SEARCH

SEARCH BY CITATION

References: References

  • 1
    Takeda E., Taketani Y., Morita K., Tatsumi S., Kanako K., Nii T., Yamamoto H., Miyamoto K., Molecular mechanisms of mammalian inorganic phosphate homeostasis, Vol 40, Advan. Enzyme Regul., Elsevier Science, Great Bitain , pp 285302, 2000.
  • 2
    Kos C.H., Tihy F., Murer H., Lemieux N., Tenenhouse H.S., Comparative mapping of Na+-phosphate cotransporter genes, NPT1 and NPT2, in human and rabbit, Cytogenet. Cell Genet., 75: 2224, 1996.
  • 3
    Biber J., Custer M.W., Werner A., Kaissling B., Murer H., Localization of NaPi-1, a Na/Pi cotransporter, in rabbit kidney proximal tubules. II. Localization by irnmunohistochemistry, Pflugers Arch., 424: 210215, 1993.
  • 4
    Soumounou Y., Gauthier C., Tenenhouse H. S., Murine and human type I Na-phosphate cotransporter genes: structure and promoter activity. Am. J. Physiol., 281: F1082F1091, 2001.
  • 5
    Broer S., Schuster A., Wagner C. A., Broer A., Forster I., Biber J., Murer H., Werner A., Lang F., Busch A. E., Chloride conductance and Pi transport are separate functions induced by the expression of NaPi- 1 in Xenopus oocytes, J. Membr. Biol., 164: 7177, 1998.
  • 6
    Kavanaugh M.P., Miller D.G., Zhang W., Law W., Kozak S.L., Kabat D., Miller A.D., Cell-surface receptors for gibbon ape leukemia virus and amphotropic murine retrovirus are in-ducible sodiumphosphate symporters, Proc Natl. Acad. Sci. USA, 91: 70717075, 1994.
  • 7
    Xu H., Bai L., Collins J.F., Ghishan F.K., Age-dependent regulation of rat intestinal type 11b sodium-phosphate cotransporter by 1, 25- (OH) 2 vitamin D3, Am. J. Physiol., 282: C487C493, 2002.
  • 8
    Hernando N., Sheikh S., Karim-Jimenez Z., Galliker H., Forgo J., Biber J., Murer H., Asymmetrical targeting of type II Na-Pi cotransporters in renal and intestinal epithelial cell lines, Am. J. Physiol., 278: F361F368., 2000.
  • 9
    Segawa H., Kaneko I., Takahashi A., Kuwahata M., Ito M., Ohkido I., Tatsumi S., Miyamoto K., Growthrelated renal type II Na/Pi cotransporter, J. Biol. Chem., 277: 1966519672, 2002.
  • 10
    Lotscher M., Scarpetta Y., Levi M., Halaihel N., Wang H., Zajicek H. K., Biber J., Murer H., Kaissling B., Rapid downregulation of rat renal Na/Pi cotransporter in response to parathyroid hormone involves microtubule rearrangement, J. Clin. Invest., 104: 483494, 1999.
  • 11
    Rasmussen H., Tenenhouse H.S., Mendelian hypophosphatemias, In: ScriverCR, Beaud et al. SlyWS, ValleD (eds) The metabolic and molecular basis of inherited dlsease. McGraw Hill, New York , 37173745, 1995.
  • 12
    Tenenhouse H.S., X-Iinked hypophosphatemia: a homologous disorder in humans and mice, Nephrol. Dial. Transplant., 14: 333341, 1999.
  • 13
    Tenenhouse H.S., Econs M.J., Mendelian hypophosphatemias, In: ScriverCR, Beaudt al. SlyWS, ValleD (eds) The metabolic and molecular basis of inherited disease, McGraw Hill, New York , 50395067, 2001.
  • 14
    Meyer R.A. Jr., Tenenhouse H.S., Meyer M.H., Klugerman A.H., The renal phosphate transport defect in normal mice parabiosed to X-Iinked hypophosphatemic mice persists after parathyroidectomy, J. Bone Miner. Res., 4: 523532, 1989.
  • 15
    Nesbitt T., Coffman T.M., Grifflths R., Drezner M.K., Crosstransplantation of kidneys in normal and Hyp mice. Evidence that the Hyp mouse phenotype is unrelated to an intrinsic renal defect, J. Clin. Invest., 89: 14531459, 1992.
  • 16
    Morgan J.M., Hawley W.L., Chenoweth A.I., Retan W.J., Diethelm A.G., Renal transplantation in hypophosphatemia with vitamin D-resistant rickets, Arch. Intern. Med., 134: 549552, 1974.
  • 17
    Econs M.J., McEnery P.T., Autosomal dominant h phosphatemic rickets/osteomalacia: clinical characterization of a novel renal phosphate wasting disorder, J. Clin. Endocrinol. Metab., 82: 674681, 1997.
  • 18
    Econs M.J., McEnery P.T., Lennon F., Speer M.C., Autosomal dominant hypophosphatemic rickets is linked to chromosome 12p13, J. Clin. Invest., 100: 26532657, 1997.
  • 19
    The ADHR Consortium, Autosomal dominant hypophosphataemic rickets is associated with mutations in FGF 23, Nat. Genet., 26: 345348, 2000.
  • 20
    Yamashita T. Masazumi Y., Itoh N., Identification of a novel fibroblast growth factor, FGF-23. preferentially expressed in the ventrolateral thalamic nucleus of the brain, Biochem. Biophys. Res. Commun., 277: 494498, 2000.
  • 21
    Shimada T., Mizutani S., Muto T., Yoneya T., Hino R., Takeda S., Takeuchi Y., Fujita T., Fukumoto S., Yamashita T., Cloning and characterization of FGF23 as a causative factor of tumor-induced osteomalacia, Proc. Natl. Acad. Sci. USA, 98: 65006505, 2001.
  • 22
    White K.E., Carn G., Lorenz-Depiereux B., Benet-Pages A., Strom T.M., Econs M.J., Autosomal-dominant hypophosphatemic rickets (ADHR) mutations stabilize FGF-23, Kidney. Int., 60: 20792086, 2001.
  • 23
    Bowe A. E., Finnegan R., Jan de Beur S. M., Cho J., Levine M. A., Kumar R., Schiavi S. C., Fgf-23 inhibits renal tubular phosphate transport and is a phexsubstrate, Biochem. Biophys. Res. Commun., 284: 977981, 2001.
  • 24
    Drezner M. K., Tumor-induced osteomalacia, In: FavusM. J., ed. Primer on maletabolic bone diseases and disorders of mineral metabolism, ed 4. Philadelphia : Lippincott-Raven, 319337, 1999.
  • 25
    Cai Q., Hodgson S. F., Kao P. C., Lennon V. A., Klee G. G., Zinsmiester A. R., Kumar R., Brief report: inhibition of renal phosphate transport by a tumor product in a patient with oncogenic osteomalacia, N. Engl. J. Med., 330: 16451649, 1994.
  • 26
    Wilkins G. E., Granleese S., Hegele R. G., Holden J., Anderson D. W., Bondy G., Oncogenic osteomalacia: evidence for a humoral phosphaturic factor, J. Clin. Endocrinol. Metab., 80: 16281634, 1995.
  • 27
    Nelson A. E., Namkung H. J., Patava J., Wilkinson M. R., Chang A. C., Reddel R. R., Robinson B. G., Mason R. S., Characteristics of tumor cell bioactivity in oncogenic osteomalacia., Mol. Cell. Endocrinol., 124: 1723, 1996.
  • 28
    Rowe P. S., Ong A. C., Cockerill F. J., Goulding J. N., Hewison M., Candidate 56 and 58 kDa protein (s) responsible for mediating the renal defects in oncogenic hypophosphatemic osteomalacia, Bone, 18: 159169, 1996.
  • 29
    Jonsson K., Mannstadt M., Miyauchi A., Yang I. M., Stein G., Ljunggren O., Juppner H., Extracts from tumors causing oncogenic osteomalacia inhibit phosphate uptake in opossum kidney cells. J. Endocrinol., 169: 612620, 2001.
  • 30
    Popovtzer M. M., Tumor-induced hypophosphatemic osteomalacia (TIO): evidence for a phosphaturic cyclic AMP-independent action of tumor extract, Clin. Res., 29: 418A, 1981.
  • 31
    Prie D., Huart V., Bakouh N., Planelles G., Dellis O., Gerard B., Hulin P., Benque-Blanchet F., Silvec C., Grandchamp B., Friedlander G., Nephrolithiasis and osteoporosis associated with hypophosphatemia caused by mutations in the type 2a sodi-um-phosphate cotransporter, N. Engl. J. Med., 347: 983991, 2002.
  • 32
    Evans W. E., Ichikawa S., Davis S. I., Econs M. J., A missense mutation in FGFR1 causes a novel syndrome: Craniofacial dysplasia with hypophosphatemia (CFDH), J. Bone Miner. Res., 18: S4, 2003.
  • 33
    The Hyp Consortium, A gene (PEX) with homologies to endopeptidases is mutated in patients with X-Iinked hypophosphatemic rickets, Nat. Genet., 11: 130136, 1995.
  • 34
    Roques B. P., Noble F., Dauge V., Fournie-Zaluski M., Beaumont A., Neutral endopeptidase 24. 11:structure, inhibition, and experimental and clinical pharmacology, Physiol. Rev., 45: 87133, 1993.
  • 35
    Xu D., Emoto N., Giaid A., Slaughter C., Kaw S., DeWit D., Yanagisawa M., ECE-1: a membrane-bound metalloprotease that catalyzes the proteolytic ac-tivation of big endothelin-1, Cell, 78: 473485, 1994.
  • 36
    Lipman M. L., Panda D., Bennett H. P., Henderson J. E., Shane E., Shen Y., Goltzman D., Karaplis A. C., Cloning of human PEX cDNA. Expression, subcellular localization, and endopeptidase activity, J. Biol. Chem., 273: 1372913737, 1998.
  • 37
    Beck L., Soumounou Y., Martel J., Krishnamurthy G., Gauthier C., Goodyer C. G., Tenenhouse H. S., Pex/PEX tissue distribution and evidence for a deletion in the 3′ region of the Pex gene in X-Iinked hypo-phosphatemic mice, J. Clin. Invest., 99: 12001209, 1997.
  • 38
    Ruchon A. F., Marcinkiewicz M., Siegfried G., Tenen-house H. S., DesGroseillers L., Crine P., Boileau G., Pex mRNA is localized in developing mouse osteoblasts and odontoblasts., J. Histochem. Cytochem., 46: 459468, 1998.
  • 39
    Du L., Desbarats M., Viel J., Glorieux F. H., Cawthorn C., Ecarot B., cDNA cloning of the murine Pex gene implicated in X-linked hypophosphatemia and evidence for expression in bone, Genomics, 36: 2228, 1996.
  • 40
    Blydt-Hansen T. D., Tenenhouse H. S., Goodyer P., PHEX expression in parathyroid gland and parathyroid hormone dysregulation in X-linked hypophosphatemia, Pediatr. Nephrol., 13: 607611, 1999.
  • 41
    Shih N. R., Jo O. D., Yanagawa N., Effects of PHEX anti-sense in human osteoblast cells, J. Am. Soc. Nephrol., 13: 394399, 2002.
  • 42
    Sabbagh Y., Londowski J. M., Mathiesen D., Gauthier C., Boileau G., Tenenhouse H. S., Poeschla E. M., Kumar R., Stable transfection of PHEX in hypophosphatemic (Hyp) osteoblasts using a viral vector partially corrects the mutant cell phenotype. Implications for gene therapy, J. Am. Soc. Nephrol., 11: 413A, 2000.
  • 43
    White K. E., Jonsson K. B., Carn G., Hampson G., Spector T. D., Mannstadt M., Lorenz-Depiereux B., Miyauchi A., Yang I. M., Ljunggren O., Meitinger T., Strom T. M., Juppner H., Econs M. J., The autosomal dominant hypophosphatemic rickets (ADHR) gene is a secreted polypeptide overexpressed by tumors that cause phosphate wasting., J. Clin. Endocrinol. Metab., 86: 497500, 2001.
  • 44
    Shimada T., Kakitani M., Hasegawa H., Yamazaki Y., Ohguma A., Takeuchi Y., Fujita T., Fukumoto S., Tomizuka K., Yamashita T., Targeted ablation of FGF-23 causes hyperphosphatemia, increased 1, 25-dihydroxyvitamin D level and severe growth retardation, J. Bone. Miner. Res., 17(Suppl 1): S168, 2002.
  • 45
    Shimada T., Muto T., Hasegawa H., Yamazaki Y., Takeuchi Y., Fujita T., Fukumoto S., Yamashita T., FGF-23 is a novel regulator of mineral homeostasis with unique properties controlling vitamin D metabolism and phosphate reabsorption, J. Bone. Miner. Res., 17(Suppl 1): S425, 2002.
  • 46
    Strewler G. J., FGF-23, hypophosphatemia, and rickets: has phosphatonin been found Proc. Natl. Acad. Sci. USA, 98: 59455946, 2001.
  • 47
    Kuro-o M., Matsumura Y., Aizawa H., Kawaguchi H., Suga T., Utsugi T., Ohyama Y., Kurabayashi M., Kaname T., Kume E., Iwasaki H., Iida A., Shiraki-Iida T., Nishikawa S., Nagai R., Nabeshima Y., Mutation of the klotho gene leads to a syndrome resembling ageing. Nature (London), 390: 4551, 1997.
  • 48
    Matsumura Y., Aizawa H., Shiraki-Iida T., Nagai R., Kuro-o M., Nabeshima Y., Identification of the human klotho gene and its two transcripts encoding membrane and secreted klotho protein, Biochem. Biophys. Res. Commun., 242: 626630, 1998.
  • 49
    Nagai R., Saito Y., Ohyama Y., Aizawa H., Suga T., Nakamura T., Kurabayashi M., Kuroo M., Endothelial dysfunction in the klotho mouse and down-regulation of klotho gene expression in various animal models of vascular and metabolic diseases, Cell. Mol. Life. Sci., 57: 738746, 2000.
  • 50
    Saito Y., Nakamura T., Ohyama Y., Suzuki T., Iida A., Shiraki-Iida T., Kuro-o M., Nabeshima Y., Kurabayashi M., Nagai R., in vivo klotho gene delivery protects against endothelial dysfunction in multiple risk factor syndrome, Biochem. Biophys. Res. Commun., 276: 767772, 2000.
  • 51
    Morishita K., Shirai A., Kubota M., Katakura Y., Nabeshima Y., Takeshige K., Kamiyal T., The progression of aging in klotho mutant mice can be modified by dietary phosphorus and zinc, J. Nutr., 131: 31823188, 2001.
  • 52
    Arking D.E., Krebsovat A., Macek M. Sr., Macek M. Jr., Arking A., Mian I.S., Fried L., Hamosh A., Dey S., McIntosh I., Dietz H.C., Association of human aging with a functional variant of klotho, Proc. Natl. Acad. Sci. USA, 99: 856861, 2002.
  • 53
    Calvo M.S., Park Y.K., Changing phosphorus content of the U.S. diet: Potential for adverse effects on bone, J. Nutr., 126: 1168S1180S, 1996.
  • 54
    Takeda E., Sakamoto K., Yokota K., Shinohara M., Taketani Y., Morita K., Yamamoto H., Miyamoto K., Shibayama M., Phosphorus supply per capita from food in Japan between 1960 and 1995, J. Nutr. Sci. Vitaminol., 48: 102108, 2002.
  • 55
    Calvo M.S., Dietary phosphorus, calcium metabolism, and bone, J. Nutr., 123: F1627F1633, 1993.
  • 56
    Tucker K.L., Troy L., Morita K., Cupples L.A., Hannan M.T., Kiel D.P., Carbonated beverage consumption and bone mineral density, J. Bone Miner. Res., 18: S241, 2003.
  • 57
    Martinez I., Saracho R., Montenegro J., Liach F., The importance of dietary calcium and phosphorus in the secondary hyperparathyroidism of patients with early renal failure, Am. J. Kindney. Dis., 29: 496502, 1997.