SEARCH

SEARCH BY CITATION

References

  • 1
    Candido R, Srivastava P, Cooper ME, et al. Diabetes mellitus: a cardiovascular disease. Curr Opin Investig Drugs . 2003; 4: 108894.
  • 2
    Sowers JR, Epstein M, Frohlich ED. Diabetes, hypertension, and cardiovascular disease: an update. Hypertension . 2001; 37: 10539.
  • 3
    Galderisi M, Anderson KM, Wilson PW, et al . Echocardiographic evidence for the existence of a distinct diabetic cardiomyopathy (the Framingham Heart Study). Am J Cardiol . 1991; 68: 859.
  • 4
    Ren J, Ceylan-Isik AF. Diabetic cardiomyopathy: do women differ from men Endocrine . 2004; 25: 7383.
  • 5
    Hofmann PA, Menon V, Gannaway KF. Effects of diabetes on isometric tension as a function of Ca2+] and pH in rat skinned cardiac myocytes. Am J Physiol . 1995; 269: H165663.
  • 6
    Lagadic-Gossmann D, Buckler KJ, Le PK, et al . Altered Ca2+ handling in ventricular myocytes isolated from diabetic rats. Am J Physiol . 1996; 270: H152937.
  • 7
    Schaffer SW, Ballard-Croft C, Boerth S, et al . Mechanisms underlying depressed Na+/Ca2+ exchanger activity in the diabetic heart. Cardiovasc Res . 1997; 34: 12936.
  • 8
    Bidasee KR, Zhang Y, Shao CH, et al . Diabetes increases formation of advanced glycation end products on Sarco(endo)plasmic reticulum Ca2+-ATPase. Diabetes . 2004; 53: 46373.
  • 9
    Candido R, Forbes JM, Thomas MC, et al . A breaker of advanced glycation end products attenuates diabetes-induced myocardial structural changes. Circ Res. 2003; 92(7): 78592.
  • 10
    Kass DA. Getting better without AGE: new insights into the diabetic heart. Circ Res . 2003; 92: 7046.
  • 11
    Norton GR, Candy G, Woodiwiss AJ. Aminoguanidine prevents the decreased myocardial compliance produced by streptozotocin-induced diabetes mellitus in rats. Circulation . 1996; 93: 190512.
  • 12
    Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature . 2001; 414: 81320.
  • 13
    Miyata T, Hori O, Zhang J, et al . The receptor for advanced glycation end products (RAGE) is a central mediator of the interaction of AGE-beta2microglobulin with human mononuclear phagocytes via an oxidant-sensitive pathway. Implications for the pathogenesis of dialysis-related amyloidosis. J Clin Invest . 1996; 98: 108894.
  • 14
    Simm A, Bartling B, Silber RE. RAGE: a new pleiotropic antagonistic gene Ann N Y Acad Sci . 2004; 1019: 22831.
  • 15
    Norby FL, Aberle NS, Kajstura J, et al . Transgenic overexpression of insulin-like growth factor I prevents streptozotocin-induced cardiac contractile dysfunction and beta-adrenergic response in ventricular myocytes. J Endocrinol . 2004; 180: 17582.
  • 16
    Ceylan-Isik AF, Wu S, Li Q, et al . High-dose benfotiamine rescues cardiomyocyte contractile dysfunction in streptozotocin-induced diabetes mellitus. J Appl Physiol . 2006; 100: 1506.
  • 17
    Duan J, Zhang HY, Adkins SD, et al . Impaired cardiac function and IGF-I response in myocytes from calmodulin-diabetic mice: role of Akt and RhoA. Am J Physiol Endocrinol Metab . 2003; 284: E36676.
  • 18
    Wang X, Fisher PW, Xi L, et al . Essential role of mitochondrial Ca2+-activated and ATP-sensitive K+ channels in sildenafil-induced late cardioprotection. J Mol Cell Cardiol . 2008; 44: 10513.
  • 19
    Chaplen FW, Fahl WE, Cameron DC. Method for determination of free intracellular and extracellular methylglyoxal in animal cells grown in culture. Anal Biochem . 1996; 238: 1718.
  • 20
    Yoshida S, Yamada K, Hamaguchi K, et al . Immunohistochemical study of human advanced glycation end-products (AGE) and growth factors in cardiac tissues of patients on maintenance dialysis and with kidney transplantation. Clin Nephrol . 1998; 49: 27380.
  • 21
    Li SY, Du M, Dolence EK, et al . Aging induces cardiac diastolic dysfunction, oxidative stress, accumulation of advanced glycation endproducts and protein modification. Aging Cell . 2005; 4: 5764.
  • 22
    Li SY, Golden KL, Jiang Y, et al . Inhibition of sarco(endo)plasmic reticulum Ca2+-ATPase differentially regulates contractile function in cardiac myocytes from normotensive and spontaneously hypertensive rats: role of Ca2+ regulatory proteins. Cell Biochem Biophys . 2005; 42: 112.
  • 23
    Gregorio CC, Repasky EA, Fowler VM, et al . Dynamic properties of ankyrin in T lymphocytes: colocalization with spectrin and protein kinase C beta. J Cell Biol . 1994; 125: 34558.
  • 24
    Westwood ME, McLellan AC, Thornalley PJ. Receptor-mediated endocytic uptake of methylglyoxal-modified serum albumin. Competition with advanced glycation end product-modified serum albumin at the advanced glycation end product receptor. J Biol Chem . 1994; 269: 322938.
  • 25
    Russell RR, III, Li J, Coven DL, et al . AMP-activated protein kinase mediates ischemic glucose uptake and prevents postischemic cardiac dysfunction, apoptosis, and injury. J Clin Invest . 2004; 114: 495503.
  • 26
    Hintz KK, Relling DP, Saari JT, et al . Cardiac overexpression of alcohol dehydrogenase exacerbates cardiac contractile dysfunction, lipid peroxidation, and protein damage after chronic ethanol ingestion. Alcohol Clin Exp Res . 2003; 27: 10908.
  • 27
    Di LF, Blank PS, Colonna R, et al . Mitochondrial membrane potential in single living adult rat cardiac myocytes exposed to anoxia or metabolic inhibition. J Physiol . 1995; 486: 113.
  • 28
    Randell EW, Vasdev S, Gill V. Measurement of methylglyoxal in rat tissues by electrospray ionization mass spectrometry and liquid chromatography. J Pharmacol Toxicol Methods . 2005; 51: 1537.
  • 29
    Wu L, Juurlink BH. Increased methylglyoxal and oxidative stress in hypertensive rat vascular smooth muscle cells. Hypertension . 2002; 39: 80914.
  • 30
    Hammes HP, Du X, Edelstein D, et al . Benfotiamine blocks three major pathways of hyperglycemic damage and prevents experimental diabetic retinopathy. Nat Med. 2003; 9(3): 2949.
  • 31
    Vlassara H. The AGE-receptor in the pathogenesis of diabetic complications. Diabetes Metab Res Rev . 2001; 17: 43643.
  • 32
    Cameron NE, Gibson TM, Nangle MR, et al . Inhibitors of advanced glycation end product formation and neurovascular dysfunction in experimental diabetes. Ann N Y Acad Sci . 2005; 1043: 78492.
  • 33
    Thomas MC, Baynes JW, Thorpe SR, et al . The role of AGEs and AGE inhibitors in diabetic cardiovascular disease. Curr Drug Targets . 2005; 6: 45374.
  • 34
    Denis U, Lecomte M, Paget C, et al . Advanced glycation end-products induce apoptosis of bovine retinal pericytes in culture: involvement of diacylglycerol/ceramide production and oxidative stress induction. Free Radic Biol Med . 2002; 33: 23647.
  • 35
    Rakhit RD, Mojet MH, Marber MS, et al . Mitochondria as targets for nitric oxide-induced protection during simulated ischemia and reoxygenation in isolated neonatal cardiomyocytes. Circulation . 2001; 103: 261723.
  • 36
    Skarka L, Ostadal B. Mitochondrial membrane potential in cardiac myocytes. Physiol Res . 2002; 51: 42534.
  • 37
    Juhaszova M, Zorov DB, Kim SH, et al . Glycogen synthase kinase-3beta mediates convergence of protection signaling to inhibit the mitochondrial permeability transition pore. J Clin Invest. 2004; 113(11): 153549.
  • 38
    Murphy E, Steenbergen C. Inhibition of GSK-3beta as a target for cardioprotection: the importance of timing, location, duration and degree of inhibition. Expert Opin Ther Targets . 2005; 9: 44756.
  • 39
    Ren J, Bode AM. Altered cardiac excitation-contraction coupling in ventricular myocytes from spontaneously diabetic BB rats. Am J Physiol Heart Circ Physiol . 2000; 279: H23844.
  • 40
    Beisswenger PJ, Howell SK, O’Dell RM, et al . Alpha-Dicarbonyls increase in the postprandial period and reflect the degree of hyperglycemia. Diabetes Care . 2001; 24: 72632.
  • 41
    Vander Jagt DL, Hunsaker LA. Methylglyoxal metabolism and diabetic complications: roles of aldose reductase, glyoxalase-I, betaine aldehyde dehydrogenase and 2-oxoaldehyde dehydrogenase. Chem Biol Interact. 2003; 143144: 341–51.
  • 42
    Karachalias N, Babaei-Jadidi R, Kupich C, et al . High-dose thiamine therapy counters dyslipidemia and advanced glycation of plasma protein in streptozotocin-induced diabetic rats. Ann N Y Acad Sci . 2005; 1043: 77783.
  • 43
    Stirban A, Negrean M, Stratmann B, et al . Benfotiamine prevents macro- and microvascular endothelial dysfunction and oxidative stress following a meal rich in advanced glycation end products in individuals with type 2 diabetes. Diabetes Care. 2006; 29(9): 206471.
  • 44
    Davidoff AJ, Pinault FM, Rodgers RL. Ventricular relaxation of diabetic spontaneously hypertensive rat. Hypertension . 1990; 15: 64351.
  • 45
    Arai M. Advanced glycation endproducts and their receptor: do they play a role in diabetic cardiomyopathy J Mol Cell Cardiol . 2002; 34: 13058.
  • 46
    Petrova R, Yamamoto Y, Muraki K, et al . Advanced glycation endproduct-induced calcium handling impairment in mouse cardiac myocytes. J Mol Cell Cardiol . 2002; 34: 142531.
  • 47
    Berg TJ, Snorgaard O, Faber J, et al . Serum levels of advanced glycation end products are associated with left ventricular diastolic function in patients with type 1 diabetes. Diabetes Care . 1999; 22: 118690.
  • 48
    Kilhovd BK, Giardino I, Torjesen PA, et al . Increased serum levels of the specific AGE-compound methylglyoxal-derived hydroimidazolone in patients with type 2 diabetes. Metabolism . 2003; 52: 1637.
  • 49
    Mathur A, Hong Y, Kemp BK, et al . Evaluation of fluorescent dyes for the detection of mitochondrial membrane potential changes in cultured cardiomyocytes. Cardiovasc Res . 2000; 46: 12638.
  • 50
    Riboulet-Chavey A, Pierron A, Durand I, et al . Methylglyoxal impairs the insulin signaling pathways independently of the formation of intracellular reactive oxygen species. Diabetes . 2006; 55: 128999.
  • 51
    Roy SS, Biswas S, Ray M, et al . Protective effect of creatine against inhibition by methylglyoxal of mitochondrial respiration of cardiac cells. Biochem J . 2003; 372: 6619.
  • 52
    Degenhardt TP, Thorpe SR, Baynes JW. Chemical modification of proteins by methylglyoxal. Cell Mol Biol (Noisy -le-grand) 1998; 44: 113945.
  • 53
    Shoji T, Koyama H, Morioka T, et al . Receptor for advanced glycation end products is involved in impaired angiogenic response in diabetes. Diabetes . 2006; 55: 224555.