SEARCH

SEARCH BY CITATION

References

  • 1
    Sakurai, T, Amemiya, A, Ishii, M, Matsuzaki, I, Chemelli, RM, Tanaka, H, Williams, SC, Richardson, JA, Kozlowski, GP, Wilson, S, Arch, JR, Buckingham, RE, Haynes, AC, Carr, SA, Annan, RS, McNulty, DE, Liu, WS, Terrett, JA, Elshourbagy, NA, Bergsma, DJ, Yanagisawa, M. Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 1998; 92: 57385.
  • 2
    de Lecea, L, Kilduff, TS, Peyron, C, Gao, X, Foye, PE, Danielson, PE, Fukuhara, C, Battenberg, EL, Gautvik, VT, Bartlett, FS, 2nd, Frankel, WN, van den Pol, AN, Bloom, FE, Gautvik, KM, Sutcliffe, JG. The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc Natl Acad Sci USA. 1998; 95: 3227.
  • 3
    Ciriello, J, Rosas-Arellano, MP, Solano-Flores, LP, de Oliveira, CV. Identification of neurons containing orexin-B (hypocretin-2) immunoreactivity in limbic structures. Brain Res. 2003; 967: 12331.
  • 4
    Peyron, C, Tighe, DK, van den Pol, AN, de Lecea, L, Heller, HC, Sutcliffe, JG, Kilduff, TS. Neurons containing hypocretin (orexin) project to multiple neuronal systems. J Neurosci. 1998; 18: 999610015.
  • 5
    Nambu, T, Sakurai, T, Mizukami, K, Hosoya, Y, Yanagisawa, M, Goto, K. Distribution of orexin neurons in the adult rat brain. Brain Res. 1999; 827: 24360.
  • 6
    Marcus, JN, Aschkenasi, CJ, Lee, CE, Chemelli, RM, Saper, CB, Yanagisawa, M, Elmquist, JK. Differential expression of orexin receptors 1 and 2 in the rat brain. J Comp Neurol. 2001; 435: 625.
  • 7
    Sutcliffe, JG, de Lecea, L. The hypocretins: setting the arousal threshold. Nat Rev Neurosci. 2002; 3: 33949.
  • 8
    Willie, JT, Chemelli, RM, Sinton, CM, Yanagisawa, M. To eat or to sleep? Orexin in the regulation of feeding and wakefulness. Annu Rev Neurosci. 2001; 24: 42958.
  • 9
    Chemelli, RM, Willie, JT, Sinton, CM, Elmquist, JK, Scammell, T, Lee, C, Richardson, JA, Williams, SC, Xiong, Y, Kisanuki, Y, Fitch, TE, Nakazato, M, Hammer, RE, Saper, CB, Yanagisawa, M. Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell 1999; 98: 43751.
  • 10
    Lin, L, Faraco, J, Li, R, Kadotani, H, Rogers, W, Lin, X, Qiu, X, de Jong, PJ, Nishino, S, Mignot, E. The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. Cell 1999; 98: 36576.
  • 11
    Thannickal, TC, Moore, RY, Nienhuis, R, Ramanathan, L, Gulyani, S, Aldrich, M, Cornford, M, Siegel, JM. Reduced number of hypocretin neurons in human narcolepsy. Neuron 2000; 27: 46974.
  • 12
    Peyron, C, Faraco, J, Rogers, W, Ripley, B, Overeem, S, Charnay, Y, Nevsimalova, S, Aldrich, M, Reynolds, D, Albin, R, Li, R, Hungs, M, Pedrazzoli, M, Padigaru, M, Kucherlapati, M, Fan, J, Maki, R, Lammers, GJ, Bouras, C, Kucherlapati, R, Nishino, S, Mignot, E. A mutation in a case of early onset narcolepsy and a generalized absence of hypocretin peptides in human narcoleptic brains. Nat Med. 2000; 6: 9917.
  • 13
    Nishino, S, Ripley, B, Overeem, S, Lammers, GJ, Mignot, E. Hypocretin (orexin) deficiency in human narcolepsy. Lancet 2000; 355: 3940.
  • 14
    Hara, J, Beuckmann, CT, Nambu, T, Willie, JT, Chemelli, RM, Sinton, CM, Sugiyama, F, Yagami, K, Goto, K, Yanagisawa, M, Sakurai, T. Genetic ablation of orexin neurons in mice results in narcolepsy, hypophagia, and obesity. Neuron 2001; 30: 34554.
  • 15
    Willie, JT, Chemelli, RM, Sinton, CM, Tokita, S, Williams, SC, Kisanuki, YY, Marcus, JN, Lee, C, Elmquist, JK, Kohlmeier, KA, Leonard, CS, Richardson, JA, Hammer, RE, Yanagisawa, M. Distinct narcolepsy syndromes in Orexin receptor-2 and Orexin null mice: molecular genetic dissection of Non-REM and REM sleep regulatory processes. Neuron 2003; 38: 71530.
  • 16
    Kilduff, TS, Peyron, C. The hypocretin/orexin ligand-receptor system: implications for sleep and sleep disorders. Trends Neurosci. 2000; 23: 35965.
  • 17
    Jones, BE. Arousal systems. Front Biosci. 2003; 8: s43851.
  • 18
    Saper, CB, Chou, TC, Scammell, TE. The sleep switch: hypothalamic control of sleep and wakefulness. Trends Neurosci. 2001; 24: 72631.
  • 19
    Hagan, JJ, Leslie, RA, Patel, S, Evans, ML, Wattam, TA, Holmes, S, Benham, CD, Taylor, SG, Routledge, C, Hemmati, P, Munton, RP, Ashmeade, TE, Shah, AS, Hatcher, JP, Hatcher, PD, Jones, DN, Smith, MI, Piper, DC, Hunter, AJ, Porter, RA, Upton, N. Orexin A activates locus coeruleus cell firing and increases arousal in the rat. Proc Natl Acad Sci USA. 1999; 96: 109116.
  • 20
    Ivanov, A, Aston-Jones, G. Hypocretin/orexin depolarizes and decreases potassium conductance in locus coeruleus neurons. Neuroreport 2000; 11: 17558.
  • 21
    Bourgin, P, Huitron-Resendiz, S, Spier, AD, Fabre, V, Morte, B, Criado, JR, Sutcliffe, JG, Henriksen, SJ, de Lecea, L. Hypocretin-1 modulates rapid eye movement sleep through activation of locus coeruleus neurons. J Neurosci. 2000; 20: 77605.
  • 22
    Brown, RE, Sergeeva, OA, Eriksson, KS, Haas, HL. Convergent excitation of dorsal raphe serotonin neurons by multiple arousal systems (orexin/hypocretin, histamine and noradrenaline). J Neurosci. 2002; 22: 88509.
  • 23
    Liu, RJ, van den Pol, AN, Aghajanian, GK. Hypocretins (orexins) regulate serotonin neurons in the dorsal raphe nucleus by excitatory direct and inhibitory indirect actions. J Neurosci. 2002; 22: 945364.
  • 24
    Bayer, L, Eggermann, E, Saint-Mleux, B, Machard, D, Jones, BE, Muhlethaler, M, Serafin, M. Selective action of orexin (hypocretin) on nonspecific thalamocortical projection neurons. J Neurosci. 2002; 22: 78359.
  • 25
    Bayer, L, Eggermann, E, Serafin, M, Saint-Mleux, B, Machard, D, Jones, B, Muhlethaler, M. Orexins (hypocretins) directly excite tuberomammillary neurons. Eur J Neurosci. 2001; 14: 15715.
  • 26
    Burlet, S, Tyler, CJ, Leonard, CS. Direct and indirect excitation of laterodorsal tegmental neurons by Hypocretin/Orexin peptides: implications for wakefulness and narcolepsy. J Neurosci. 2002; 22: 286272.
  • 27
    Eggermann, E, Serafin, M, Bayer, L, Machard, D, Saint-Mleux, B, Jones, BE, Muhlethaler, M. Orexins/hypocretins excite basal forebrain cholinergic neurones. Neuroscience 2001; 108: 17781.
  • 28
    Eriksson, KS, Sergeeva, O, Brown, RE, Haas, HL. Orexin/hypocretin excites the histaminergic neurons of the tuberomammillary nucleus. J Neurosci. 2001; 21: 92739.
  • 29
    Yamanaka, A, Tsujino, N, Funahashi, H, Honda, K, Guan, JL, Wang, QP, Tominaga, M, Goto, K, Shioda, S, Sakurai, T. Orexins activate histaminergic neurons via the orexin 2 receptor. Biochem Biophys Res Commun. 2002; 290: 123745.
  • 30
    Horvath, TL, Peyron, C, Diano, S, Ivanov, A, Aston-Jones, G, Kilduff, TS, van Den Pol, AN. Hypocretin (orexin) activation and synaptic innervation of the locus coeruleus noradrenergic system. J Comp Neurol. 1999; 415: 14559.
  • 31
    Lambe, EK, Aghajanian, GK. Hypocretin (orexin) induces calcium transients in single spines postsynaptic to identified thalamocortical boutons in prefrontal slice. Neuron 2003; 40: 13950.
  • 32
    Bayer, L, Serafin, M, Eggermann, E, Saint-Mleux, B, Machard, D, Jones, BE, Muhlethaler, M. Exclusive postsynaptic action of hypocretin-orexin on sublayer 6b cortical neurons. J Neurosci. 2004; 24: 67604.
  • 33
    Lubkin, M, Stricker-Krongrad, A. Independent feeding and metabolic actions of orexins in mice. Biochem Biophys Res Commun. 1998; 253: 2415.
  • 34
    van den Top, M, Lee, K, Whyment, AD, Blanks, AM, Spanswick, D. Orexigen-sensitive NPY/AgRP pacemaker neurons in the hypothalamic arcuate nucleus. Nat Neurosci. 2004; 7: 4934.
  • 35
    Muroya, S, Funahashi, H, Yamanaka, A, Kohno, D, Uramura, K, Nambu, T, Shibahara, M, Kuramochi, M, Takigawa, M, Yanagisawa, M, Sakurai, T, Shioda, S, Yada, T. Orexins (hypocretins) directly interact with neuropeptide Y, POMC and glucose-responsive neurons to regulate Ca2+ signaling in a reciprocal manner to leptin: orexigenic neuronal pathways in the mediobasal hypothalamus. Eur J Neurosci. 2004; 19: 152434.
  • 36
    Samson, WK, Taylor, MM, Ferguson, AV. Non-sleep effects of hypocretin/orexin. Sleep Med Rev. 2005; 9: 24352.
  • 37
    Ferguson, AV, Samson, WK. The orexin/hypocretin system: a critical regulator of neuroendocrine and autonomic function. Front Neuroendocrinol. 2003; 24: 14150.
  • 38
    Burdakov, D, Liss, B, Ashcroft, FM. Orexin excites GABAergic neurons of the arcuate nucleus by activating the sodium-calcium exchanger. J Neurosci. 2003; 23: 49517.
  • 39
    Horvath, TL, Diano, S, van den Pol, AN. Synaptic interaction between hypocretin (orexin) and neuropeptide Y cells in the rodent and primate hypothalamus: a novel circuit implicated in metabolic and endocrine regulations. J Neurosci. 1999; 19: 107287.
  • 40
    Ramsey, JJ, Kemnitz, JW, Newton, W, Hagopian, K, Patterson, TA, Swick, AG. Food intake in rhesus monkeys following central administration of orexins. Regul Pept. 2005; 124: 20914.
  • 41
    Mileykovskiy, BY, Kiyashchenko, LI, Siegel, JM. Behavioral correlates of activity in identified hypocretin/orexin neurons. Neuron 2005; 46: 78798.
  • 42
    Lee, MG, Hassani, OK, Jones, BE. Discharge of identified orexin/hypocretin neurons across the sleep-waking cycle. J Neurosci. 2005; 25: 671620.
  • 43
    Eggermann, E, Bayer, L, Serafin, M, Saint-Mleux, B, Bernheim, L, Machard, D, Jones, BE, Muhlethaler, M. The wake-promoting hypocretin-orexin neurons are in an intrinsic state of membrane depolarization. J Neurosci. 2003; 23: 155762.
  • 44
    Yamanaka, A, Muraki, Y, Tsujino, N, Goto, K, Sakurai, T. Regulation of orexin neurons by the monoaminergic and cholinergic systems. Biochem Biophys Res Commun. 2003b; 303: 1209.
  • 45
    Burdakov, D, Alexopoulos, H, Vincent, A, Ashcroft, FM. Low-voltage-activated A-current controls the firing dynamics of mouse hypothalamic orexin neurons. Eur J Neurosci. 2004; 20: 32815.
  • 46
    Sakurai, T, Nagata, R, Yamanaka, A, Kawamura, H, Tsujino, N, Muraki, Y, Kageyama, H, Kunita, S, Takahashi, S, Goto, K, Koyama, Y, Shioda, S, Yanagisawa, M. Input of orexin/hypocretin neurons revealed by a genetically encoded tracer in mice. Neuron 2005; 46: 297308.
  • 47
    Grivel, J, Cvetkovic, V, Bayer, L, Machard, D, Tobler, I, Muhlethaler, M, Serafin, M. The wake-promoting hypocretin/orexin neurons change their response to noradrenaline after sleep deprivation. J Neurosci. 2005; 25: 412730.
  • 48
    Li, Y, Gao, XB, Sakurai, T, van den Pol, AN. Hypocretin/Orexin excites hypocretin neurons via a local glutamate neuron-A potential mechanism for orchestrating the hypothalamic arousal system. Neuron 2002; 36: 116981.
  • 49
    Moriguchi, T, Sakurai, T, Nambu, T, Yanagisawa, M, Goto, K. Neurons containing orexin in the lateral hypothalamic area of the adult rat brain are activated by insulin-induced acute hypoglycemia. Neurosci Lett. 1999; 264: 1014.
  • 50
    Griffond, B, Risold, PY, Jacquemard, C, Colard, C, Fellmann, D. Insulin-induced hypoglycemia increases preprohypocretin (orexin) mRNA in the rat lateral hypothalamic area. Neurosci Lett. 1999; 262: 7780.
  • 51
    Cai, XJ, Widdowson, PS, Harrold, J, Wilson, S, Buckingham, RE, Arch, JR, Tadayyon, M, Clapham, JC, Wilding, J, Williams, G. Hypothalamic orexin expression: modulation by blood glucose and feeding. Diabetes 1999; 48: 21327.
  • 52
    Liu, XH, Morris, R, Spiller, D, White, M, Williams, G. Orexin a preferentially excites glucose-sensitive neurons in the lateral hypothalamus of the rat in vitro. Diabetes 2001; 50: 24317.
  • 53
    Yamanaka, A, Beuckmann, CT, Willie, JT, Hara, J, Tsujino, N, Mieda, M, Tominaga, M, Yagami, K, Sugiyama, F, Goto, K, Yanagisawa, M, Sakurai, T. Hypothalamic orexin neurons regulate arousal according to energy balance in mice. Neuron 2003; 38: 70113.
  • 54
    Burdakov, D, Gerasimenko, O, Verkhratsky, A. Physiological changes in glucose differentially modulate the excitability of hypothalamic melanin-concentrating hormone and orexin neurons in situ. J Neurosci. 2005; 25: 242933.
  • 55
    Silver, IA, Erecinska, M. Extracellular glucose concentration in mammalian brain: continuous monitoring of changes during increased neuronal activity and upon limitation in oxygen supply in normo-, hypo-, and hyperglycemic animals. J Neurosci. 1994; 14: 506876.
  • 56
    de Vries, MG, Arseneau, LM, Lawson, ME, Beverly, JL. Extracellular glucose in rat ventromedial hypothalamus during acute and recurrent hypoglycemia. Diabetes 2003; 52: 276773.
  • 57
    Levin, BE, Routh, VH, Kang, L, Sanders, NM, Dunn-Meynell, AA. Neuronal glucosensing: what do we know after 50 years Diabetes 2004; 53: 25218.
  • 58
    Routh, VH. Glucose-sensing neurons: are they physiologically relevant Physiol Behav. 2002; 76: 40313.
  • 59
    Koch, C, Bernander, O, Douglas, RJ. Do neurons have a voltage or a current threshold for action potential initiation J Comput Neurosci. 1995; 2: 6382.
  • 60
    Horvath, TL, Gao, XB. Input organization and plasticity of hypocretin neurons: possible clues to obesity's association with insomnia. Cell Metab. 2005; 1: 27986.
  • 61
    Taheri, S, Lin, L, Austin, D, Young, T, Mignot, E. Short sleep duration is associated with reduced leptin, elevated ghrelin, and increased body mass index. PLoS Med. 2004; 1: e62.
  • 62
    Spiegel, K, Tasali, E, Penev, P, Van Cauter, E. Brief communication: Sleep curtailment in healthy young men is associated with decreased leptin levels, elevated ghrelin levels, and increased hunger and appetite. Ann Intern Med. 2004; 141: 84650.
  • 63
    Orr, WC, Shadid, G, Harnish, MJ, Elsenbruch, S. Meal composition and its effect on postprandial sleepiness. Physiol Behav. 1997; 62: 70912.
  • 64
    Harnish, MJ, Greenleaf, SR, Orr, WC. A comparison of feeding to cephalic stimulation on postprandial sleepiness. Physiol Behav. 1998; 64: 936.
  • 65
    Wells, AS, Read, NW, Uvnas-Moberg, K, Alster, P. Influences of fat and carbohydrate on postprandial sleepiness, mood, and hormones. Physiol Behav. 1997; 61: 67986.
  • 66
    Bazar, KA, Yun, AJ, Lee, PY. Debunking a myth: neurohormonal and vagal modulation of sleep centers, not redistribution of blood flow, may account for postprandial somnolence. Med Hypotheses 2004; 63: 77882.
  • 67
    Mieda, M, Williams, SC, Sinton, CM, Richardson, JA, Sakurai, T, Yanagisawa, M. Orexin neurons function in an efferent pathway of a food-entrainable circadian oscillator in eliciting food-anticipatory activity and wakefulness. J Neurosci. 2004; 24: 10493501.
  • 68
    Muroya, S, Uramura, K, Sakurai, T, Takigawa, M, Yada, T. Lowering glucose concentrations increases cytosolic Ca2+ in orexin neurons of the rat lateral hypothalamus. Neurosci Lett. 2001; 309: 1658.
  • 69
    Nuttall, FQ, Gannon, MC, Wald, JL, Ahmed, M. Plasma glucose and insulin profiles in normal subjects ingesting diets of varying carbohydrate, fat, and protein content. J Am Coll Nutr. 1985; 4: 43750.
  • 70
    Spring, B, Chiodo, J, Bowen, DJ. Carbohydrates, tryptophan, and behavior: a methodological review. Psychol Bull. 1987; 102: 23456.
  • 71
    Pollak, CP, Green, J. Eating and its relationships with subjective alertness and sleep in narcoleptic subjects living without temporal cues. Sleep 1990; 13: 46778.
  • 72
    Siegel, JM. Narcolepsy: a key role for hypocretins (orexins). Cell 1999; 98: 40912.
  • 73
    Schuld, A, Hebebrand, J, Geller, F, Pollmacher, T. Increased body-mass index in patients with narcolepsy. Lancet 2000; 355: 12745.
  • 74
    Nevsimalova, S, van Kova, J, Stepanova, I, Seemanova, E, Mignot, E, Nishino, S. Hypocretin deficiency in Prader-Willi syndrome. Eur J Neurol. 2005; 12: 702.
  • 75
    Fronczek, R, Lammers, GJ, Balesar, R, Unmehopa, UA, Swaab, DF. The number of hypothalamic hypocretin (orexin) neurons is not affected in prader-willi syndrome. J Clin Endocrinol Metab. 2005; 90: 546670.
  • 76
    Fadel, J, Bubser, M, de Utch, AY. Differential activation of orexin neurons by antipsychotic drugs associated with weight gain. J Neurosci. 2002; 22: 67426.
  • 77
    Wu, M, Zaborszky, L, Hajszan, T, van den Pol, AN, Alreja, M. Hypocretin/orexin innervation and excitation of identified septohippocampal cholinergic neurons. J Neurosci. 2004; 24: 352736.
  • 78
    Wu, M, Zhang, Z, Leranth, C, Xu, C, van den Pol, AN, Alreja, M. Hypocretin increases impulse flow in the septohippocampal GABAergic pathway: implications for arousal via a mechanism of hippocampal disinhibition. J Neurosci. 2002; 22: 775465.
  • 79
    Selbach, O, Doreulee, N, Bohla, C, Eriksson, KS, Sergeeva, OA, Poelchen, W, Brown, RE, Haas, HL. Orexins/hypocretins cause sharp wave- and related synaptic plasticity in the hippocampus via glutamatergic, gabaergic, noradrenergic, and cholinergic signaling. Neuroscience 2004; 127: 51928.
  • 80
    Jaeger, LB, Farr, SA, Banks, WA, Morley, JE. Effects of orexin-A on memory processing. Peptides 2002; 23: 16838.
  • 81
    Smith, HR, Pang, KC. Orexin-saporin lesions of the medial septum impair spatial memory. Neuroscience 2005; 132: 26171.
  • 82
    Harris, GC, Wimmer, M, Jones, GA. A role for lateral hypothalamic orexin neurons in reward seeking. Nature 2005; 437: 5569.