tissues: tissue engineering of bone from soluble signals to smart siomimetic matrices. In: RHMüller R. H.Müller, KayserO., eds., Pharmaceutical Biotechnology. Wiley-VCH 2004; Chapter16, pp. 281297.
  • 13
    Wozney J. M., Rosen V., Celeste A. J., Mitsock L. M., Whitters M. J., Kritz R. W., Hewick R. M., Wang E. A. Novel regulators of bone formation: Molecular clones and activities. Science, 242: 15281534, 1988.
  • 14
    Wozney J. M., The bone morphogenetic protein family and osteogenesis. Mol. Reprod. Dev., 32: 160167, 1992.
  • 15
    Carrington J. L., Reddi A. H., Parallels between development of embryonic and matrix-induced endochondral bone. Bioessays, 13: 403408, 1991.
  • 16
    Urist M. R., DeLange R. J., Finerman G. A. M., Bone cell differentiation and growth factors. Science, 220: 680686, 1983.
  • 17
    Turing A. M., The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond., 237: 37, 1952.
  • 18
    Sampath T. K., Rashka K. E., Doctor J. S., Tucker R. F., Hoffmann F. M., Drosophila TGF-β superfamily proteins induce endochondral bone formation in mammals. Proc. Natl. Acad. Sci. USA, 90: 60046008, 1993.
  • 19
    Hotten G. C., Matsumoto T., Kimura M., Bechtold R. F., Kron R., Ohara T., Tanaka H., Satoh Y., Okazaki M., Shirai T., Pan H., Kawai S., Pohl J. S., Kudo A., Recombinant human growth/differentiation factor 5 stimulates mesenchyme aggregation and chondrogenesis responsible for the skeletal development of limbs. Growth Factors, 13: 6574, 1996.
  • 20
    Ripamonti U., Duneas N., van den Heever B., Bosch C., Crooks J., Recombinant transforming growth factor-β1 induces endochondral bone in the baboon and synergizes with recombinant osteogenic protein-1 (bone morphogenetic protein-7) to initiate rapid bone formation, J. Bone Miner. Res., 12: 15841595, 1997.
  • 21
    Ripamonti U., Crooks J., Matsaba T., Tasker J., Induction of endochondral bone formation by recombinant human transforming growth factor-β2 in the baboon (Papio ursinus). Growth Factors, 17: 269285, 2000.
  • 22
    Duneas N., Crooks J., Ripamonti U., Transforming growth factor-β1: Induction of bone morphogenetic protein genes expression during endochondral bone formation in the baboon, and synergistic interaction with osteogenic protein-1 (BMP-7). Growth Factors, 15: 259277, 1998.
  • 23
    Ripamonti U., Teare J., Matsaba T., Renton L., Site, tissue and organ specificity of endochondral bone induction and morphogenesis by TGF-beta isoforms in the primate Papio ursinus. Proceedings of the 2001 FASEB Summer Research Conference, Tucson, Arizona USA, 2001.
  • 24
    Roberts A. B., Sporn M. B., Assoian R. K., Smith J. M., Roche N. S., Wakefield L. M., Heine U. I., Liotta L. A., Falanga V., Kerhl J. H., Fauci A. S. Transforming growth factor type β: rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in vitro. Proc. Natl. Acad. Sci. USA, 83: 41674171, 1986.
  • 25
    Sampath T. K., Muthukumaran N., Reddi A. H. Isolation of osteogenin, an extracellular matrix-associated, bone-inductive protein, by heparin affinity chromatography. Proc. Natl. Acad. Sci. USA, 84: 71097113, 1987.
  • 26
    Bentz H., Nathan R. M., Rosen D., Armstrong R. M., Thompson A. Y., Segarini P. R., Matthews M. C., Dasch J. R., Piez K. A., Seyedin S. M., Purification and characterisation of a unique factor from bovine bone. J. Biol. Chem., 264: 2080520810, 1989.
  • 27
    Hammonds R. G., Schwall R., Dudley A., Berkemeier L., Lai C., Lee J., Cunningham N., Reddi A. H., Wood W., Mason A. J., Bone inducing activityof mature BMP-2b produced from a hybrid BMP-2a/2b precursor. Mol. Endocrinol., 5: 149155, 1991.
  • 28
    Ripamonti U., Bosch C., van den Heever B., Duneas N., Melsen B., Ebner R., Limited chondro-osteogenesis by recombinant human transforming growth factor β1 in calvarial defects in adult baboons (Papio ursinus). J. Bone Miner. Res., 11: 938945, 1996.
  • 29
    Wakefield L. M., Smith D. M., Masui T., Harris C. C., Sporn M. B., Distribution and modulation of the cellular receptor for transforming growth factor-beta. J. Cell Biol., 105: 965975, 1987.
  • 30
    Shi Y., Massagué J., Mechanisms of TGF-β signaling from cell membrane to the nucleus. Cell, 113: 685700, 2003.
  • 31
    Imamura T., Takase M., Nishihara A., Oeda E., Hanai J., Kawabata M., Myazono K., Smad6 inhibits signalling by the TGF-β superfamily. Nature, 389: 622626, 1997.
  • 32
    Nakao A., Afrakhte M., Morèn A., Nakayama T., Christian J. L., Heuchel R., Itoh S., Kawabata M., Heldin N. -E., Heldin C. -H., Ten Dijke P., Identification of Smad7, a TGFβ-inducible antagonist of TGF-β signalling. Nature, 389: 631635, 1997.
  • 33
    Whitman M., Feedback from inhibitory SMADs. Nature, 389: 549551, 1997.
  • 34
    Myazono K., Ten Dijke P., Heldin C. -H. TGF-β signaling by Smad proteins. Adv. Immunol., 75: 115157, 2000.
  • 35
    Ripamonti U., van den Heever B., Crooks J., Tucker M. M., Sampath T. K., Rueger D. C., Reddi A. H., Long term evaluation of bone formation by osteogenic protein-1 in the baboon and relative efficacy of bone-derived bone morphogenetic proteins delivered by irradiated xenogeneic collagenous matrices. J. Bone Miner. Res., 15: 17981809, 2000.
  • 36
    Jin D. M., Takita H., Kohgo T., Atsumi K., Itoh H., Kuboki Y., Effects of geometry of hydroxyapatite as a cell substratum in BMP-induced ectopic bone formation. J. Biomed. Mater. Res., 52: 841851, 2000.
  • 37
    Kuboki Y., Takita H., Tsuruga E., Inoue M., Murata M., Nagai N., Dohi Y., Ohgushi H. BMP-induced osteogenesis on the surface of hydroxyapatite with geometrically feasible and nonfeasible structures. J. Biomed. Mater. Res., 39: 190199, 1998.
  • 38
    Reddi A. H. Bone matrix in the solid state: Geometric influence on differentiation of fibroblasts. Adv. Biol. Med. Phys., 15: 118, 1974.
  • 39
    Ripamonti U., Ma S., Reddi A. H., The critical role of geometry of porous hydroxyapatite delivery system in induction of bone by osteogenin, a bone morphogenetic protein. Matrix, 12: 202212, 1992.
  • 40
    Ripamonti U., Crooks J., Kirkbride A. N. Sintered porous hydroxyapatites with intrinsic osteoinductive activity: Geometric induction of bone formation. S. Afr. J. Sci., 95: 335343, 1999.
  • 41
    Ripamonti U., Crooks J., Intrinsic osteoinductive activity of smart biomaterials with inductive and morphogenetic shape memory geometries. Abstract 7th International Academy of Shape Memory Material for Medical Use (IASMU) Montreal, Canada, 2000.
  • 42
    Sampath T. K., Reddi A. H. Importance of geometry of the extracellular matrix in endochondral bone differentiation. J. Cell Biol., 98: 21922197, 1984.
  • 43
    van Eeden S., Ripamonti U., Bone differentiation in porous hydroxyapatite is regulated by the geometry of the substratum: Implications for reconstructive craniofacial surgery. Plast. Reconstr. Surg., 93: 959966, 1994.
  • 44
    Ripamonti U., van den Heever B., van Wyk J., Expression of the osteogenic phenotype in porous hydroxyapatites implanted extraskeletally in baboons. Matrix, 13: 491502, 1993.
  • 45
    Ripamonti U., Duneas N., Tissue engineering of bone by osteoinductive biomaterials. Mater. Res. Soc. Bull., 21: 3639, 1996.
  • 46
    Thomas M. E., Richter P. W., van Deventer T., Crooks J., Ripamonti U., Macroporous synthetic hydroxyapatite bioceramics for bone substitute application, S. Afr. J. Sci., 95: 359362, 1999.
  • 47
    Ripamonti U., Smart biomaterials with intrinsic osteoinductivity: geometric control of bone differentiation. In: DaviesJ. E., (ed) Bone Engineering, EM2 Corporation, Toronto , Canada , 2000, pp. 215222.
  • 48
    Khouri R. K., Koudsi B., Reddi A. H., Tissue transformation into bone in vivo. A potential practical application, JAMA, 266: 19531955, 1991.
  • 49
    Ripamonti U., Crooks J., Rueger D. C., Induction of bone formation by recombinant human osteogenic protein-1 and sintered porous hydroxyapatite in adult primates. Plast. Reconst. & Surg., 107: 977988, 2001.
  • 50
    Parfitt A. M., Osteonal and hemi-osteonal remodeling: The spatial and temporal framework for signal traffic in adult human bone, J. Cell. Biochem., 55: 273286, 1994.
  • 51
    Parfitt A. M., A new model for the regulation of bone resorption, with particular reference to the effects of biphosphonates, J. Bone Miner. Res., 11: 150159, 1996.
  • 52
    Manolagas S. C., Jilka L., Bone marrow, cytokines, and bone remodelling. Emerging insights into the pathophysiology of osteoporosis, New Engl. J. Med., 332: 305311, 1955.