• 1
    Ferreira AJ, Santos RA, Almeida AP. Angiotensin: cardio protective effect in myocardial ischemia/reperfusion. Hypertension. 2001; 38: 6658.
  • 2
    Sharma A, Singh M. Possible mechanism of cardio protective effect of angiotensin preconditioning in isolated rat heart. Eur J Pharmacol. 2000; 406: 8592.
  • 3
    Sharma A, Singh M. Effect of ethylisopropyl amiloride, a Na + -H + exchange inhibitor, on cardio protective effect of ischemic and angiotensin preconditioning. Mol Cell Biochem. 2000; 214: 318.
  • 4
    Nakano A, Miura T, Ura N, Suzuki K, Shimamoto K. Role of angiotensin II type I receptor in preconditioning against infarction. Coronary Artery Dis. 1997; 8: 34350.
  • 5
    Diaz RJ, Wilson GJ. Selective blockade of AT1 angiotensin II receptors abolishes ischemic preconditioning in isolated rabbit hearts. J Mol Cell Cardiol. 1997; 29: 12939.
  • 6
    Das DK, Maulik N, Engleman RM. Redox regulation of Angiotensin II signaling in the heart. J. Cell. Mol. Med. 2004; 8: 14452.
  • 7
    Sharma A, Singh M. Effect of ethylisopropoyl amiloride, a Na + H + exchange inhibitor, on cardio protective effect of ischemic and angiotensin preconditioning. Mol. Cell. Biochem. 2000; 214: 318.
  • 8
    Das S, Engelman RM, Das DK. Angiotensin preconditioning of the heart: Evidence for redox signaling. Cell Biochem Biophys. 2006; 44: 10310.
  • 9
    Griendling KK, Minieri CA, Ollerenshaw JD, Alexander RW. Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circ. Res. 1994; 74: 11418.
  • 10
    Pagano PJ, Ito Y, Tornheim K, Gallop PM, Tauber AI, Cohen RA. NADPH oxidase superoxide-generating system in the rabbit aorta. Am J Physiol. 1995; 268; H227480.
  • 11
    Maulik N, Yoshida T, Zu YL, Sato M, Banerjee A, Das DK. Ischemic preconditioning triggers tyrosine kinase signaling: a potential role for MAPKAP kinase 2. Am J Physiol. 1998; 275: H185764.
  • 12
    Wrobleski ST and Doweyko AM. Structural comparison of p38 inhibitor-protein complexes: a review of recent p38 inhibitors having unique binding interactions. Current Topics in Med Chem. 2005; 5: 100516.
  • 13
    Zarubin T, Han J. Activation and signaling of the p38 MAP kinase pathway. Cell Res. 2005; 15: 118.
  • 14
    Sumbayev VV, Yasinska IM. Regulation of MAP kinase-dependent apoptotic pathway: implication of reactive oxygen and nitrogen species. Arch Biochem Biophys. 2005; 436: 40612.
  • 15
    Das M, Cui J, Das DK. Generation of survival signal by differential interaction of p38MAPKα and p38MAPKβ with caveolin-1 and caveolin-3 in adapted heart. J Mol Cell Cardiol. 2007; 42: 20613.
  • 16
    Maulik N, Engleman RM, Rouson JA, Flack JE, Deaton D, Das DK. Ischemia preconditioning reduces apoptosis by regulating anti-death gene Bcl-2. Circulation. 1999; 100: II36975.
  • 17
    Beresewicz A, Maczewski M, Duda M. Effect of classic preconditioning and diazoxide on endothelial function and O2 and NO generation in the post-ischemic guineapig heart. Cardiovasc Res. 2004; 172: 20110.
  • 18
    Ray PS, Martin JL, Swanson EA, Otani H, Dillmann WH, Das DK. Transgenic overexpression of B-crystallin confers simultaneous protection against cardiac myocyte apoptosis and necrosis during myocardial ischemia reperfusion. FASEB J. 2001; 15: 393402.
  • 19
    Maulik N, Sasakli H, Addya S, Das DK. Regulation of cardiomyocyte apoptosis by redox sensitive transcription factor. FEBS lett. 2001; 485: 712.
  • 20
    Song KS, Li S, Okamoto T, Qutrilliam LA, Sargiacomo M, Lisanti MP. Co-purification and direct interaction of Ras with caveolin, an integral membrane protein of caveolae micro domain. J Biol Chem. 1996; 271: 96907.
  • 21
    Suzuki YJ, Nagase H, Day RM, Das DK. GATA-4 regulation of myocardial survival in preconditioned heart. J Mol Cell Cardiol. 2004; 37: 1195203.
  • 22
    Vinten-Johansen J, Zhao ZQ, Nakamura M, Jordan JE, Ronson RS, Thourani VH, Guyton RA. Nitric oxide and the Vascular Endothelium in Myocardial Ischemia-Reperfusion Injury. In: DASDK editor. Heart in Stress. Annals of The New York Academy of Sciences; 1999, 41226.
  • 23
    Das S, Otani H, Maulik N, Das DK. Redox regulation of angiotensin II preconditioning of the myocardium requires MAP kinase signaling. J Mol Cell Cardiol. 2006; 41: 24855.
  • 24
    Murry CE, Richard VJ, Jennings RB and Reimer KA. Preconditionin? with ischemia: is the protective effect mediated by free radical induced myocardial stunning? Circulation. 1998; 78: 778.
  • 25
    Chen W, Gabel S, Steenbergen C, and Murphy E. A redox-based mechanism for cardio protection induced by ischemic preconditioning in perfused rat heart. Circ Res. 1995; 77: 424429.
  • 26
    Osaka M, Takeda S, Sato T, Komori S, and Tamura K. The protective effect of preconditioning on reperfusion induced arrhythmias is lost by treatment with superoxide dismutase. Jpn Circ J. 1994; 58: 259263.
  • 27
    Burke TM and Wolin MS. Hydrogen peroxide elicits pulmonary arterial relaxation and guanylate cyclase activation. Am J Physio. 1987; 252: H72132.
  • 28
    Golino P, Ragni M, Cirillo P, Avvedimento VE, Feliciello A, Esposito N, Scognamiglio A, Trimarco B, Iaccarino B, Condorelli M, Chiariello M, and Ambrosio G. Effects of tissue factor induced by oxygen free radicals on coronary flow during reperfusion. Nat Med. 1996; 2: 3540.
  • 29
    Reeves JP, Bailey CA, and Hale CC. Redox modification of sodium-calcium exchange activity in cardiac sarcolemmal vesicles. J Biol Chem. 1986; 561: 494855.
  • 30
    Das DK, Maulik N, Engleman RM. Redox regulation of Angiotensin II signaling in the heart. J Cell Mol Med. 2004; 8: 14452.
  • 31
    Gorin Y, Ricono JM, Wagner B, Kim NH, Bhandari B, Choudhury GG. Angiotensin II-induced ERK1/ERK2 activation and protein synthesis are redox-dependent in glomerular mesangial cells. Biochem J. 2004; 381: 23139.
  • 32
    Izawa Y, Yoshizumi M, Fujita Y, Ali N, Kanematsu Y, Ishizawa K. ERK1/2 activation by angiotensin II inhibits insulin-induced glucose uptake in vascular smooth muscle cells. Exp Cell Res. 2005; 308: 29199.
  • 33
    Li JM, Wheatcroft S, Fan LM, Kearney MT, Shah AM. Opposing roles of p47phox in basal versus angiotensin II-stimulated alterations in vascular O2-production, vascular tone, and mitogen-activated protein kinase activation. Circulation. 2004; 109: 13071313.
  • 34
    Pinzar E, Wang T, Garrido MR, Xu W, Levy P, Bottari SP. Angiotensin II induces tyrosine nitration and activation of ERK1/2 in vascular smooth muscle cells. FEBS Lett. 2005; 579: 51004.
  • 35
    Booz GW, Day JN, Baker KM. Interplay between the cardiac renin angiotensin system and JAK-STAT signaling: role in cardiac hypertrophy, ischemia/reperfusion dysfunction, and heart failure. J Mol Cell Cardiol. 2002; 34: 144353.
  • 36
    Xie Z, Pimental DR, Lohan S, Vasertriger A, Pligavko C, Colucci WS. Regulatio? of angiotensin II-stimulated osteopontin expression in cardiac microvascular endothelial cells: role of p42/44 mitogenactivated protein kinase and reactive oxygen species. J Cell Physiol. 2001; 188: 1328.
  • 37
    Ushio-Fukai M, Zafari AM, Fukui T, Ishizaka N, Griendling KK. p22 phox is a critical component of the superoxide-generating NADH/NADPH oxidase system and regulates angiotensin II-induced hypertrophy in vascular smooth muscle cells. J Biol Chem. 1996; 271: 2331721.
  • 38
    Kyaw M, Yoshizumi M, Tsuchiya K, Kirima K, Tamaki T. Antioxidants inhibit JNK and p38 MAPK activation but not ERK 1/2 activation by angiotensin II in rat aortic smooth muscle cells. Hypertens Res. 2001; 24: 25161.