• 1
    Gabbiani G, Ryan GB, Majno G. Presence of modified fibroblasts in granulation tissue and their possible role in wound contraction. Experientia. 1971; 27: 54950.
  • 2
    Majno G, Gabbiani G, Hirschel BJ, Ryan GB, Statkov PR. Contraction of granulation tissue in vitro: similarity to smooth muscle. Science. 1971; 173: 54850.
  • 3
    Seemayer TA, Lagacé R, Schürch W, Thelmo WL. The myofibroblast: biologic, pathologic, and theoretical considerations. Pathol Annu. 1980; 15: 44370.
  • 4
    Lipper S, Kahn LB, Reddick RL. The myofibroblast. Pathol Annu. 1980; 15: 40941.
  • 5
    Schürch W, Seemayer TA, Gabbiani G. Myofibroblast. Histology for pathologists, 2nd edition, SSSternberg (ed), 1997, Lippincott, Raven , pp. 12965.
  • 6
    Schürch W, Seemayer TA, Gabbiani G. The myofibroblast: a quarter century after its discovery. Am J Surg Pathol. 1998; 22: 1417.
  • 7
    Gabbiani G. The myofibroblast in wound healing and fibrocontractive diseases. J Pathol. 2003; 200: 5003.
  • 8
    Hinz B, Gabbiani G, Chaponnier C. The NH2-terminal peptide of α-smooth muscle actin inhibits force generation by the myofibroblast in vitro and in vivo. J Cell Biol. 2002; 157: 65763.
  • 9
    Joyce JA. Therapeutic targeting of the tumor microenvironment. Cancer Cell. 2005; 7: 51320.
  • 10
    Eyden BP. Brief review of the fibronexus and its significance for myofibroblastic differentiation and tumor diagnosis. Ultrastruct Pathol. 1993; 17: 61122.
  • 11
    Eyden BP. The myofibroblast: an assessment of controversial issues and a definition useful in diagnosis and research. Ultrastruct Pathol. 2001; 25: 3950.
  • 12
    Eyden BP. The fibronexus in reactive and tumoral myofibroblasts: further characterisation by electron microscopy. Histol Histopathol. 2001; 16: 5770.
  • 13
    Eyden B. Electron microscopy in the study of myofibroblastic lesions. Sem Diagn Pathol. 2003; 20: 1324.
  • 14
    Eyden B. The myofibroblast: a study of normal, reactive and neoplastic tissues, with an emphasis on ultrastructure. Part 1 – normal and reactive cells. J submicrosc Cytol Pathol. 2005; 37: 109204.
  • 15
    Eyden B. The myofibroblast: a study of normal, reactive and neoplastic tissues with an emphasis on ultra-structure. Nuova Immagine Editrice, Siena , 2007.
  • 16
    Ryan GB, Cliff WJ, Gabbiani G, Irle C, Montandon D, Statkov PR, Majno G. Myofibroblasts in human granulation tissue. Hum Pathol. 1974; 5: 5567.
  • 17
    Singer II, Kawka DW, Kazazis DM, Clark RAF. In vivo codistribution of fibronectin and actin fibers in granulation tissue. Immunofluorescence and electron microscope studies at the myofibroblast surface. J Cell Biol. 1984; 98: 2091106.
  • 18
    Singer II, Kazazis DM, Kawka DW. Localization of the fibronexus at the surface of granulation tissue myofibroblasts using double-label immunogold electron microscopy on ultrathin frozen sections. Eur J Cell Biol. 1985; 38: 94101.
  • 19
    Singer II. The fibronexus. A transmembrane association of fibronectin-containing fibers and bundles of 5 nm microfilaments in hamster and human fibroblasts. Cell. 1979; 6: 67585.
  • 20
    Skalli O, Schürch W, Seemayer TA, Lagacé R, Montandon D, Pitter B, Gabbiani G. Myofibroblasts from diverse pathologic settings are heterogeneous in their content of actin isoforms and intermediate filament proteins. Lab Invest. 1989; 60: 27585.
  • 21
    Jabs A, Moncada GA, Nichols CE, Waller EK, Wilcox JN. Peripheral blood mononuclear cells acquire myofibroblastic characteristics in granulation tissue. J Vasc Res. 2005; 42: 17480.
  • 22
    Sharif-Afshar A-R, Donohoe JM, Pope JC, Adams MC, Brock III JW, Bhowmick NA. Stromal hyperplasia in male bladders upon loss of transforming growth factor-β signalling in fibroblasts. J Urol. 2005; 174: 17047.
  • 23
    Orimo A, Weinberg RA. Stromal fibroblasts in cancer. Cell Cycle. 2006; 5: 1597601.
  • 24
    Ono Y, Sensui H, Okutsu S, Nagatomi R. Notch2 negatively regulates myofibroblastic differentiation of myoblasts. J Cell Physiol. 2007; 210: 35869.
  • 25
    Prakash S, Paul WE, Robbins PW. Fibrosin, a novel fibrogenic cytokine, modulates expression of myofibroblasts. Exp Mol Pathol. 2007; 82: 428.
  • 26
    Beranek JT. Alpha-smooth muscle actin is not a specific and, consequently, a reliable marker for smooth muscle cells. Hum Path. 1993; 24: 8134.
  • 27
    Eyden BP. Smooth-muscle-type myofilaments and actin in reactive and neoplastic nonmuscle cells. Ultrastruct Pathol. 2000; 24: 34752.
  • 28
    Truong LD, Rangdaeng S, Cagle P, Ro JY, Hawkins H, Font, RL. The diagnostic utility of desmin. A study of 584 cases and review of the literature. Am J Clin Pathol. 1990; 93: 30514.
  • 29
    Eyden B. The myofibroblast: a study of normal, reactive and neoplastic tissues, with an emphasis on ultra-structure. Part 2 – Tumours and tumour-like lesions. J Submicrosc Cytol Pathol. 2005; 37: 23196.
  • 30
    Wiseman OJ, Fowler CJ, Landon DN. The role of human bladder lamina propria myofibroblast. BJU International. 2003; 91: 8993.
  • 31
    Selmy GI, Hassouna MM, Bégin LR, Khaliof IM, Elhilali MM. Long-term effects of ureteric stent after ureteric dilation. J Urol. 1989; 150: 19849.
  • 32
    Schürch W, Skalli O, Gabbiani G. Cellular Biology. The myofibroblast. Definition, ultrastructural features and role in wound contraction (Chapter 4). In: Dupuytren's disease. Biology and treatment, MCFarlaneRM, MCGroutherDA, FlintMH (eds). 1990, Churchill Livingstone, Edinburgh ; pp. 3147.
  • 33
    Betz P, Nerlich A, Wilske J, Tubel J, Wiest I, Penning R, Eisenmenger W. Time-dependent peri-cellular expression of collagen type IV, laminin, and heparan sulfate proteoglycan in myofibroblasts. Int J Legal Med. 1992; 105: 16972.
  • 34
    Berndt A, Kosmehl H, Katenkamp D, Tauchmann V. Appearance of the myofibroblastic phenotype in Dupuytren's disease is associated with a fibronectin, laminin, collagen type IV and tenascin extracellular matrix. Pathobiology. 1994; 62: 558.
  • 35
    Kosmehl H, Berndt A, Katenkamp D, Mandel U, Bohle R, Gabler U, Celeda D. Differential expression of fibronectin splice variants, oncofetal glycosylated fibronectin and laminin isoforms in nodular palmar fibromatosis. Pathol Res Pract. 1995; 191: 110513.
  • 36
    Blyweert W, Van der Aa F, Ost D, Stagnaro M, De Ridder D. Interstitial cells of the bladder: the missing link Br J Obstet Gynaecol. 2004; 111: 5760.
  • 37
    Kaye GI, Lane N, Pascal RR. Colonic pericryptal fibroblast sheath: replication, migration, and cytodif-ferentiation of a mesenchymal cell system in adult tissue. Gastroenterology. 1968; 54: 85265.
  • 38
    Marsh MN, Trier JS. Morphology and cell proliferation of subepithelial fibroblasts in adult mouse jejunum. Gastroenterology. 1974; 67: 62235.
  • 39
    Valentich JD, Powell DW. Intestinal subepithelial myofibroblasts and mucosal immunophysiology. Curr Opin Gastroenterol. 1994; 10: 64551.
  • 40
    Powell DW, Mifflin RC, Valentich JD, Crowe SE, Saada JI, West AB. Myofibroblasts. I.Paracrine cells important in health and disease. Am J Physiol . 1999; 277: C119.
  • 41
    Richman PI, Tilly R, Jass JR, Bodmer WF. Colonic pericrypt sheath cells: characterisation of cell type with new monoclonal antibody. J Clin Pathol. 1987; 40: 593600.
  • 42
    Lazard D, Sastre X, Frid MG, Glukhova A, Thiery J-P, Koteliansky VE. Expression of smooth-muscle specific proteins in myoepithelium and stromal myofibroblasts of normal and malignant breast tissue. Proc Natl Acad Sci USA. 1993; 90: 9991003.
  • 43
    Nakayama H, Miyazaki E, Enzan H. Differential expression of high molecular weight caldesmon in colorectal pericryptal fibroblasts and tumour stroma. J Clin Pathol. 1999; 52: 7856.
  • 44
    Balázs M, Egerszegi P, Vadász G, Kovacs A. Correspondence. Histopathology 1989; 14: 434.
  • 45
    Rumessen JJ, Mikkelsen HB, Thuneberg L. Ultrastructure of interstitial cells of Cajal associated with deep muscular plexus of human small intestine. Gastroenterology. 1992; 102: 5668.
  • 46
    Rumessen JJ, Peters S, Thuneberg L. Light- and electron microscopical studies of interstitial cells of Cajal and muscle cells at the submucosal border of human colon. Lab Invest. 1993; 68: 48195.
  • 47
    Huizinga JD, Faussone-Pellegrini M-S. About the presence of interstitial cells of Cajal outside the musculature of the gastrointestinal tract. J Cell Mol Med. 2005; 9: 46873.
  • 48
    Min KW, Seo IS. Intestitial [sic] cells of Cajal in the human small intestine: immunochemical and ultra-structural study. Ultrastruct Pathol. 2003; 27: 6778.
  • 49
    Drake MJ, Hedlund P, Andersson KE, Brading AF, Hussain I, Fowler C, Landon DN. Morphology, phenotype and ultrastructure of fibroblastic cells from normal and neuropathic human detrusor: absence of myofibroblast characteristics. J Urol. 2003; 169: 15736.
  • 50
    Barth PJ, Schenck ZU, Schweinsberg T, Ramaswamy A, Moll R. CD34+ fibrocytes, α -smooth muscle antigen-positive myofibroblasts, and CD117 expression in the stroma of invasive squamous cell carcinomas of the oral cavity, pharynx, and larynx. Virchows Arch. 2004; 444: 2314.
  • 51
    Kuroda N, Shimasaki N, Miyazaki E, Hamauzu T, Toi M, Hiroi M, Shuin T, Enzan H. The distribution of myofibroblasts and C34-positive stromal cells in normal renal pelvis and ureter and their cancers. Histol Histopathol. 2006; 21: 13037.
  • 52
    Guber S, Rudolph R. The myofibroblast. Surgery Gynecol Obstet. 1978; 146: 6419.
  • 53
    Martin M, Pujuguet P, Martin F. Role of stromal myofibroblasts infiltrating colon cancer in tumor invasion. Path Res Pract. 1996; 192: 7127.
  • 54
    Mentzel T, Dry S, Katenkamp D, Fletcher CDM. Low-grade myofibroblastic sarcoma. Analysis of 18 cases in the spectrum of myofibroblastic tumors. Am J Surg Pathol. 1998: 22: 122838.
  • 55
    De Wewer O, Mareel M. Role of tissue stroma in cancer cell invasion. J Pathol. 2003; 200: 42947.
  • 56
    Direkze NC, Hodivala-Dilke K, Jeffery R, Hunt T, Poulsom R, Oukrif D, Alison MR, Wright NA. Bone marrow contribution to tumour-associated myofibroblasts and fibroblasts. Cancer Res. 2004; 64: 84925.
  • 57
    Sappino AP, Schürch W, Gabbiani G. Biology of disease. Differentiation repertoire of fibroblastic cells: expression of cytoskeletal proteins as marker of phe-notypic modulations. Lab Invest. 1990; 63: 14461.
  • 58
    O'Shea JD. An ultrastructural study of smooth-muscle-like cells in the theca externa of ovarian follicles in the rat. Anat Rec. 1970; 167: 12740.
  • 59
    Bressler RS. Myoid cells in the capsule of the adrenal gland and in monolayers derived from cultured adrenal capsules. Anat Rec. 1973; 177: 52532.
  • 60
    Aumüller G. Smooth muscle in the male genital tract. Chapter 9: Ultrastructure of smooth muscle, PMMotta (ed), Kluwer Academic Publishers, Boston , 1990.
  • 61
    Hinz B, Mastrangelo D, Iselin CE, Chaponnier C, Gabbiani G. Mechanical tension controls granulation tissue contractile activity and myofibroblast differentiation. Am J Pathol. 2001; 159: 100920.
  • 62
    Wang J, Lukse E, Seth A, McCulloch CAG. Use of conditionally immortalized mouse cardiac fibroblasts to examine the effect of mechanical stretch on α-smooth muscle actin. Tissue & Cell. 2001; 33: 8696.
  • 63
    Tomasek JJ, Gabbiani G, Hinz B, Chaponnier C, Brown RA. Myofibroblasts and mechano-regulation of connective tissue remodelling. Nature Rev Mol Cell Biol. 2002; 3: 34963.
  • 64
    Ng CP, Hinz B, Swartz MA. Interstitial fluid flow induces myofibroblast differentiation and collagen alignment in vitro. J Cell Sci. 2005; 118: 47319.
  • 65
    Hinz B. Masters and servants of the force: the role of matrix adhesions in myofibroblast force perception and transmission. Eur J Cell Biol. 2006; 85: 17581.
  • 66
    Beertsen W. Migration of fibroblasts in the periodontal ligament of the mouse incisor as revealed by autoradiography. Arch Oral Biol. 1975; 20: 65966.
  • 67
    Garant PR. Collagen resorption by fibroblasts. J Periodont. 1976; 47: 38090.
  • 68
    Holstein AF, Maekawa M, Nagano T, Davidoff MS. Myofibroblasts in the lamina propria of human seminiferous tubules are dynamic structures of heterogeneous phenotype. Arch Histol Cytol. 1996; 59: 10925.
  • 69
    Komuro T. Re-evalution of fibroblasts and fibroblast-like cells. Anat Embryol. 1990; 182: 10312.
  • 70
    Olumi AE, Grossfeld GD, Hayward SW, Carroll PR, Tlsty TD, Cunha GR. Carcinoma-associated fibrob-lasts direct tumor progression of initiated human pro-static epithelium. Cancer Res. 1999; 59: 500211.
  • 71
    Bhowmick NA, Chytil A, Plieth D, Gorska AE, Dumont N, Shappell S, Washington MK, Neilson EG, Moses HL. TGF-beta signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science. 2004; 303: 84851.
  • 72
    Desmoulière A, Guyot C, Gabbiani G. The stroma reaction myofibroblast: a key player in the control of tumor cell behaviour. Int J Dev Biol. 2004; 48: 50917.
  • 73
    Liu Y. Epithelial to mesenchymal transition in renal fibrogenesis: pathologic significance, molecular mechanism, and therapeutic intervention. J Am Soc Nephrol. 2004; 15: 112.
  • 74
    Micke P, Ostman A. Tumor-stroma interactions: Cancer-associated fibroblasts as novel targets in anti-cancer therapy? Lung Cancer. 2004; 45: S16375.
  • 75
    Livant DL. Targeting invasion induction as a therapeutic strategy for the treatment of cancer. Curr Cancer Drug Targets. 2005; 5: 489503.
  • 76
    Vittal R, Horowitz JC, Moore BB, Zhang H, Martinez FJ, Toews GB, Standiford TJ, Thannickal VJ. Modulation in prosurvival signaling in fibroblasts by a protein kinase inhibitor protects against fibrotic tissue injury. Am J Pathol. 2005; 166: 36775.
  • 77
    Chaudhary NI, Roth GJ, Hilberg F, Müller-Quernheim J, Prasse A, Zissel G, Schnapp A, Park JE. Inhibition of PDGF, VEGF and FGF-signalling attenuates fibrosis. Eur Respir J. 2007; 29: 97685.
  • 78
    Narine K, De Wewer O, Cathenis K, Mareel M, Van Belleghem Y, Van Nooten G. Transforming growth factor-beta-induced transition of fibroblasts: a model for myofibroblast procurement in tissue valve engineering. J Heart Valve Dis. 2004; 13: 2819.
  • 79
    Petrov VV, Fagard RH, Lijnen PJ. Stimulation of collagen production by transforming growth factor-β1 during differentiation of cardiac fibroblasts to myofibroblasts. Hypertension. 2002; 39: 25863.
  • 80
    Hinz B, Dugina V, Ballestrem C, Wehrle-Haller B, Chaponnier C. α -smooth muscle actin is crucial for focal adhesion maturation in myofibroblasts. Mol Biol Cell. 2003; 14: 250819.
  • 81
    Hinz B, Gabbiani G. Mechanisms of force generation and transmission by myofibroblasts. Curr Opin Biotechnol. 2003; 14: 53846.
  • 82
    Guarino M, Rubino B, Ballabio G. The role of epithelial-mesenchymal transition in cancer pathology. Pathology. 2007; 39: 30518.
  • 83
    Dingemans KP, Zeeman-Boeschoten IM, Keep RF, Das PK. Transplantation of colon carcinoma into granulation tissue induces an invasive morphotype. Int J Cancer. 1993; 54: 10106.
  • 84
    Surowiak P, Murawa D, Materna V, Maciejczyk A, Pudelko M, Ciesla S, Breborowicz J, Murawa P, Zabel M, Dietel M, Lage H. Occurence of stromal myofibroblasts in the invasive ductal breast cancer tissue is an unfavourable prognostic factor. Anticancer Res. 2007; 27: 291724.
  • 85
    Kellermann MG, Sobral LM, Da Silva SD, Zecchin KG, Graner E, Lopes MA, Nishimoto I, Kowalski LP, Coletta RD. Myofibroblasts in the stroma of oral squamous cell carcinoma are associated with poor prognosis. Histopathology. 2007; 51: 84953.
  • 86
    Steiner MS, Barrack ER. Transforming growth factor-beta 1 overproduction in prostate cancer: effects on growth in vivo and in vitro. Mol Endocrinol. 1992; 6: 1525.
  • 87
    Arteaga CL, Hurd SD, Winnier AR, Johnson MD, Fendly BM, Forbes JT. Anti-transforming growth factor (TGF)-β antibodies inhibit breast cancer cell tumorigenicity and increase mouse spleen natural killer activity. J Clin Invest. 1993; 92: 256976.
  • 88
    Xu X, Wang Y, Chen Z, Sternlicht MD, Hidalgo M, Steffensen B. Matrix metalloproteinase-2 contributes to cancer cell migration on collagen. Cancer Res. 2005; 65: 1306.
  • 89
    Stamenkovic I. Extracellular matrix remodeling: the role of matrix metalloproteinases. J Pathol. 2003; 200: 445864.
  • 90
    Hildebrand R, Gandhari M, Stroebel P, Marx A, Allgayer H, Arens N. The urokinase-system – role of cell proliferation and apoptosis. Histol Histopathol. 2008; 23: 22736.
  • 91
    Yamada KM, Aota S, Akiyama SK, LaFlamme SE. Mechanisms of fibronectin and integrin function during cell adhesion and migration. Cold Spring Harbor Symposia on Quantitative Biology. 1992; 62: 20312.
  • 92
    Inoue T, Nabeshima K, Shimao Y, Meng JY, Koono M. Regulation of fibronectin expression and splicing in migrating epithelial cells: migrating MDCK cells produce a lesser amount of, but more active, fibronectin. Biochem Biophys Res Comm. 2001; 280: 12628.
  • 93
    Kilian O, Dahse R, Alt V, Zardi L, Rosenhahn J, Exner U, Battmann A, Schnettler R, Kosmehl H. Expression of EDA+ and EDB+ fibronectin splice variants in bone. Bone. 2004; 35: 133445.
  • 94
    Kohn EC, Travers LA, Kassis J, Broome U, Klominek J. Malignant effusions are sources of fibronectin and other promigratory and proinvasive components. Diagn Cytopathol. 2005; 33: 3008.
  • 95
    Mhawech P, Dulguerov P, Assaly M, Ares C, Allal AS. EB-D [sic] fibronectin expression in squamous cell carcinoma of the head and neck. Oral Oncol. 2005; 41: 828.
  • 96
    Saito S, Yamaji N, Yasunaga K, Saito T, Matsumoto S, Katoh M, Kobayashi S, Masuho Y. The fibronectin extra domain A activates matrix metalloproteinase gene expression by an interleukin-1-dependent mechanism. J Biol Chem. 1999; 274: 3075663.
  • 97
    Rønnov-Jessen L, Petersen OW, Koteliansky VE, Bissell MJ. The origin of the myofibroblasts in breast cancer. Recapitulation of tumor environment in culture unravels diversity and implicates converted fibroblasts and recruited smooth muscle cells. J Clin Invest. 1995; 95: 85973.
  • 98
    Iwano M, Plieth D, Danoff TM, Xue C, Okada H, Neilson EG. Evidence that fibroblasts derive from epithelium during tissue fibrosis. J Clin Invest. 2002; 110: 34150.
  • 99
    Yen T-H, Wright NA. The gastrointestinal tract stem cell niche. Stem Cell Rev. 2006; 2: 20312.
  • 100
    Abe R, Donnelly SC, Peng T, Bucala R, Metz CN. Peripheral blood fibrocytes: differentiation pathway and migration to wound sites. J Immunol. 2001; 166: 755662.
  • 101
    Yamaguchi Y, Kubo T, Murakami T, Takahashi M, Hakamata Y, Kobayashi E, Yoshida S, Hosokawa K, Yoshikawa K, Itami S. Bone marrow cells differentiate into wound myofibroblasts and accelerate the healing of wounds with exposed bones when combined with an occlusive dressing. Br J Dermatol. 2005; 152: 61622.
  • 102
    Kisseleva T, Uchinami H, Feirt N, Quintana-Bustamente O, Segovia JC, Schwabe RF, Brenner DA. Bone marrow-derived fibrocytes participate in patho-genesis of liver fibrosis. J Hepatol. 2006; 45: 42938.
  • 103
    Möllmann H, Nef HM, Kostin S, Von Kalle C, Pilz I, Weber M, Schaper J, Hamm CW, Elsässer A. Bone marrow-derived cells contribute to infarct remodel-ling. Cardiovasc Res. 2006; 71: 66171.
  • 104
    Ishii G, Sangai T, Oda T, Aoyagi Y, Hasebe T, Kanomata N, Endoh H, Okumura C, Okuhara Y, Magae J, Emura M, Ochiya T, Ochiai A. Bone-marrow-derived myofibroblasts contribute to the cancer-induced stromal reaction. Biochem Biophys Res Commun. 2003; 309: 23240.
  • 105
    Gupta PB, Proia D, Cingoz O, Weremowicz J, Naber SP, Weinberg RA, Kuperwasser C. Systemic stromal effects of estrogen promote the growth of estrogen receptor-negative cancers. Cancer Res. 2007; 67: 206271.
  • 106
    Quan TE, Cowper SE, Bucala R. The role of circulating fibrocytes in fibrosis. Curr Rheumatol Rep. 2006; 8: 14550.
  • 107
    Xu Q, Zhang Z, Davison F, Hu Y. Circulating progenitor cells regenerate endothelium of vein graft atherosclerosis, which is diminished in ApoE-deficient mice. Circ Res. 2003; 93: e76–86.
  • 108
    Bentzon JF, Sondergaard CS, Kassem M, Falk E. Smooth muscle cells healing atherosclerotic plaque disruptions are of local, not blood, origin in apolipopro-tein E knockout mice. Circulation. 2007; 116: 205361.
  • 109
    Kalluri R, Neilson EG. Epithelial-mesenchymal transition and its implications for fibrosis. J Clin Invest. 2003; 112: 177684.
  • 110
    Birchmeier C, Birchmeier W, Brand-Saberi B. Epithelial-mesenchymal transitions in cancer progression. Acta Anat. 1996; 156: 21726.
  • 111
    Ru Y, Eyden BP, Curry A, McWilliam LJ, Coyne JD. Actin filaments in human renal tubulo-interstitial fibrosis: significance for the concept of epithelial-myofibroblast transformation. J submicrosc Cytol Pathol. 2003; 35: 22133.
  • 112
    Willis BC, Du Bois RM, Borok Z. Epithelial origin of myofibroblasts during fibrosis in the lung. Proc Am Thorac Soc. 2006; 3: 37782.
  • 113
    Ng Y-Y, Huang T-P, Yang W-C, Chen Z-P, Yang A-H, Mu W, Nikolic-Paterson DJ, Atkins RC, Lan HY. Tubular epithelial-myofibroblast transdifferentiation in progressive tubulointerstitial fibrosis in 5/6 nephrectomized rats. Kidney Int. 1998; 54: 86476.
  • 114
    Ina K, Kitamura H, Tatsukawa S, Takayama T, Fujikura Y, Shimada T. Transformation of interstitial fibroblasts and tubulointerstitial fibrosis in diabetic nephropathy. Med Electron Microsc. 2002; 35: 8795.
  • 115
    Cheng S, Lovett DH. Gelatinase A (MMP-2) is necessary and sufficient for renal tubular cell epithelial-mesenchymal transformation. Am J Pathol. 2003; 162: 193749.
  • 116
    Zhang C, Meng X, Zhu Z, Liu J, Deng A. Connective tissue growth factor regulates the key events in tubular epithelial to myofibroblast transition in vitro. Cell Biol Int. 2004; 28: 86373.
  • 117
    Forino M, Torregrossa R, Ceol M, Murer L, Vella MD, Prete DD, D'Angelo A, Anglani F. TGFbeta1 induces epithelial-mesenchymal transition, but not myofibroblastic transdifferentiation of human kidney tubular epithelial cells in primary culture. Int J Exp Pathol. 2006; 87: 197208.