SEARCH

SEARCH BY CITATION

References

  • 1
    Kuo MH, Allis CD. Roles of histone acetyltransferases and deacetylases in gene regulation. Bioessays. 1998; 20: 61526.
  • 2
    Xu L, Glass CK, Rosenfeld MG. Coactivator and corepressor complexes in nuclear receptor function. Curr Opin Genet Dev. 1999; 9: 1407.
  • 3
    McKinsey TA, Zhang CL, Lu J, et al . Signal-dependent nuclear export of a histone deacetylase regulates muscle differentiation. Nature. 2000; 408: 10611.
  • 4
    McKinsey TA, Zhang CL, Olson EN. MEF2: a calcium-dependent regulator of cell division, differentiation and death. Trends Biochem Sci. 2002; 27: 407.
  • 5
    Han A, He J, Wu Y, et al . Mechanism of recruitment of class II histone deacetylases by myocyte enhancer factor-2. J Mol Biol. 2005; 345: 91102.
  • 6
    Mal A, Sturniolo M, Schiltz RL, et al . A role for histone deacetylase HDAC1 in modulating the transcriptional activity of MyoD: inhibition of the myogenic program. EMBO J. 2001; 20: 173953.
  • 7
    Goswami S, Qasba P, Ghatpande S, et al . Differential expression of the myocyte enhancer factor 2 family of transcription factors in development: the cardiac factor BBF-1 is an early marker for cardiogenesis. Mol Cell Biol. 1994; 14: 51308.
  • 8
    Dalla Libera L. A comparative study of atrial and ventricular myosin light subunits from different species. Comp Biochem Physiol B. 1986; 83: 7515.
  • 9
    O’Brien TX, Lee KJ, Chien KR. Positional specification of ventricular myosin light chain 2 expression in the primitive murine heart tube. Proc Natl Acad Sci USA. 1993; 90: 515761.
  • 10
    Shen RA, Goswami SK, Mascareno E, et al . Tissue-specific transcription of the cardiac myosin light-chain 2 gene is regulated by an upstream repressor element. Mol Cell Biol. 1991; 11: 167685.
  • 11
    Qasba P, Lin E, Zhou MD, et al . A single transcription factor binds to two divergent sequence elements with a common function in cardiac myosin light chain-2 promoter. Mol Cell Biol. 1992; 12: 110716.
  • 12
    Qasba P, Danishefsky K, Gadot M, et al . Functional analysis of a CArG-like promoter element in cardiac myosin light chain 2 gene. Cell Mol Biol. 1992; 38: 5619.
  • 13
    Zhou MD, Wu Y, Kumar A, et al . Mechanism of tissue-specific transcription: interplay between positive and negative regulatory factors. Gene Expr. 1992; 2:12738.
  • 14
    Dhar M, Mascareno EM, Siddiqui MAQ. Two distinct factor-binding DNA elements in cardiac myosin light chain 2 gene are essential for repression of its expression in skeletal muscle. Isolation of a cDNA clone for repressor protein Nished. J Biol Chem. 1997; 272: 184907.
  • 15
    Mathew S, Mascareno E, Siddiqui MAQ. A ternary complex of transcription factors, Nished and NFATc4, and co-activator p300 bound to an intronic sequence, intronic regulatory element, is pivotal for the up-regulation of myosin light chain-2v gene in cardiac hypertrophy. J Biol Chem. 2004; 279: 4101827.
  • 16
    Arnold HH, Klapthor H, Winter B. The cardiac myosin light chain (MLC-2A) gene in chicken is methylated in both expressing and nonexpressing tissues. Cell Biol Toxicol. 1984; 1: 4153.
  • 17
    Grozinger CM, Chao ED, Blackwell HE, et al . Identification of a class of small molecule inhibitors of the sirtuin family of NAD-dependent deacetylases by phenotypic screening. J Biol Chem. 2001; 276: 3883743.
  • 18
    Hassig CA, Fleischer TC, Billin AN, et al . Histone deacetylase activity is required for full transcriptional repression by mSin3A. Cell. 1997; 89: 3417.
  • 19
    Gopal-Srivastava R, Haynes JI 2nd, Piatigorsky J. Regulation of the murine alpha B-crystallin/small heat shock protein gene in cardiac muscle. Mol Cell Biol. 1995; 15: 708190.
  • 20
    Hoover HE, Thuerauf DJ, Martindale JJ, et al . alpha B-crystallin gene induction and phosphorylation by MKK6-activated p38. A potential role for alpha B-crystallin as a target of the p38 branch of the cardiac stress response. J Biol Chem. 2000; 275: 2382533.
  • 21
    Zhou MD, Goswami SK, Martin ME, et al . A new serum-responsive, cardiac tissue-specific transcription factor that recognizes the MEF-2 site in the myosin light chain promoter. Mol Cell Biol. 1993; 13: 122231.
  • 22
    Downes M, Ordentlich P, Kao HY, et al . Identification of a nuclear domain with deacetylase activity. Proc Natl Acad Sci USA. 2000; 97: 103305.
  • 23
    Zhang CL, McKinsey TA, Lu JR, et al . Association of COOH-terminal binding protein (CtBP) and MEF2-interacting transcription repressor (MITR) contributes to transcriptional repression of the MEF2 transcription factor. J Biol Chem. 2001; 276: 359.
  • 24
    Youn HD, Grozinger CM, Liu JO. Calcium regulates transcriptional repression of myocyte enhancer factor 2 by histone deacetylase 4. J Biol Chem. 2000; 275: 225637.
  • 25
    Zhang Y, Reinberg D. Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes Dev. 2001; 15: 234360.
  • 26
    Richards EJ, Elgin SC. Epigenetic codes for heterochromatin formation and silencing: rounding up the usual suspects. Cell. 2002; 108: 489500.
  • 27
    Litt MD, Simpson M, Gaszner M, et al . Correlation between histone lysine methylation and developmental changes at the chicken beta- globin locus. Science. 2001; 293: 24535.
  • 28
    Berkes CA, Bergstrom DA, Penn BH, et al . Pbx marks genes for activation by MyoD indicating a role for a homeodomain protein in establishing myogenic potential. Mol Cell. 2004; 14: 46577.