SEARCH

SEARCH BY CITATION

References

  • 1
    Lubbert M. DNA methylation inhibitors in the treatment of leukemias, myelodysplastic syndromes and hemoglobinopathies: clinical results and possible mechanisms of action. Curr Top Microbiol Immunol. 2000; 249: 13564.
  • 2
    Momparler RL, Ayoub J. Potential of 5-aza-2’-deoxycytidine (Decitabine) a potent inhibitor of DNA methylation for therapy of advanced non-small cell lung cancer. Lung Cancer. 2001; 34: S1115.
  • 3
    Issa JP, Kantarjian H. Azacitidine. Nat Rev Drug Discov. 2005: S67.
  • 4
    Wijermans P, Lubbert M, Verhoef G, et al . Low-dose 5-aza-2’-deoxycytidine, a DNA hypomethylating agent, for the treatment of high-risk myelodysplastic syndrome: a multicenter phase II study in elderly patients. J Clin Oncol. 2000; 18: 95662.
  • 5
    Aparicio A, Eads CA, Leong LA, et al . Phase I trial of continuous infusion 5-aza-2′-deoxycytidine. Cancer Chemother Pharmacol. 2003; 51: 2319.
  • 6
    Lyons J, Bayar E, Fine G, et al . Decitabine: development of a DNA methyltransferase inhibitor for hematological malignancies. Curr Opin Investig Drugs. 2003; 4: 144250.
  • 7
    Issa JP, Garcia-Manero G, Giles FJ, et al . Phase 1 study of low-dose prolonged exposure schedules of the hypomethylating agent 5-aza-2′-deoxycytidine (decitabine) in hematopoietic malignancies. Blood. 2004; 103: 163540.
  • 8
    Balch C, Yan P, Craft T, et al . Antimitogenic and chemosensitizing effects of the methylation inhibitor zebularine in ovarian cancer. Mol Cancer Ther. 2005; 4: 150514.
  • 9
    Niwa Y, Kanda H, Shikauchi Y, et al . Methylation silencing of SOCS-3 promotes cell growth and migration by enhancing JAK/STAT and FAK signalings in human hepatocellular carcinoma. Oncogene. 2005; 24: 640617.
  • 10
    Lacronique V, Boureux A, Valle VD, et al . A TEL-JAK2 fusion protein with constitutive kinase activity in human leukemia. Science. 1997; 278: 130912.
  • 11
    Zhang F, Li C, Halfter H, et al . Delineating an oncostatin M-activated STAT3 signaling pathway that coordinates the expression of genes involved in cell cycle regulation and extracellular matrix deposition of MCF-7 cells. Oncogene. 2003; 22: 894905.
  • 12
    Alvarez JV, Greulich H, Sellers WR, et al . Signal transducer and activator of transcription 3 is required for the oncogenic effects of non-small-cell lung cancer-associated mutations of the epidermal growth factor receptor. Cancer Res. 2006; 66: 31628.
  • 13
    Shen Y, Devgan G, Darnell JE Jr, et al . Constitutively activated Stat3 protects fibroblasts from serum withdrawal and UV-induced apoptosis and antagonizes the proapoptotic effects of activated Stat1. Proc Natl Acad Sci USA. 2001; 98: 15438.
  • 14
    Mora LB, Buettner R, Seigne J, et al . Constitutive activation of Stat3 in human prostate tumors and cell lines: direct inhibition of Stat3 signaling induces apoptosis of prostate cancer cells. Cancer Res. 2002; 62: 665966.
  • 15
    Ma XT, Wang S, Ye YJ, et al . Constitutive activation of Stat3 signaling pathway in human colorectal carcinoma. World J Gastroenterol. 2004; 10: 156973.
  • 16
    Lassmann S, Schuster I, Walch A, et al . STAT3 mRNA and protein expression in colorectal cancer: effects on STAT3-inducible targets linked to cell survival and proliferation. J Clin Pathol. 2007; 60: 1739.
  • 17
    Lin Q, Lai R, Chirieac LR, et al . Constitutive activation of JAK3/STAT3 in colon carcinoma tumors and cell lines: inhibition of JAK3/STAT3 signaling induces apoptosis and cell cycle arrest of colon carcinoma cells. Am J Pathol. 2005; 167: 96980.
  • 18
    Xiong H, Zhang ZG, Tian XQ, et al . Inhibition of JAK1, 2/STAT3 signaling induces apoptosis, cell cycle arrest, and reduces tumor cell invasion in colorectal cancer cells. Neoplasia. 2008; 10: 28797.
  • 19
    Han Y, Amin HM, Franko B, et al . Loss of SHP1 enhances JAK3/STAT3 signaling and decreases proteosome degradation of JAK3 and NPM-ALK in ALK+ anaplastic large-cell lymphoma. Blood. 2006; 108: 2796803.
  • 20
    Chim CS, Fung TK, Cheung WC, et al . SOCS1 and SHP1 hypermethylation in multiple myeloma: implications for epigenetic activation of the Jak/STAT pathway. Blood. 2004; 103: 46305.
  • 21
    Buettner R, Mora LB, Jove R. Activated STAT signaling in human tumors provides novel molecular targets for therapeutic intervention. Clin Cancer Res. 2002; 8: 94554.
  • 22
    Khoury JD, Rassidakis GZ, Medeiros LJ, et al . Methylation of SHP1 gene and loss of SHP1 protein expression are frequent in systemic anaplastic large cell lymphoma. Blood. 2004; 104: 15801.
  • 23
    Galm O, Yoshikawa H, Esteller M, et al . SOCS-1, a negative regulator of cytokine signaling, is frequently silenced by methylation in multiple myeloma. Blood. 2003; 101: 27848.
  • 24
    He B, You L, Uematsu K, et al . SOCS-3 is frequently silenced by hypermethylation and suppresses cell growth in human lung cancer. Proc Natl Acad Sci USA. 2003; 100: 141338.
  • 25
    Wu C, Guan Q, Wang Y, et al . SHP-1 suppresses cancer cell growth by promoting degradation of JAK kinases. J Cell Biochem. 2003; 90: 102637.
  • 26
    Jegalian AG, Wu H. Regulation of Socs gene expression by the proto-oncoprotein GFI-1B: two routes for STAT5 target gene induction by erythropoietin. J Biol Chem. 2002; 277: 234552.
  • 27
    Valentino L, Pierre J. JAK/STAT signal transduction: regulators and implication in hematological malignancies. Biochem Pharmacol. 2006; 71: 71321.
  • 28
    Rakesh K, Agrawal DK. Controlling cytokine signaling by constitutive inhibitors. Biochem Pharmacol. 2005; 70: 64957.
  • 29
    Wu C, Sun M, Liu L, et al . The function of the protein tyrosine phosphatase SHP-1 in cancer. Gene. 2003; 306: 112.
  • 30
    Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001; 25: 4028.
  • 31
    Lu R, Wang X, Chen ZF, et al . Inhibition of the extracellular signal-regulated kinase/mitogen-activated protein kinase pathway decreases DNA methylation in colon cancer cells. J Biol Chem. 2007; 282: 1224959.
  • 32
    Morita Y, Naka T, Kawazoe Y, et al . Signals transducers and activators of transcription (STAT)-induced STAT inhibitor-1 (SSI-1)/suppressor of cytokine signaling-1 (SOCS-1) suppresses tumor necrosis factor alpha-induced cell death in fibroblasts. Proc Natl Acad Sci USA. 2000; 97: 540510.
  • 33
    Wang YY, Zhou GB, Yin T, et al . AML1-ETO and C-KIT mutation/overexpression in t(8;21) leukemia: implication in stepwise leukemogenesis and response to Gleevec. Proc Natl Acad Sci USA. 2005; 102: 11049.
  • 34
    Hecht M, Papoutsi M, Tran HD, et al . Hepatocyte growth factor/c-Met signaling promotes the progression of experimental human neuroblastomas. Cancer Res. 2004; 64: 610918.
  • 35
    Luczak MW, Jagodzinski PP. The role of DNA methylation in cancer development. Folia Histochem Cytobiol. 2006; 44: 14354.
  • 36
    Hennessy BT, Garcia-Manero G, Kantarjian HM, et al . DNA methylation in haematological malignancies: the role of decitabine. Expert Opin Investig Drugs. 2003; 12: 198593.
  • 37
    Karpf AR, Moore BC, Ririe TO, et al . Activation of the p53 DNA damage response pathway after inhibition of DNA methyltransferase by 5-aza-2′-deoxycytidine. Mol Pharmacol. 2001; 59: 7517.
  • 38
    Zhu WG, Hileman T, Ke Y, et al . 5-aza-2′-deoxycytidine activates the p53/p21Waf1/Cip1 pathway to inhibit cell proliferation. J Biol Chem. 2004; 279: 151616.
  • 39
    Fang JY, Chen YX, Lu J, et al . Epigenetic modification regulates both expression of tumor-associated genes and cell cycle progressing in human colon cancer cell lines: Colo-320 and SW1116. Cell Res. 2004; 14: 21726.
  • 40
    Paling NR, Welham MJ. Role of the protein tyrosine phosphatase SHP-1 (Src homology phosphatase-1) in the regulation of interleukin-3-induced survival, proliferation and signalling. Biochem J. 2002; 368: 88594.
  • 41
    Kazansky AV, Kabotyanski EB, Wyszomierski SL, et al . Differential effects of prolactin and src/abl kinases on the nuclear translocation of STAT5B and STAT5A. J Biol Chem. 1999; 274: 2248492.
  • 42
    Yoshikawa H, Matsubara K, Qian GS, et al . SOCS-1, a negative regulator of the JAK/STAT pathway, is silenced by methylation in human hepatocellular carcinoma and shows growth-suppression activity. Nat Genet. 2001; 28: 2935.
  • 43
    Sakai I, Takeuchi K, Yamauchi H, et al . Constitutive expression of SOCS3 confers resistance to IFN-alpha in chronic myelogenous leukemia cells. Blood. 2002; 100: 292631.
  • 44
    Cho-Vega JH, Rassidakis GZ, Amin HM, et al . Suppressor of cytokine signaling 3 expression in anaplastic large cell lymphoma. Leukemia. 2004; 18: 18728.
  • 45
    Takeuchi K, Sakai I, Narumi H, et al . Expression of SOCS3 mRNA in bone marrow cells from CML patients associated with cytogenetic response to IFN-alpha. Leuk Res. 2005; 29: 1738.
  • 46
    Brender C, Nielsen M, Kaltoft K, et al . STAT3-mediated constitutive expression of SOCS-3 in cutaneous T-cell lymphoma. Blood. 2001; 97: 105662.
  • 47
    Mowen KA, Tang J, Zhu W, et al . Arginine methylation of STAT1 modulates IFNalpha/beta-induced transcription. Cell. 2001; 104: 73141.
  • 48
    Lee DY, Teyssier C, Strahl BD, et al . Role of protein methylation in regulation of transcription. Endocr Rev. 2005; 26: 14770.
  • 49
    Komyod W, Bauer UM, Heinrich PC, et al . Are STATS arginine-methylated? J Biol Chem. 2005; 280: 217005.
  • 50
    Schmelz K, Wagner M, Dorken B, et al . 5-Aza-2′-deoxycytidine induces p21WAF expression by demethylation of p73 leading to p53-independent apoptosis in myeloid leukemia. Int J Cancer. 2005; 114: 68395.
  • 51
    Han Y, Amin HM, Frantz C, et al . Restoration of shp1 expression by 5-AZA-2′-deoxycytidine is associated with downregulation of JAK3/STAT3 signaling in ALK-positive anaplastic large cell lymphoma. Leukemia. 2006; 20: 16029.
  • 52
    Esteller M, Tortola S, Toyota M, et al . Hypermethylation-associated inactivation of p14(ARF) is independent of p16(INK4a) methylation and p53 mutational status. Cancer Res. 2000; 60: 12933.
  • 53
    Fornaro M, Plescia J, Chheang S, et al . Fibronectin protects prostate cancer cells from tumor necrosis factor-alpha-induced apoptosis via the AKT/survivin pathway. J Biol Chem. 2003; 278: 5040211.
  • 54
    Kunnumakkara AB, Nair AS, Ahn KS, et al . Gossypin, a pentahydroxy glucosyl flavone, inhibits the transforming growth factor beta-activated kinase-1-mediated NF-kappaB activation pathway, leading to potentiation of apoptosis, suppression of invasion, and abrogation of osteoclastogenesis. Blood. 2007; 109: 511221.