SEARCH

SEARCH BY CITATION

References

  • 1
    Carmeliet P. Mechanism of angiogenesis and arteriogenesis. Nat Med. 2000; 6: 38995.
  • 2
    Aird WC, Edelberg JM, Weiler-Guettler H, Simmons WW, Smith TW, Rosenberg RD. Vascular bed-specific expression of an endothelial cell gene is programmed by the tissue microenvironment. J Cell Biol. 1997; 38: 111724.
  • 3
    Brogi E, Schatteman G, Wu T, Kim EA, Varticovski L, Keyt B, Inser JM. Hypoxiainduced paracrine regulation of vascular endothelial growth factor receptor expression. J Clin Invest. 1996; 97: 46976.
  • 4
    Edelberg JM, Aird WC, Wu W, Rayburn H, Mamuya WS, Mercola M, Rosenberg RD. PDGF mediates cardiac microvascular communication. J Clin Invest. 1998; 102:83743.
  • 5
    Guillot PV, Guan J, Liu L, Kuivenhoven JA, Rosenberg RD, Sessa WC, Aird WC. A vascular bed-specific pathway. J Clin Invest. 1999;103:7995.
  • 6
    Zheng W, Seftor EA, Meininger CJ, Hendrix MJ, Tomanek RJ. Mechanisms of coronary angiogenesis in response to stretch: role of VEGF and TGF-beta. Am J Physiol Heart Circ Physiol. 2001; 280: 90917.
  • 6
    Zheng W, Christensen LP, Tomanek RJ. Stretch induces up regulation of key tyro-sine kinase receptors in microvascular endothelial cells. Am J Physiol Heart Circ Physiol. 2004; 287: 273945.
  • 7
    Komuro I, Kaida T, Shibazaki Y, Kurabayashi M, Katoh Y, Hoh E, Takaku F, Yazaki Y. Stretching cardiac myocytes stimulates protooncogene expression. J BiolChein. 1990;265:35958.
  • 8
    Malhotra R, Sadoshima J, Brosius FC III, Izumo S. Mechanical stretch and angiotensin II differentially upregulate the renin-angiotensin system in cardiac myocytes in vitro. Circ Res. 1999; 85: 13746.
  • 9
    Miyata S, Haneda T, Osaki J, Kikuchi K. Renin-angiotensin system in stretch-induced hypertrophy of cultured neonatal rat heart cells. Eur J Pharmacol. 1996; 307: 818.
  • 10
    Tsuruda T, Kato J, Kitamura K, Imamura T, Koiwaya Y, Kangawa K, Komuro I, Yazaki Y, Eto T. Enhanced adrenomedullin production by mechanical stretching in cultured rat cardiomyocytes. Hypertension. 2000;35:12104.
  • 11
    Liang F, Wu J, Garami M, Gardner DG. Mechanical strain increases expression of the brain natriuretic peptide gene in rat cardiac myocytes. J Biol Chem. 1972; 272: 280506.
  • 13
    Shyu KG, Chen JJ, Shih NL, Wang DL, Chang H, Lien WP, Liew CC. Regulation of human cardiac myosin heavy chain genes by cyclical mechanical stretch in cultured car-diocytes. Biochem Biophys Res Commun. 1995;210:56773.
  • 14
    Zhuang J, Yamada KA, Saffitz JE, Kléber AG. Pulsatile stretch remodels cell- to-cell communication in cultured myocytes. Circ Res. 2000;87:31622.
  • 15
    Wang Z, Lam CF, Mukherjee R, Hebbar L, Wang Y, Spinale FG. Relationship between external load and isolated myocyte contractile function with CHF in pigs. Am J Physiol Heart Circ Physiol. 1997; 273:183191.
  • 16
    Yaniv G, Shilkrut M, Lotan R, Berke G, Larisch S, Binah O. Hypoxia predisposes neonatal rat ventricular myocytes to apoptosis induced by activation of the Fas (CD95/Apo-1) receptor: Fas activation and apoptosis in hypoxic myocytes. Cardiovasc Res. 2002;54:61123.
  • 17
    Dewey CF Jr., Bussolari SR, Gimbrone MA, Jr., Davies PF. The dynamic response of vascular endothelial cells to fluid shear stress. J Biomech Eng. 1981; 103:17785.
  • 18
    Shanker AJ, Yamada K, Green KG, Yamada KA, Saffitz JE. Matrix-protein-specific regulation of Cx43 expression in cardiac myocytes subjected to mechanical load. Circ Res. 2005; 96: 55866.
  • 19
    Felzen B, Shilkrut M, Less H, Sarapov I, Maor G, Coleman R, Robinson RB, Berke G, Binah O. Fas (CD95/Apo-1)-mediated damage to ventricular myocytes induced by Cytotoxic T Lymphocytes from per-forin-deficient Mice: A major role for inos-itol 1,4,5-trisphosphate. Circ Res. 1998; 82: 43850.
  • 20
    Meiry G, Reisner Y, Feld Y, Goldberg S, Rosen M, Ziv N, Binah O. Evolution of action potential propagation and repolar-ization in cultured neonatal rat ventricular myocytes. J Cardiovasc Electrophysiol. 2001;12:126977.
  • 21
    Zeevi-Levin N, Barac DY, Reisner Y, Reiter I, Yaniv G, Meiry G, Abassi Z, Kostin S, Schaper J, Rosen MR, Resnick N, Binah O. Gap junctional remodeling by hypoxia in cultured neonatal rat ventricular myocytes. Cardiovasc Res. 2005; 66: 6473.
  • 22
    Comber BL, Gotlieb AI. In vitro endothelial wound repair. Interaction of cell migration and proliferation. Arteriosclerosis. 1990;10:21522.
  • 23
    Ashton AW, Yokota R, John G, Zhao S, Suadicani SO, Spray DC, Ware JA. Inhibition of endothelial cell migration, intercellular communication, and vascular tube formation by thromboxane A(2). J Biol Chem. 1999; 274: 3556270.
  • 24
    Barac DY, Zeevi-Levin N, Yaniv G, Reiter I, Milman F, Shilkrut M, Coleman R, Abassi Z, Binah O. The 1,4,5-inositol trisphosphate pathway is a key component in Fas-mediated hypertrophy in neonatal rat ventricular myocytes. Cardiovasc Res. 2005; 68: 7586.
  • 25
    Fink C, Ergun S, Kralsch D, Remmers U, Weil J, Eschenhagen T. Chronic stretch of engineered heart tissue induces hypertrophy and functional improvement. FASEB J. 2000;214:66979.
  • 26
    Sadoshima J XY, Slayter HS, Izumo S. Autocrine release of angiotensin II mediates stretch-induced hypertrophy of cardiac myocytes in vitro. Cell. 1993; 75: 97784.
  • 27
    Asakawa M, Takano H, Nagai T, Uozumi H, Hasegawa H, Kubota N. Peroxisome proliferator-activated receptor gamma plays a critical role in inhibition of cardiac hypertrophy in vitro and in vivo. Circulation. 2002; 105:12406.
  • 28
    Okoshi MP, Yan X, Okoshi K, Nakayama M, Schuldt AJT, O’Connell TD, Simpson PC, Lorell BH. Aldosterone directly stimulates cardiac myocyte hypertrophy. J Cardiac Failure. 2004; 10: 5118.
  • 29
    Tongers J, Fiedler B, Konig D, Kempf T, Klein G, Heineke J, Kraft T, Gambaryan S, Lohmann SM, Drexler H, Wollert KC. Heme oxygenase-1 inhibition of MAP kinases, calcineurin/NFAT signaling, and hypertrophy in cardiac myocytes. Cardiovasc Res. 2004; 63: 54552.
  • 30
    Xie K, Wei D, Shi Q, Huang S. Constitutive and inducible expression and regulation of vascular endothelial growth factor. Cytokine Growth Factor Rev. 2004; 15:297324.
  • 31
    Luodonpaa M, Vuolteenaho O, Eskelinen S, Ruskoaho H. Effects of adrenomedullin on hypertrophic responses induced by angiotensin II, endothelin-1 and phenyle-phrine. Peptides. 2001; 122:185966.
  • 32
    Seko Y, Takahashi N, Tobe K, Kadowaki T, Yazaki Y. Pulsatile stretch activates mitogen-activated protein kinase (MAPK) family members and focal adhesion kinase (p125(FAK)) in cultured rat cardiac myocytes. Biochem Biophys Res Commun. 1999;259:814.
  • 33
    Van Wamel AJ RC, Van Der Valk-Kokshoom LE, Schrier PI, Van Der Laarse A. The role of angiotensin II, endothelin-1 and transforming growth factor-β as autocrine/paracrine mediators of stretch-induced cardiomyocyte hypertrophy. Mol Cell Biochem. 2001;218:11324.
  • 34
    Saffitz JE, Kléber AG. Effects of mechanical forces and mediators of hypertrophy on remodeling of gap junctions in the heart. Circ Res. 2004; 94: 58591.
  • 35
    Keung EC. Calcium current is increased in isolated adult myocytes from hypertrophied rat myocardium. Circ Res. 1989; 64: 75363.
  • 36
    Schwarz B, Percy E, Gao XM, Dart AM, Richardt G, Du XJ. Altered calcium transient overload. Europ J Heart Fail. 2003; 5:1316.
  • 37
    Tomaselli GF, Marbán E. Electrophysiological remodeling in hypertrophy and heart failure. Cardiovasc Res. 1999; 42: 27083.
  • 38
    Carmeliet P, Collen D. Molecular Basis of Angiogenesis: Role of VEGF and VE-Cadherin. Ann NY Acad Sci. 2000; 902: 24964.
  • 39
    Komuro I, Kudo S, Yamazaki T, Zou Y, Shiojima I, Yazaki Y. Mechanical stretch activates the stress-activated protein kinases in cardiac myocytes. FASEB J. 1996;10:6316.
  • 40
    Ruwhof C, Van Der Laarse A. Mechanical stress-induced cardiac hypertrophy: mechanisms and signal transduction pathways. Cardiovasc Res. 2000; 47: 2337.
  • 41
    Sadoshima J, Jahn L, Takahashi T, Kulik TJ, Izumo S. Molecular characterization of the stretch-induced adaptation of cultured cardiac cells. An in vitro model of load-induced cardiac hypertrophy. J Biol Chein. 1992;267:1055160.
  • 42
    McCall E, Ginsburg KS, Bassani RA, Shannon TR, Qi M, Samarel AM, Bers DM. Ca flux, contractility, and excitation-contraction coupling in hypertrophic rat ventricular myocytes. Am J Physiol Heart Circ Physiol. 1998; 274: H134860.
  • 43
    January CT, Riddle JM. Early afterdepolarization: mechanism of induction and block. Circ Res. 1989; 64: 977990.
  • 44
    Wu J, Wu J, Zipes DP. Early afterdepolarization, U wave, and torsades de pointes. Circulation. 2002; 105: 6756.
  • 45
    Pimentel RC, Yamada KA, Kleber AG, Saffitz JE. Autocrine regulation of myocyte Cx43 expression by VEGF. Circ Res. 2002; 90: 6717.
  • 46
    Seko Y, Seko Y, Fujikura H, Pang J, Tokoro T, Shimokawa H. Induction of vascular endothelial growth factor after application of mechanical stress to retinal pigment epithelium of the rat in vitro. Invest Ophthalmol Vis Sci. 1999; 40: 328791.
  • 47
    Li J, Hampton T, Morgan JP, Simons M. Stretch-induced VEGF Expression in the heart. J Clin Invest. 1997; 100: 1824.
  • 48
    van Wamel AJ, Ruwhof C, Van Der Valk-Kokshoorn LJ, Schrier PI, Van Der Laarse A. Stretch-induced paracrine hypertrophic stimuli increase TGF-beta1 expression in cardiomy-ocytes. Mol Cell Biochem. 2002; 236: 14753.
  • 49
    Costa C, Soares R, Schmitt F. Angiogenesis: now and then. Apmis. 2004; 112:40212.
  • 50
    Ziche M, Donnini S, Morbidelli L. Development of new drugs in angiogenesis. Curr Drug Targets. 2004; 5: 48593.