SEARCH

SEARCH BY CITATION

References

  • 1
    Brown EM, Gamba G, Riccardi D, Lombardi M, Butters R, Kifor O, Sun A, Hediger MA, Lytton J, Hebert SC. Cloning and characterization of an extra-cellular Ca(2+)-sensing receptor from bovine parathy-roid. Nature. 1993;366: 57580.
  • 2
    Hofer AM, Brown EM. Extracellular calcium sensing and signalling. Nat Rev Mol Cell Biol. 2003;4: 5308.
  • 3
    Brown EM, MacLeod RJ. Extracellular calcium sensing and extracellular calcium signaling. Physiol Rev. 2001;81: 23997.
  • 4
    Brown EM. Clinical lessons from the calcium-sensing receptor. Nat Clin Pract Endocrinol Metab. 2007;3: 12233.
  • 5
    Hu J, Spiegel AM. Naturally occurring mutations of the extracellular Ca2+-sensing receptor: implications for its structure and function. Trends Endocrinol Metab. 2003;14: 2828.
  • 6
    Kunishima N, Shimada Y, Tsuji Y, Sato T, Yamamoto M, Kumasaka T, Nakanishi S, Jingami H, Morikawa K. Structural basis of glutamate recognition by a dimeric metabotropic glutamate receptor. Nature. 2000;407: 9717.
  • 7
    Nemeth EF, Fox J. Calcimimetic compounds: a direct approach to controlling plasma levels of parathyroid hormone in hyperparathyroidism. Trends Endocrinol Metab. 1999;10: 6671.
  • 8
    Nemeth EF, Delmar EG, Heaton WL, Miller MA, Lambert LD, Conklin RL, Gowen M, Gleason JG, Bhatnagar PK, Fox J. Calcilytic compounds: potent and selective Ca2+ receptor antagonists that stimulate secretion of parathyroid hormone. J Pharmacol Exp Ther. 2001;299: 32331.
  • 9
    Nemeth EF, Heaton WH, Miller M, Fox J, Balandrin MF, Van Wagenen BC, Colloton M, Karbon W, Scherrer J, Shatzen E, Rishton G, Scully S, Qi M, Harris R, Lacey D, Martin D. Pharmacodynamics of the type II calcimimetic compound cinacalcet HCl. J Pharmacol Exp Ther. 2004; 308: 62735.
  • 10
    Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox BA, Le Trong I, Teller DC, Okada T, Stenkamp RE, Yamamoto M, Miyano M. Crystal structure of rhodopsin: a G protein-coupled receptor. Science. 2000; 289: 73945.
  • 11
    Janicic N, Soliman E, Pausova Z, Seldin MF, Riviere M, Szpirer J, Szpirer C, Hendy GN. Mapping of the calcium-sensing receptor gene (casr) to human-chromosome 3q13.3-21 by fluorescence in-situ hybridization, and localization to rat chromosome-11 and mouse chromosome-16. Mammalian Genome. 1995; 6: 798801.
  • 12
    Garrett JE, Capuano IV, Hammerland LG, Hung BC, Brown EM, Hebert SC, Nemeth EF, Fuller F. Molecular cloning and functional expression of human parathyroid calcium receptor cDNAs. J Biol Chem. 1995; 270: 1291925.
  • 13
    Goldsmith PK, Fan GF, Ray K, Shiloach J, McPhie P, Rogers KV, Spiegel AM. Expression, purification, and biochemical characterization of the amino-terminal extracellular domain of the human calcium receptor. J Biol Chem. 1999; 274: 113039.
  • 14
    Ray K, Clapp P, Goldsmith PK, Spiegel AM. Identification of the sites of N-linked glycosylation on the human calcium receptor and assessment of their role in cell surface expression and signal transduction. J Biol Chem. 1998; 273: 3455867.
  • 15
    Bai M, Quinn S, Trivedi S, Kifor O, Pearce SH, Pollak MR, Krapcho K, Hebert SC, Brown EM. Expression and characterization of inactivating and activating mutations in the human Ca2+o-sensing receptor. J Biol Chem. 1996; 271: 1953745.
  • 16
    Ho C, Conner DA, Pollak MR, Ladd DJ, Kifor O, Warren HB, Brown EM, Seidman JG, Seidman CE. A mouse model of human familial hypocalciuric hyper-calcemia and neonatal severe hyperparathyroidism. Nat Genet. 1995; 11: 38994.
  • 17
    Wettschureck N, Lee E, Libutti SK, Offermanns S, Robey PG, Spiegel AM. Parathyroid-specific double knockout of Gq and G11 alpha-subunits leads to a phenotype resembling germline knockout of the extra-cellular Ca2+ -sensing receptor. Mol Endocrinol. 2007; 21: 27480.
  • 18
    Makita N, Sato J, Manaka K, Shoji Y, Oishi A, Hashimoto M, Fujita T, Iiri T. An acquired hypocalciuric hypercalcemia autoantibody induces allosteric transition among active human Ca-sensing receptor conformations. Proc Natl Acad Sci USA. 2007; 104: 54438.
  • 19
    Adams GB, Chabner KT, Alley IR, Olson DP, Szczepiorkowski ZM, Poznansky MC, Kos CH, Pollak MR, Brown EM, Scadden DT. Stem cell engraftment at the endosteal niche is specified by the calcium-sensing receptor. Nature. 2006; 439: 599603.
  • 20
    Bockaert J, Pin JP. Molecular tinkering of G protein-coupled receptors: an evolutionary success. EMBO J. 1999; 18: 17239.
  • 21
    O'Hara PJ, Sheppard PO, Thogersen H, Venezia D, Haldeman BA, McGrane V, Houamed KM, Thomsen C, Gilbert TL, Mulvihill ER. The ligand-binding domain in metabotropic glutamate receptors is related to bacterial periplasmic binding proteins. Neuron. 1993; 11: 4152.
  • 22
    Reyes-Cruz G, Hu J, Goldsmith PK, Steinbach PJ, Spiegel AM. Human Ca2+ receptor extracellular domain. Analysis of function of lobe I loop deletion mutants. J Biol Chem. 2001; 276: 3214551.
  • 23
    Tsuchiya D, Kunishima N, Kamiya N, Jingami H, Morikawa K. Structural views of the ligand-binding cores of a metabotropic glutamate receptor complexed with an antagonist and both glutamate and Gd3+. Proc Natl Acad Sci USA. 2002; 99: 26605.
  • 24
    Fan GF, Ray K, Zhao XM, Goldsmith PK, Spiegel AM. Mutational analysis of the cysteines in the extra-cellular domain of the human Ca2+ receptor:effects on cell surface expression, dimerization and signal transduction. FEBS Lett. 1998; 436: 3536.
  • 25
    Ray K, Hauschild BC, Steinbach PJ, Goldsmith PK, Hauache O, Spiegel AM. Identification of the cysteine residues in the amino-terminal extracellular domain of the human Ca2+ receptor critical for dimerization. Implications for function of monomeric Ca2+ receptor. J Biol Chem. 1999; 274: 2764250.
  • 26
    Tsuji Y, Shimada Y, Takeshita T, Kajimura N, Nomura S, Sekiyama N, Otomo J, Usukura J, Nakanishi S, Jingami H. Cryptic dimer interface and domain organization of the extracellular region of metabotropic glutamate receptor subtype 1. J Biol Chem. 2000; 275: 2814451.
  • 27
    Zhang Z, Sun S, Quinn SJ, Brown EM, Bai M. The extracellular calcium-sensing receptor dimerizes through multiple types of intermolecular interactions. J Biol Chem. 2001; 276: 531622.
  • 28
    Bai M, Trivedi S, Kifor O, Quinn SJ, Brown EM. Intermolecular interactions between dimeric calcium-sensing receptor monomers are important for its normal function. Proc Natl Acad Sci USA. 1999; 96: 28349.
  • 29
    Hauache OM, Hu J, Ray K, Spiegel AM. Functional interactions between the extracellular domain and the seven-transmembrane domain in Ca2+ receptor activation. Endocrine. 2000; 13: 6370.
  • 30
    Brauner-Osborne H, Jensen AA, Sheppard PO, O'Hara P, Krogsgaard-Larsen P. The agonist-binding domain of the calcium-sensing receptor is located at the amino-terminal domain. J Biol Chem. 1999; 274: 183826.
  • 31
    Silve C, Petrel C, Leroy C, Bruel H, Mallet E, Rognan D, Ruat M. Delineating a Ca2+ binding pocket within the venus flytrap module of the human calcium-sensing receptor. J Biol Chem. 2005; 280: 3791723.
  • 32
    Kniazeff J, Bessis AS, Maurel D, Ansanay H, Prezeau L, Pin JP. Closed state of both binding domains of homodimeric mGlu receptors is required for full activity. Nat Struct Mol Biol. 2004; 11: 70613.
  • 33
    Muto T, Tsuchiya D, Morikawa K, Jingami H. Structures of the extracellular regions of the group II/III metabotropic glutamate receptors. Proc Natl Acad Sci USA. 2007; 104: 375964.
  • 34
    Hu J, Reyes-Cruz G, Goldsmith PK, Gantt NM, Miller JL, Spiegel AM. Functional effects of mono-clonal antibodies to the purified amino-terminal extra-cellular domain of the human Ca2+ receptor. J Bone Miner Res. 2007; 22: 6018.
  • 35
    Hu J, Hauache O, Spiegel AM. Human Ca2+ receptor cysteine-rich domain. Analysis of function of mutant and chimeric receptors. J Biol Chem. 2000; 275: 163829.
  • 36
    Hu J, Reyes-Cruz G, Goldsmith PK, Spiegel AM. The Venus's-flytrap and cysteine-rich domains of the human Ca2+ receptor are not linked by disulfide bonds. J Biol Chem. 2001; 276: 69014.
  • 37
    Conklin BR, Bourne HR. Homeostatic signals. Marriage of the flytrap and the serpent. Nature. 1994; 367: 22.
  • 38
    Chang W, Chen TH, Pratt S, Shoback D. Amino acids in the second and third intracellular loops of the parathyroid Ca2+-sensing receptor mediate efficient coupling to phospholipase C. J Biol Chem. 2000; 275: 1995563.
  • 39
    Tateyama M, Abe H, Nakata H, Saito O, Kubo Y. Ligand-induced rearrangement of the dimeric metabotropic glutamate receptor 1alpha. Nat Struct Mol Biol. 2004; 11: 63742.
  • 40
    Malherbe P, Kratochwil N, Knoflach F, Zenner MT, Kew JN, Kratzeisen C, Maerki HP, Adam G, Mutel V. Mutational analysis and molecular modeling of the allosteric binding site of a novel, selective, non-competitive antagonist of the metabotropic glutamate 1 receptor. J Biol Chem. 2003; 278: 83407.
  • 41
    Malherbe P, Kratochwil N, Zenner MT, Piussi J, Diener C, Kratzeisen C, Fischer C, Porter RH. Mutational analysis and molecular modeling of the binding pocket of the metabotropic glutamate 5 receptor negative modulator 2-methyl-6-(phenylethynyl)-pyridine. Mol Pharmacol. 2003; 64: 82332.
  • 42
    Petrel C, Kessler A, Dauban P, Dodd RH, Rognan D, Ruat M. Positive and negative allosteric modulators of the Ca2+-sensing receptor interact within overlapping but not identical binding sites in the transmembrane domain. J Biol Chem. 2004; 279: 189907.
  • 43
    Miedlich SU, Gama L, Seuwen K, Wolf RM, Breitwieser GE. Homology modeling of the trans-membrane domain of the human calcium sensing receptor and localization of an allosteric binding site. J Biol Chem. 2004; 279: 725463.
  • 44
    Yohannan S, Faham S, Yang D, Whitelegge JP, Bowie JU. The evolution of transmembrane helix kinks and the structural diversity of G protein-coupled receptors. Proc Natl Acad Sci USA. 2004; 101: 95963.
  • 45
    Heath H 3rd, Odelberg S, Jackson CE, Teh BT, Hayward N, Larsson C, Buist NR, Krapcho KJ, Hung BC, Capuano IV, Garrett JE, Leppert MF. Clustered inactivating mutations and benign polymorphisms of the calcium receptor gene in familial benign hypocalci-uric hypercalcemia suggest receptor functional domains. J Clin Endocrinol Metab. 1996; 81: 13127.
  • 46
    Hu J, McLarnon SJ, Mora S, Jiang J, Thomas C, Jacobson KA, Spiegel AM. A region in the seven-transmembrane domain of the human Ca2+ receptor critical for response to Ca2+. J Biol Chem. 2005; 280: 511320.
  • 47
    Ray K, Fan GF, Goldsmith PK, Spiegel AM. The car-boxyl terminus of the human calcium receptor:require-ments for cell-surface expression and signal transduction. J Biol Chem. 1997; 272: 3135561.
  • 48
    Gama L, Breitwieser GE. A carboxyl-terminal domain controls the cooperativity for extracellular Ca2+ activation of the human calcium sensing receptor. A study with receptor-green fluorescent protein fusions. J Biol Chem. 1998; 273: 297128.
  • 49
    Hjalm G, Mac Leod RJ, Kifor O, Chattopadhyay N, Brown EM. Filamin-A binds to the carboxyl-terminal tail of the calcium-sensing receptor, an interaction that participates in CaR-mediated activation of mitogen-activated protein kinase. J Biol Chem. 2001; 276: 348807.
  • 50
    Jiang YF, Zhang Z, Kifor O, Lane CR, Quinn SJ, Bai M. Protein kinase C (PKC) phosphorylation of the Ca2+o-sensing receptor (CaR) modulates functional interaction of G proteins with the CaR cytoplasmic tail. J Biol Chem. 2002; 277: 505439.
  • 51
    Scillitani A, Guarnieri V, De Geronimo S, Muscarella LA, Battista C, D'Agruma L, Bertoldo F, Florio C, Minisola S, Hendy GN, Cole DE. Blood ionized calcium is associated with clustered polymorphisms in the carboxyl-terminal tail of the calcium-sensing receptor. J Clin Endocrinol Metab. 2004; 89: 56348.
  • 52
    Waller S, Kurzawinski T, Spitz L, Thakker R, Cranston T, Pearce S, Cheetham T, Van't Hoff WG. Neonatal severe hyperparathyroidism: genotype/phenotype correlation and the use of pamidronate as rescue therapy. Eur J Pediatr. 2004; 163: 58994.
  • 53
    Kobayashi M, Tanaka H, Tsuzuki K, Tsuyuki M, Igaki H, Ichinose Y, Aya K, Nishioka N, Seino Y. Two novel missense mutations in calcium-sensing receptor gene associated with neonatal severe hyperparathyroidism. J Clin Endocrinol Metab. 1997; 82: 27169.
  • 54
    Pearce SHS, Bai M, Quin SJ, Kifor O, Brown EM, Thakker RV. Functional characterization of calcium-sensing receptor mutations expressed in human embryonic kidney cells. J Clin Invest. 1996; 98: 18606.
  • 55
    Bai M, Pearce SHS, Kifor O, Trivedi S, Stauffer UG, Thakker RV, Brown M, Steinmann B. In vivo and in vitro characterization of neonatal hyperparathyroidism resulting from a de novo, heterozygous mutation in the Ca2+ sensing receptor gene:normal maternal calcium homeostasis as a cause of secondary hyperparathy-roidism in familial benign hypocalciuric hypercalcemia. J Clin Invest. 1997; 99: 8896.
  • 56
    Marcocci C, Borsari S, Pardi E, Dipollina G, Giacomelli T, Pinchera A, Cetani F. Familial hypocal-ciuric hypercalcemia in a woman with metastatic breast cancer: a case report of mistaken identity. J Clin Endocrinol Metab. 2003; 88: 51326.
  • 57
    Yamauchi M, Sugimoto T, Yamaguchi T, Yano S, Wang J, Bai M, Brown EM, Chihara K. Familial hypocalciuric hypercalcemia caused by an R648stop mutation in the calcium-sensing receptor gene. J Bone Miner Res. 2002; 17: 217482.
  • 58
    Pidasheva S, Canaff L, Simonds WF, Marx SJ, Hendy GN. Impaired cotranslational processing of the calcium-sensing receptor due to signal peptide mis-sense mutations in familial hypocalciuric hypercal-cemia. Hum Mol Genet. 2005; 14: 167990.
  • 59
    De Andrade SC, Kohara SK, D'Souza-Li L. Novel mutation of the calcium sensing receptor gene in familial hypocalciuric hypercalcaemia and neonatal severe hyperparathyroidism. Clin Endocrinol. 2006; 65: 8267.
  • 60
    Zhao XM, Hauache O, Goldsmith PK, Collins R, Spiegel AM. A missense mutation in the seventh transmembrane domain constitutively activates the human Ca2+ receptor. FEBS Lett. 1999; 448: 1804.
  • 61
    Vargas-Poussou R, Huang C, Hulin P, Houillier P, Jeunemaitre X, Paillard M, Planelles G, Dechaux M, Miller RT, Antignac C. Functional characterization of a calcium-sensing receptor mutation in severe autoso-mal dominant hypocalcemia with a Bartter-like syndrome. J Am Soc Nephrol. 2002; 13: 225966.
  • 62
    Watanabe S, Fukumoto S, Chang H, Takeuchi Y, Hasegawa Y, Okazaki R, Chikatsu N, Fujita T. Association between activating mutations of calcium-sensing receptor and Bartter's syndrome. Lancet. 2002; 360: 6924.
  • 63
    Lienhardt A, Garabedian M, Bai M, Sinding C, Zhang Z, Lagarde JP, Boulesteix J, Rigaud M, Brown EM, Kottler ML. A large homozygous or het-erozygous in-frame deletion within the calcium-sensing receptor's carboxylterminal cytoplasmic tail that causes autosomal dominant hypocalcemia. J Clin Endocrinol Metab. 2000; 85: 1695702.
  • 64
    Hu J, Mora S, Colussi G, Proverbio MC, Jones KA, Bolzoni L, De Ferrari ME, Civati G, Spiegel AM. Autosomal dominant hypocalcemia caused by a novel mutation in the loop 2 region of the human calcium receptor extracellular domain. J Bone Miner Res. 2002; 17: 14619.
  • 65
    Jensen AA, Spalding TA, Burstein ES, Sheppard PO, O'Hara PJ, Brann MR, Krogsgaard-Larsen P, Brauner-Osborne H. Functional importance of the Ala116- Pro136 region in the calcium-sensing receptor. J Biol Chem. 2000; 275: 2954755.
  • 66
    Patel AB, Crocker E, Eilers M, Hirshfeld A, Sheves M, Smith SO. Coupling of retinal isomerization to the activation of rhodopsin. Proc Natl Acad Sci USA. 2004; 101: 1004853.
  • 67
    Conley YP, Finegold DN, Peters DG, Cook JS, Oppenheim DS, Ferrell RE. Three novel activating mutations in the calcium-sensing receptor responsible for autosomal dominant hypocalcemia. Mol Genet Metab. 2000; 71: 5918.
  • 68
    Pearce SH, Wooding C, Davies M, Tollefsen SE, Whyte MP, Thakker RV. Calcium-sensing receptor mutations in familial hypocalciuric hypercalcaemia with recurrent pan-creatitis. Clin Endocrinol. 1996; 45: 67580.
  • 69
    Hu J, Mora S, Weber G, Zamproni I, Proverbio MC, Spiegel AM. Autosomal dominant hypocalcemia in monozygotic twins caused by a de novo germline mutation near the amino-terminus of the human calcium receptor. J Bone Miner Res. 2004; 19: 57886.
  • 70
    May LT, Avlani VA, Sexton PM, Christopoulos A. Allosteric modulation of G protein-coupled receptors. Curr Pharm Des. 2004; 10: 200313.
  • 71
    Nemeth EF, Steffey ME, Hammerland LG, Hung BC, Van Wagenen BC, DelMar EG, Balandrin MF. Calcimimetics with potent and selective activity on the parathyroid calcium receptor. Proc Natl Acad Sci USA. 1998; 95: 40405.
  • 72
    Cohen A, Silverberg SJ. Calcimimetics: therapeutic potential in hyperparathyroidism. Curr Opin Pharmacol. 2002; 2: 7349.
  • 73
    Zhang Z, Jiang Y, Quinn SJ, Krapcho K, Nemeth EF, Bai M. L-phenylalanine and NPS R-467 synergistically potentiate the function of the extracellular calcium-sensing receptor through distinct sites. J Biol Chem. 2002; 277: 3373641.
  • 74
    Hu J, Reyes-Cruz G, Chen W, Jacobson KA, Spiegel AM. Identification of acidic residues in the extracellular loops of the seven-transmembrane domain of the human Ca2+ receptor critical for response to Ca2+ and a positive allosteric modulator. J Biol Chem. 2002; 277: 4662231.
  • 75
    Gowen M, Stroup GB, Dodds RA, James IE, Votta BJ, Smith BR, Bhatnagar PK, Lago AM, Callahan JF, DelMar EG, Miller MA, Nemeth EF, Fox J. Antagonizing the parathyroid calcium receptor stimulates parathyroid hormone secretion and bone formation in osteopenic rats. J Clin Invest. 2000; 105: 1595604.
  • 76
    Dvorak MM, Siddiqua A, Ward DT, Carter DH, Dallas SL, Nemeth EF, Riccardi D. Physiological changes in extracellular calcium concentration directly control osteoblast function in the absence of calciotropic hormones. Proc Natl Acad Sci USA. 2004; 101: 51405.
  • 77
    Arey BJ, Seethala R, Ma Z, Fura A, Morin J, Swartz J, Vyas V, Yang W, Dickson JK Jr, Feyen JH. A novel calcium-sensing receptor antagonist transiently stimu-lates parathyroid hormone secretion in vivo. Endocrinology. 2005; 146: 201522.
  • 78
    Yang W, Wang Y, Roberge JY, Ma Z, Liu Y, Michael Lawrence R, Rotella DP, Seethala R, Feyen JH, Dickson JK Jr. Discovery and structure-activity relationships of 2-benzylpyrrolidine-substituted ary-loxypropanols as calcium-sensing receptor antagonists. Bioorg Med Chem Lett. 2005; 15: 12258.
  • 79
    Gavai AV, Vaz RJ, Mikkilineni AB, Roberge JY, Liu Y, Lawrence RM, Corte JR, Yang W, Bednarz M, Dickson JK Jr, Ma Z, Seethala R, Feyen JH. Discovery of novel 1-arylmethyl pyrrolidin-2-yl ethanol amines as calcium-sensing receptor antagonists. Bioorg Med Chem Lett. 2005; 15: 547882.
  • 80
    Hu J, Jiang J, Costanzi S, Thomas C, Yang W, Feyen JH, Jacobson KA, Spiegel AM. A missense mutation in the seven-transmembrane domain of the human Ca2+ receptor converts a negative allosteric modulator into a positive allosteric modulator. J Biol Chem. 2006; 281: 2155865.