SEARCH

SEARCH BY CITATION

References

  • 1
    Cowie MR, Mosterd A, Wood DA, Deckers JW, Poole-Wilson PA, Sutton GC, Grobbee DE. The epidemiology of heart failure. Eur Heart J. 1997; 2: 20825.
  • 2
    O’Connell JB, Bristow MR. Economic impact of heart failure in the United States: time for a different approach. J Heart Lung Transplant. 1994; 13: S10712.
  • 3
    Levy D, Kenchaiah S, Larson MG, Benjamin EG, Kupka MJ, Ho KK, Murabito JM, Vasan RS. Long-term trends in the incidence of and survival with heart failure. N Engl J Med. 2002; 347: 1397402.
  • 4
    MacIntyre K, Capewell S, Stewart S, Chalmers JWT, Boyd J, Finlayson A, Redpath A, Pell JP, McMurray JJV. Evidence of improving prognosis in heart failure: trends in case fatality in 66 547 patients hospitalized between 1986 and 1995. Circulation. 2000; 102: 112631.
  • 5
    Roger VL, Weston SA, Redfield MM, Hellermann-Homan JP, Killian J, Yawn B P, Jacobsen SJ. Trends in heart failure incidence and survival in a community-based population. JAMA. 2004; 292: 34450.
  • 6
    Schaufelberger M, Swedberg K, Koster M, Rosen M, Rosengren A. Decreasing one-year mortality and hospitalization rates for heart failure in Sweden; data from the Swedish Hospital Discharge Registry 1988 to 2000. Eur Heart J. 2004; 25: 3007.
  • 7
    Stewart S, MacIntyre K, Hole DJ, Capewell S, McMurray JJ. More ‘malignant’ than cancer? Five-year survival following a first admission for heart failure. Eur J Heart Fail. 2001; 3: 31522.
  • 8
    Hunt SA, Abraham WT, Chin MH, Feldman AM, Francis GS, Ganiats TG, Jessup M, Konstam MA, Mancini DM, Michl K, Oates JA, Rahko PS, Silver MA, Stevenson LW, Yancy CW. ACC/AHA 2005 Guideline Update for the Diagnosis and Management of Chronic Heart Failure in the Adult: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Update the 2001 Guidelines for the Evaluation and Management of Heart Failure): developed in collaboration with the American College of Chest Physicians and the International Society for Heart and Lung Transplantation: endorsed by the Heart Rhythm Society. Circulation. 2005; 112: e154235.
  • 9
    Goodlin SJ, Hauptman PJ, Arnold R, Grady K, Hershberger RE, Kurtner J. Consensus statement: Palliative and supportive care in advanced heart failure. J Card Fail. 2004; 10: 2009.
  • 10
    Gertz EW, Wisneski JA, Stanley WC, Neese RA. Myocardial substrate utilization during exercise in humans dual carbon-labeled carbohydrate isotope experiments. J Clin Invest. 1988; 82: 201725.
  • 11
    Young LH, Coven DL, Russell RR, 3rd. Cellular and molecular regulation of cardiac glucose transport. J Nucl Cardiol. 2000; 7: 26776.
  • 12
    Young LH, Renfu Y, Russell R, Hu X, Caplan M, Ren J, Shulman GI, Sinusas AJ. Low-flow ischemia leads to transloca-tion of canine heart GLUT-4 and GLUT-1 glucose transporters to the sarcolemma in vivo. Circulation. 1997; 95: 41522.
  • 13
    Xing Y, Musi N, Fujii N, Zou L, Luptak I, Hirshman MF, Goodyear LJ, Tian R. Glucose metabolism and energy home-ostasis in mouse hearts overexpressing dominant negative alpha2 subunit of AMP-activated protein kinase. J Biol Chem. 2003; 278: 283727.
  • 14
    Russell RR, 3rd, Li J, Coven DL, Pypaert M, Zechner C, Palmeri M, Giordano FJ, Mu J, Birnbaum MJ, Young LH. AMP-activated protein kinase mediates ischemic glucose uptake and prevents postischemic cardiac dysfunction, apoptosis, and injury. J Clin Invest. 2004; 114: 495503.
  • 15
    Depre C, Rider MH, Hue L. Mechanisms of control of heart glycolysis. Eur J Biochem. 1998; 258: 27790.
  • 16
    Kaijser L, Berglund B. Myocardial lactate extraction and release at rest and during heavy exercise in healthy men. Acta Physiol Scand. 1992; 144: 3945.
  • 17
    Stanley WC. Myocardial lactate metabolism during exercise. Med Sci Sports Exerc. 1991; 23: 9204.
  • 18
    Bing RJ, Siegel A, Ungar I, Gilbert M. Metabolism of the human heart II studies on fat, ketone and amino acid metabolism. Am J Med. 1954; 16: 50415.
  • 19
    Lopaschuk GD, Belke DD, Gamble J, Itoi T, Schonekess BO. Regulation of fatty acid oxidation in the mammalian heart in health and disease. Biochim Biophys Acta. 1994; 1213: 26376.
  • 20
    Augustus AS, Kako Y, Yagyu H, Goldberg IJ. Routes of FA delivery to cardiac muscle: modulation of lipoprotein lipolysis alters uptake of TG-derived FA. Am J Physiol Endocrinol Metab. 2003; 284: E3319.
  • 21
    Merkel M, Eckel RH, Goldberg IJ. Lipoprotein lipase: genetics, lipid uptake, and regulation. J Lipid Res. 2002; 43: 19972006.
  • 22
    Van Der Vusse GJ, Van Bilsen M, Glatz JF. Cardiac fatty acid uptake and transport in health and disease. Cardiovasc Res. 2000; 45: 27993.
  • 23
    Schaffer JE. Fatty acid transport: the roads taken. Am J Physiol Endocrinol Metab. 2002; 282: E23946.
  • 24
    Berger J, Moller DE. The mechanisms of action of PPARs. Annu Rev Med. 2002; 53: 40935.
  • 25
    Huang B, Wu P, Bowker-Kinley MM, Harris RA. Regulation of pyruvate dehy-drogenase kinase expression by peroxi-some proliferator-activated receptor-alpha ligands, glucocorticoids, and insulin. Diabetes. 2002; 51: 27683.
  • 26
    Gilde AJ, Van Der Lee KA, Willemsen PH, Chinetti G, Van Der Leij FR, Van Der Vusse GJ, Staels B, Van Bilsen M. Peroxisome proliferator-activated receptor (PPAR) alpha and PPARbeta/delta, but not PPARgamma, modulate the expression of genes involved in cardiac lipid metabolism. Circ Res. 2003; 92: 51824.
  • 27
    Harris RA, Huang B, Wu P. Control of pyruvate dehydrogenase kinase gene expression. Adv Enzyme Regul. 2001; 41: 26988.
  • 28
    Goodwin GW, Taegtmeyer H. Regulation of fatty acid oxidation of the heart by MCD and ACC during contractile stimulation. Am J Physiol. 1999; 277: E7727.
  • 29
    Saddik M, Gamble J, Witters LA, Lopaschuk GD. Acetyl-CoA carboxylase regulation of fatty acid oxidation in the heart. J Biol Chem. 1993; 268: 2583645.
  • 30
    Neubauer S. The failing heart – an engine out of fuel. N Engl J Med. 2007; 356: 114051.
  • 31
    Bessman SP, Geiger PJ. Transport of energy in muscle: the phosphorylcreatine shuttle. Science. 1981; 211: 44852.
  • 32
    Stanley WC, Recchia FA, Lopaschuk GD. Myocardial substrate metabolism in the normal and failing heart. Physiol Rev. 2005; 85: 1093129.
  • 33
    Fisher DJ, Heymann MA, Rudolph AM. Myocardial oxygen and carbohydrate consumption in fetal lambs in utero and in adult sheep. Am J Physiol. 1980; 238: H399405.
  • 34
    Makinde AO, Gamble J, Lopaschuk GD. Upregulation of 5’-AMP-activated protein kinase is responsible for the increase in myocardial fatty acid oxidation rates following birth in the newborn rabbit. Circ Res. 1997; 80: 4829.
  • 35
    Itoi T, Lopaschuk GD. The contribution of glycolysis, glucose oxidation, lactate oxidation, and fatty acid oxidation to ATP production in isolated biventricular working hearts from 2-week-old rabbits. Pediatr Res. 1993; 34: 73541.
  • 36
    Kantor PF, Robertson MA, Coe JY, Lopaschuk GD. Volume overload hypertrophy of the newborn heart slows the maturation of enzymes involved in the regulation of fatty acid metabolism. J Am Coll Cardiol. 1999; 33: 172434.
  • 37
    Wisneski JA, Gertz EW, Neese RA, Gruenke LD, Morris DL, Craig JC. Metabolic fate of extracted glucose in normal human myocardium. J Clin Invest. 1985; 76: 181927.
  • 38
    Wisneski JA, Gertz EW, Neese RA, Mayr M. Myocardial metabolism of free fatty acids Studies with 14C-labeled substrates in humans. J Clin Invest. 1987; 79: 35966.
  • 39
    Sultan AM. Effects of diabetes and insulin on ketone bodies metabolism in heart. Mol Cell Biochem. 1992; 110: 1723.
  • 40
    Chandler M P, Kerner J, Huang H, Vasquez E, Reszko A, Martini WZ, Hoppel Cl, Imai M, Rastogi S, Sabbah HN, Stanley WC. Moderate severity heart failure does not involve a downregulation of myocardial fatty acid oxidation. Am J Physiol Heart Circ Physiol. 2004; 287: H153843.
  • 41
    Recchia FA, McConnell PI, Bernstein RD, Vogel TR, Xu X, Hintze TH. Reduced nitric oxide production and altered myocardial metabolism during the decompensation of pacing-induced heart failure in the conscious dog. Circ Res. 1998; 83: 96979.
  • 42
    Chandler MP, Stanley WC, Morita H, Suzuki G, Roth BA, Blackburn B, Wolff A, Sabbah HN. Short-term treatment with ranolazine improves mechanical efficiency in dogs with chronic heart failure. Circ Res. 2002; 91: 27880.
  • 43
    Itani SI, Ruderman NB, Schmieder F, Boden G. Lipid-induced insulin resistance in human muscle is associated with changes in diacylglycerol, protein kinase C, and IkappaB-alpha. Diabetes. 2002; 51: 200511.
  • 44
    Fang ZY, Prins JB, Marwick TH. Diabetic cardiomyopathy: evidence, mechanisms, and therapeutic implications. Endocr Rev. 2004; 25: 54367.
  • 45
    Poornima IG, Parikh P, Shannon RP. Diabetic cardiomyopathy: the search for a unifying hypothesis. Circ Res. 2006; 98: 596605.
  • 46
    Marshall JD, Bronson RT, Collin GB, Nordstrom AD, Maffei P, Paisey RB, Carey C, Macdermott S, Russel-Eggitt I, Shea SE, Davis J, Beck S, Shatirishvili G, Mihai CM, Hoeltzenbein M, Pozzan GB, Hopkinson I, Sicolo N, Naggert JK, Nishina PM. New Alstrom syndrome phenotypes based on the evaluation of 182 cases. Arch Intern Med. 2005; 165: 67583.
  • 47
    Nikolaidis LA, Sturzu A, Stolarski C, Elahi D, Shen YT, Shannon RP. The development of myocardial insulin resistance in conscious dogs with advanced dilated car-diomyopathy. Cardiovasc Res. 2004; 61: 297306.
  • 48
    Sokos GG, Nikolaidis LA, Mankad S, Elahi D, Shannon RP. Glucagon-like pep-tide-1 infusion improves left ventricular ejection fraction and functional status in patients with chronic heart failure. J Card Fail. 2006; 12: 6949.
  • 49
    Eshaghian S, Horwich TB, Fonarow GC. Relation of loop diuretic dose to mortality in advanced heart failure. Am J Cardiol. 2006; 97: 175964.
  • 50
    Ahmed A, Husain A, Love TE, Gambassi G, Dell’Italia LJ, Francis GS, Gheorghiade M, Allman RM, Meleth S, Bourge RC. Heart failure, chronic diuretic use, and increase in mortality and hospital-ization: an observational study using propensity score methods. Eur Heart J. 2006; 27: 14319.
  • 51
    Borst P, Loos JA, Christ EJ, Slater EC. Uncoupling activity of long-chain fatty acids. Biochim Biophys Acta. 1962; 62: 50918.
  • 52
    Opie LH. The metabolic vicious cycle in heart failure. Lancet. 2004; 364: 17334.
  • 53
    Sabbah HN, Sharov V, Riddle JM, Kono T, Lesch M, Goldstein S. Mitochondrial abnormalities in myocardium of dogs with chronic heart failure. J Mol Cell Cardiol. 1992; 24: 133347.
  • 54
    Casademont J, Miro O. Electron transport chain defects in heart failure. Heart Fail Rev. 2002; 7: 1319.
  • 55
    Schaper J, Froede R, Hein S, Buck A, Hashizume H, Speiser B, Friedl A, Bleese N. Impairment of the myocardial ultrastructure and changes of the cytoskeleton in dilated cardiomyopathy. Circulation. 1991; 83: 50414.
  • 56
    Scheubel RJ, Tostlebe M, Simm A, Rohrbach S, Prondzinski R, Gellerich FN, Silber RE, Holtz J. Dysfunction of mito-chondrial respiratory chain complex I in human failing myocardium is not due to disturbed mitochondrial gene expression. J Am Coll Cardiol. 2002; 40: 217481.
  • 57
    Marin-Garcia J, Goldenthal MJ, Moe GW. Abnormal cardiac and skeletal muscle mitochondrial function in pacing-induced cardiac failure. Cardiovasc Res. 2001; 52: 10310.
  • 58
    Ide T, Tsutsui H, Kinugawa S, Utsumi H, Kang D, Hattori N, Uchida K Arimura K, Egashira K, Takeshita A. Mitochondrial electron transport complex I is a potential source of oxygen free radicals in the failing myocardium. Circ Res. 1999; 85: 35763.
  • 59
    Korvald C, Elvenes OP, Myrmel T. Myocardial substrate metabolism influences left ventricular energetics in vivo. Am J Physiol Heart Circ Physiol. 2000; 278: H134551.
  • 60
    Ventura-Clapier R, Garnier A, Veksler V. Energy metabolism in heart failure. J Physiol. 2004; 555: 113.
  • 61
    Miyamoto T, Takeishi Y, Tazawa S, Inoue M, Aoyama T, Takahashi H, Arimoto T, Shishido T, Tomoike H, Kubota I. Fatty acid metabolism assessed by 125 I-iodophenyl 9-methylpentadecanoic acid (9MPA) and expression of fatty acid utilization enzymes in volume-overloaded hearts. Eur J Clin Invest. 2004; 34: 17681.
  • 62
    Lemitsu M, Miyauchi T, Maeda S, Tanabe T, Takanashi M, Irukayama-Tomobe Y, Sakai S, Ohmori H, Matsuda M, Yamaguchi I. Aging-induced decrease in PPARa level in hearts is improved by exercise training. Am J Physiol Heart Circ Physiol. 2002; 283: H175060.
  • 63
    Karbowska J, Kochan Z, Smolenski RT. Peroxisome proliferator-activated receptor alpha is downregulated in the failing human heart. Cell Mol Biol Lett. 2003; 8: 4953.
  • 64
    Barger PM, Brandt JM, Leone TC, Weinheimer CJ, Kelly DP. Deactivation of PPARa during cardiac hypertrophic growth. J Clin Invest. 2000; 105: 172330.
  • 65
    Stavinoha MA, RaySpellicy JW, Essop MF, Graveleau C, Abbel ED, Hart-Sailors ML, Mersmann HJ, Bray MS, Young ME. Evidence for mitochondrial thioesterase 1 as peroxisome proliferator-activated receptor-alpha regulated gene in cardiac and skeletal muscle. Am J Physiol Endocrinol Metab. 2004; 287: E88895.
  • 66
    Young ME, Patll S, Ylng J, Depre C, Ahuja HS, Shipley GL, Stepkowskl SM, Davles PJ, Taegtmeyer H. Uncoupling protein 3 transcription is regulated by peroxisome proliferator-activated receptor (alpha) in the adult rodent heart. FASEB J. 2001; 15: 83345.
  • 67
    Garlitl KD, Jaburek M, Jezek P, Varecha M. How do uncoupling proteins uncouple? Biochim Biophys Acta. 2000; 1459: 3839.
  • 68
    Garlitl KD, Orosz DE, Modrlansky M, Vassanelll S, Jezek P. On the mechanis-mof fatty acid-induced proton transport by mitochondrial uncoupling protein. J Biol Chem. 1996; 271: 261520.
  • 69
    Starling RC HD, Altschuld RA. Human myocardial ATP content and in vivo contractile function. Molec Cell Biochem. 1998; 150: 1707.
  • 70
    Nakae I, Mltsunaml K, Omura T, Yabe T, Tsutamoto T, Matsuo S, Takahashl M, Morlkawa S, Inubushl T, Nakamura Y, Kinoshita M, Horie M. Proton magnetic resonance spectroscopy can detect crea-tine depletion associated with the progression of heart failure in cardiomyopathy. J Am Coll Cardiol. 2003; 42: 158793.
  • 71
    Ingwall JS Weiss RG. Is the failing heart enegy starved? On using chemical energy to support cardiac function. Circ Res. 2004; 95: 13545.
  • 72
    Neubauer S, Horn M, Cramer M, Harre K, Newell JB, Peters W, Pabst T, Ertl G, Hahn D, Kochslek K. Myocardial phos-phocreatine-to-ATP ratio is a predictor of mortality in patients with dilated cardiomy-opathy. Circulation. 1997; 96: 21906.
  • 73
    MacInnes A, Fairman DA, Binding P, Rhodes J, Wyatt MJ, Phelan A, Haddock PS, Karran EH. The antianginal agent trimetazidine does not exert its functional benefit via inhibition of mitochondrial long-chain 3-ketoacyl coenzyme A thio-lase. Circ Res. 2003; 93: 2632.
  • 74
    Kantor PF, Lucien A, Kozak R, Lopaschuk GD. The antianginal drug trimetazidine shifts energy metabolism from fatty acid oxidation to glucose oxidation by inhibiting mitochondrial long-chain 3-ketoacyl coen-zyme A thiolase. Circ Res. 2000; 86: 5808.
  • 75
    Fragasso G Palloshi A, Puccetti P, Silipigni C, Rossodivita A, Pala M, Calori G, Alfieri O, Margonato A. A randomized clinical trial of trimetazidine, a partial free fatty acid oxidation inhibitor, in patients with heart failure. J Am Coll Cardiol. 2006; 48: 9925.
  • 76
    Di Napoli P, Taccardi AA, Barsotti A. Long term cardioprotective action of trimetazi-dine and potential effect on the inflammatory process in patients with ischaemic dialted cardiomyopathy. Heart. 2005; 91: 1615.
  • 77
    Vitale C, Wajngaten M, Sposato B, Gebara O, Rossini P, Fini M, Volterrani M, Rosano GM. Trimetazidine improves left ventricular function and quality of life in elderly patients with coronary artery disease. Eur Heart J. 2004; 25: 181421.
  • 78
    Rosano GM, Vitale C, Sposato B, Mercuro G, Fini M. Trimetazidine improves left ventricular function in diabetic patients with coronary artery disease: a double bind placebo-controlled study. Cardiovasc Diabetol. 2003; 2: 1624.
  • 79
    Di Napoli P, Di Giovanni P, Gaeta MA, Taccardi AA, Barsotti A. Trimetazidine and reduction in mortality and hospitalization in patients with ischemic dilated cardiomy-opathy: a post-hoc analysis of the Villa Pini d’Abruzzo Trimetazidine Trial. J Cardiovasc Pharmacol. 2007; 50: 5859.
  • 80
    Lee L Campbell R, Scheuermann-Freestone M, Taylor R, Williams L, Ashrafian H, Horowitz J, Fraser AG, Clarke K, Frenneaux M. Metabolic modulation with perhexiline in chronic heart failure: a randomized, controlled trial of short-term use of a novel treatment. Circulation. 2005; 112: 32808.
  • 81
    Turcani M, Rupp H. Modification of left ventricular hypertrophy by chronic etomixir treatment. Br J Pharmacol. 1999; 126: 5017.
  • 82
    Schmidt-Schweda S, Holubasch C. First clinical trial with etomoxir in patients with chronic congestive heart failure. Clin Sci. 2000; 99: 2735.
  • 83
    Dobbins RL, Szczepaniak LS, Bentley B, Esser V, Myhill J, McGarry GD. Prolonged inhibition of muscle CPT-1 promotes intramyocellular lipid accumulation and insulin resistance in rats. Diabetes. 2001; 50: 12330.
  • 84
    Lionetti V, Linke A, Chandler M P, Young ME, Penn MS, Gupte S, D’Agostino C, Hintze TH, Recchia FA. Carnitine palmitoyl transferase01 inhibition prevents ventricular remodeling and delays decompensation in pacing-induced heart failure. Cardiovasc Res. 2001; 66: 45461.
  • 85
    Shiomi T, Tsutsui H, Hayashidani S, Suematsu N, Ikeuchi M, Wen J, Ishibashi M, Kubota T, Egashira K, Takeshita A. Pioglitazone a peroxisome proliferator-activated receptor-gamma agonist, attenuates left ventricular remodeling and failure after experimental myocardial infarction. Circulation. 2002; 106: 312632.
  • 86
    Lygate CA, Hulbert K, Monfared M, Cole MA, Clarke K, Neubauer S. The PPARgamma-activator rosiglitazone does not alter remodeling but increases mortality in rats post-myocardial infarction. Cardiovasc Res. 2003; 58: 6327.
  • 87
    Karsner HT, Saphir O, Todd TW. The state of the cardiac muscle in hypertrophy an atrophy. Am J Pathol. 1925; 1: 35171.
  • 88
    Morkin E, Ashford TP. Myocardial DNA synthesis in experimental cardiac hypertrophy. Am J Physiol. 1968; 215: 140913.
  • 89
    Leri A, Malhotra A, Liew CC, Kajstura J, Anversa P. Telomerase activity in rat cardiac myocytes is age and gender dependent. J Mol Cell Cardiol. 2000; 32: 38590.
  • 90
    Grajek S, Lesiak M, Pyda M, Zajac M, Paradowski S, Kaczmarek E. Hypertrophy or hyperplasia in cardiac muscle: postmortem human morphometric study. Eur Heart J. 1993; 14: 407.
  • 91
    Olivetti G, Melissari M, Balbi T, Quaini F, Sonnenblick EH, Anversa P. Myocyte nuclear and possible cellular hyperplasia contribute to ventricular remodeling in hypertrophic senescent heart in humans. J Am Coll Cardiol. 1994; 24: 1409.
  • 92
    Kajstura J, Leri A, Finato N, Di Loreto C, Beltrami CA, Anversa P. Myocyte proliferation in end-stage cardiac failure in humans. Proc Natl Acad Sci USA. 1998; 95: 88015.
  • 93
    Quaini F, Cigola E, Lagrasta C, Saccani G, Rossi C, Olivetti G, Anversa P. End-stage cardiac failure in humans is coupled with the induction of proliferating cell nuclear antigen and nuclear mitotic division in ventricular myocytes. Circ Res. 1994; 75: 105063.
  • 94
    Leri A, Barlucchi L, Limana F, Deptala A, Darzynkiewicz Z, Hintze TH, Kajstura J, Nadal-Ginard B, Anversa P. Telomerase expression and activity are coupled with myocyte proliferation and preservation of telemetric length in the failing heart. Proc Natl Acad Sci USA. 2001; 98: 862631.
  • 95
    Quaini F, Urbanek K, Beltrami AP, Finato N, Beltrami CA, Nadal-Ginard B, Kajstura J, Leri A, Anversa P. Chimerism of the transplanted heart. N Engl J Med. 2002; 346: 515.
  • 96
    Hruban RH, Long PP, Perlman EJ, Hutchins GM, Baumqartner WA, Bauqhman KL, Griffin CA. Fluorescence in situ hybridization for the Y-chromosome can be used to detect cells of recipient origin in allografted hearts following cardiac transplantation. Am J Pathol. 1993; 142: 97580.
  • 97
    Glaser R, Lu MM, Narula N, Epstein GJ. Smooth muscle cells, but not myocytes, of host origin in transplanted human hearts. Circulation. 2002; 106: 179.
  • 98
    Hocht-Zeisberg E, Kahnert H, Guan K, Wulf G, Hemmerlein B, Schlott T, Tenderich G, Korfer R, Raute-Kreinsen U, Hasenfuss G. Cellular repopulation of myocardial infarction in patients with sex-mismatched heart transplantation. Eur Heart J. 2004; 25: 74958.
  • 99
    Anversa P, Kajstura J, Leri A, Bolli R. Life and death of cardiac stem cells: a paradigm shift in cardiac biology. Circulation. 2006; 113: 145163.
  • 100
    Nadal-Ginard B, Kajstura J, Leri A, Anversa P. Myocyte death, growth, and regeneration in cardiac hypertrophy and failure. Circ Res. 2003; 93: 13950.
  • 101
    Laugwitz KL, Moretti A, Lam J, Gruber P, Chen Y, Woodard S, Lin LZ, Cai CL, Lu MM, Platoshyn O, Yuan JX, Evans S, Chien KR. Postnatal isl1 + cardioblast enter fully differentiated cardiomyocyte lineages. Nature. 2005; 433: 64753.
  • 102
    Anversa P, Palackal T, Sonnenblick EH, Olivetti G, Capasso JM. Hypertensive car-diomyopathy: myocyte nuclei hyperplasia in the mammalian rat heart. J Clin Invest. 1990; 85: 9947.
  • 103
    Urbanek K, Quaini F, Tasca G, Torella D, Castaldo C, Nadal-Ginard B, Leri A, Kajstura J, Quaini E, Anversa P. Intense myocyte formation from cardiac stem cells in human cardiac hypertrophy. Proc Natl Acad Sci USA. 2003; 100: 104405.
  • 104
    Beltrami CA, Finato N, Rocco M, Feruglio GA, Puricelli C, Cigola E, Quaini F, Sonnenblick EH, Olivetti G, Anversa P. Structural basis of end-stage failure in ischemic cardiomyopathy in humans. Circulation. 1994; 89: 15163.
  • 105
    Poss KD, Wilson LG, Keating MT. Heart regeneration in zebrafish. Science. 2002; 298: 218890.
  • 106
    Murry CE, Wiseman R, Schwartz SM, Hauschka SD. Skeletal myoblast transplantation for repair of myocardial necrosis. J Clin Invest. 1996; 98: 251223.
  • 107
    Wagers AJ, Weissman IL. Plasticity of adult stem cells. Cell. 2004; 116: 63948.
  • 108
    Orlic D, Kajstura J, Chimenti S, Jakoniuk I, Anderson SM, Li B, Pickel J, MacKay R, Nadal-Ginard B, Bodine DM, Leri A, Anversa P. Bone marrow cells regenerate infracted myocardium. Nature. 2001; 410: 7015.
  • 109
    Pagani FD, DerSimonian H, Zawadzka A, Wetzel K, Edge AS, Jacoby DB, Dinsmore JH, Wright S, Aretz TH, Eisen HJ, Aaronson KD. Autologous skeletal myoblasts transplanted to ischemia-damaged myocardium in humans Histological analysis of cell survival and differentiation. J Am Coll Cardiol. 2003; 41: 87988.
  • 110
    Taylor DA, Atkins BZ, Hungspreugs P, Jones TR, Reedy MC, Hutcheson KA, Glower DD, Kraus WE. Regenerating functional myocardium: improved performance after skeletal myoblast transplantation. Nat Med. 1998; 4: 92933.
  • 111
    Chiu RC, Zibaitis A, Kao RL. Cellular car-diomyoplasty: myocardial regeneration with satellite cell implantation. Ann Thorac Surg. 1995; 60: 128.
  • 112
    Bonaros N, Rauf R, Wolf D, Margreiter E, Tzankov A, Schlechta B, Kocher A, Ott H, Schachner T, Hering S, Bonatti J, Laufer G. Combined transplantation of skeletal myoblasts and angiopoietic progenitor cells reduces infarct size and apoptosis and improves cardiac function in chronic ischemic heart failure. J Thorac Cardiovasc Surg. 2006; 132: 13218.
  • 113
    Abraham MR, Henrikson CA, Tung L, Chang MG, Aon M, Xue T, Li RA, O’Rourke B, Marban E. Antiarrhythmic engineering of skeletal myoblasts for cardiac transplantation. Circ Res. 2005; 97: 15967.
  • 114
    Menasche P, Hagege A, Scorsin M, Pouzet B, Desnos M, Duboc D, Schwartz K, Vilquin JT, Marolleau J P. Myoblast transplantation for heart failure. Lancet. 2001; 357: 27980.
  • 115
    Smits PC, Van Geuns RJ, Poldermans D, Bountioukos M, Onderwater EE, Lee CH, Maat A P, Serruys PW. Catheter-based intramyocardial injection of autologous skeletal myoblasts as a primary treatment of ischemic heart failure: clinical experience with six-month follow-up. J Am Coll Cardiol. 2003; 42: 20639.
  • 116
    Dib N, Michler RE, Pagani FD, Wright S, Kereiakis DJ, Lengerich R, Binkley P, Buchele D, Anand I, Swingen C, Di Carli MF, Thomas JD, Jaber WA, Opie SR, Campbell A, McCarthy P, Yeager M, Dilsizian V, Griffith B P, Korn R, Kreuger SK, Ghazoul M, Maclellan WR, Fonarow G, Eisen HJ, Dinsmore J, Diethrich E. Safety and feasibility of autologous myoblast transplantation in patients with ischemic cardiomyopathy:four-year follow-up. Circulation. 2005; 112: 174855.
  • 117
    Itskovitz-Eldor J, Schuldiner M, Karsenti D, Eden A, Yanuka O, Amit M, Soreq H, Benvenisty N. Differentiation of human embryonic stem cells into embryoid bodies comprising the three embryonic germ layers. Mol Med. 2000; 6: 8895.
  • 118
    Leri A, Kanjstura J, Anversa P. Cardiac stem cells and mechanisms of myocardial regeneration. Physiol Rev. 2005; 85: 1371416.
  • 119
    Reubinoff BE, Pera MF, Fong CY, Trounson A, Bongso A. Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat Biotechnol. 2000; 18: 399404.
  • 120
    Ott HC, Matthiesen T, Brechtken J, Grindle S, Goh SK, Nelson W, Taylor DA. The adult human heart as a source for stem cells: repair strategies with embryonic-like progenitor cells. Nat Clin Prac Cardiovasc Med. 2007; 4: S2739.
  • 121
    Hodgson DM, Behfar A, Zingman LV, Kane GC, Peres-Terzic C, Alekseev AE, Puceat M, Terzic A. Stable benefit of embryonic stem cell therapy in myocardial infarction. Am J Physiol Heart Circ Physiol. 2004; 284: H4719.
  • 122
    Min JY, Yang Y, Converso KL, Liu L, Huang Q, Morgan JP, Xiao YF. Transplantation of embryonic stem cells improves cardiac function in postinfarcted rats. J Appl Physiol. 2002; 92: 28896.
  • 123
    He JQ, Ma Y, Lee Y, Thompson JA, Kamp TJ. Human embryonic stem cells develop into multiple types of cardiac myocytes: action potential characterization. Circ Res. 2003; 93: 329.
  • 124
    Fijvandraat AC, Van Ginneken A, De Boer PA, Ruijter JM, Christoffels VM, Moorman AF, Lekanne Deprez RH. Cardiomyocytes derived from embryonic stem cells resemble cardiomyocytes of embryonic heart tube. Cardiovasc Res. 2003; 58: 399409.
  • 125
    Draper JS, Pigott C, Thomson JA, Andrews PW. Surface antigens of human embryonic stem cells: changes upon differentiation in culture. J Anat. 2002; 200: 24958.
  • 126
    Becker AJ, McCulloch EA, Till JE. Cytological demonstration of the clonal nature of spleen colonies derived from transplanted mouse marrow cells. Nature. 1963; 197: 4524.
  • 127
    Uchida N, Weissman IL. Searching for hematopoietic stem cells: evidence that Thy-1.1 Lin-Sca-1 + cells are the only stem cells in C57BL/Ka-Thy11 bone marrow. J Exp Med. 1992; 175: 17584.
  • 128
    Krause DS, Theise ND, Collector Ml, Henegarlu O, Hwang S, Gardner R, Neutzel S, Sharkls SJ. Multi-organ multi-lineage engraftment by a single bone marrow derived stem cell. Cell. 2001; 105: 36977.
  • 129
    Mezey E, Chandross K, Harta G, Maki RA, McKercher SR. Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow. Science. 2000; 290: 177982.
  • 130
    Spangrude GJ, Helmfeld S, Welssmen IL. Purification and characterization of mouse hematopoietic stem cells. Science. 1988; 241: 5862.
  • 131
    Orllc D, Kajstura J, Chlmentl S, Llmana F, Jakoniuk I, Qualnl F, Nadal-Glanard B, Bodlne DM, Lerl A, Anversa P. Mobilized bone marrow cells repair in infracted heart improving function and survival. Proc Natl Acad Sci USA. 2001; 98: 103449.
  • 132
    Fernandez-Avlles F, San Roman JA, Garcla-Frade J, Fernandez ME, Penarrubla MJ, De La Fuente L, Gomez-Bueno M, Cantalapledra A, Fernandez J, Gutierrez O, Sanchez PL, Hernandez C, Sanz R, Garcla-Sancho J, Sanchez A. Experimental and clinical regenerative capability of human bone marrow cells after myocardial infarction. Circ Res. 2004; 95: 7428.
  • 133
    Jackson KA, Majka SM, Wang H, Poclus J, Hartley CJ, Majesky MW, Entman ML, Michael LH, Hlschl KK, Goodell MA. Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J Clin Invest. 2001; 107: 1395402.
  • 134
    Kajstura J, Rota M, Whang B, Cascapera S, Hosoda T, Bearzl C, Nurzynska D, Kasahara H, Zlas E, Bonafe M, Nadal-Gianrd B, Torella D, Nascimbene A, Quaini F, Urbanek K, Leri A, Anversa P. Bone marrow cells differentiate in cardiac cell lineages after infarction independently of cell fusion. Circ Res. 2005; 96: 12737.
  • 135
    Yoon YS, Wecker A, Heyd L, Park J, Tkebuchava T, Kusano K, Hanley A, Scadova H, Qin G, Cha DH, Johnson KL, Aikawa R, Asahara T, Losordo DW. Clonally expanded novel multipotent stem cells from human bone marrow regenerate myocardium after myocardial infarction. J Clin Invest. 2005; 115: 32638.
  • 136
    Minguell JJ, Erices A, Conget P. Mesenchymal stem cells. Exp Biol Med. 2001; 226: 50720.
  • 137
    Sanchez-Ramos J, Song S, Cardozo-Pelaez F, Hazzi C, Stedeford T, Willing A, Freeman TB, Saporta S, Janssen W, Patel N, Cooper DR, Sanberg PR. Adult bone marrow stromal cells differentiate into neural cells in vitro. Exp Neurol. 2000; 174: 1120.
  • 138
    Conget PA, Minguell J. Phenotypical and functional properties of human bone marrow mesenchymal progenitor cells. J Cell Physiol. 1999; 182: 6773.
  • 139
    Smith JR, Pochampally R, Perry A, Hsu SC, Prockop DJ. Isolation of a highly clonogenic and multipotential subfraction of adult stem cells from bone marrow stroma. Stem Cells. 2002; 22: 82331.
  • 140
    Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR. Multlineage potential of adult human mesenchymal stem cells. Science. 1999; 284: 1437.
  • 141
    Silva GV, Litovski S, Assad JA, Sousa AL, Martin BJ, Vela D, Coulter SC, Lin J, Ober J, Vaughn WK, Branco RV, Oliveira EM, He R, Geng YJ, Willerson JT, Perin EC. Mesenchymal stem cells differentiate into an endothelial phenotype, enhance vascular density, and improve heart function in a canine chronic ischemia model. Circulation. 2005; 111: 1506.
  • 142
    Onishchenko NA, Potapov IV, Bashkina LA, Krashenennikov ME, Zaidenov VA, Avramov PV. Recovery of contractile function of cryodamaged rat myocardium after transplantation of fetal cardiomyocytes and predifferentiation bone marrow stromal cells. Bull Exp Biol Med. 2004; 138: 35760.
  • 143
    Vulliet PR, Greeley M, Halloran SM, MacDonald KA, Kittleson MD. Intracoronary arterial injection of the mes-enchymal stromal cells and microinfarc-tion in dogs. Lancet. 2004; 363: 7834.
  • 144
    Gehllng UM, Erqun S, Schumacher U, Wagener C, Pantel K, Otte M, Schuch G, Schafhausen P, Mende T, Klllc N, Kluge K, Schafer B, Hossfeld DK, Fiedler W. In vitro differentiation of endothelial cells from AC133-positive progenitor cells. Blood. 2000; 95: 310612.
  • 145
    Pelchev M, Nalyer AJ, Perelra D, Zhu Z, Lane WJ, Williams M, Oz MC, Hlcklln DJ, Wltte L, Moore MA, Rafll S. Expression of VEGFR-2 and AC133 by circulating human CD34+ cells identifies a population of functional endothelial precursors. Blood. 2000; 95: 9528.
  • 146
    Rehman J LJ, Orschell CM, March KL. Peripheral blood “endothelial progenitor cells” are derived for monocyte/macrophages and secrete angiogenic growth factors. Circulation. 2003; 107: 116469.
  • 147
    Yoshloka T, Ageyama N, Shlbata H, Yasu T, Mlsawa Y, Takeuchl T, Matsul K, Yamamoto K, Terao K, Shlmada K, Ikeda U, Ozawa K, Hanazono Y. Repair of infracted myocardium mediated y transplanted bone marrow-derived CD34+ stem cells in nonhuman primate model. Stem Cells. 2005; 23: 35564.
  • 148
    Skowasch D, Jabs A, Andrle R, Dinkelbach S, Luderltz B, Baurledel G. Presence of bone-marrow and neural-crest-derived cells in intimal hyperplasia at the time of clinical in-stent restenosis. Cardiovasc Res. 2003; 60: 68491.
  • 149
    Zhang S, Wang D, Estrov Z, Raj S, Willerson JT, Yeh ET. Both cell fusion and transdifferentiation account for the transformation of human peripheral blood CD-34-positive cells into cardyomyocytes in vivo. Circulation. 2004; 110: 38037.
  • 150
    Balsam LB, Wagers A, Chrlstensen JL, Kofldls T, Weissman IL, Robblns RC. Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature. 2004; 428: 66873.
  • 151
    Beltrami AP, Barlucchl L, Torella D, Baker M, Llmana F, Chlmentl S, Kasahara H, Rota M, Musso E, Urbanek K, Lerl A, Kajstura J, Nadal-Glnard B, Anversa P. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell. 2003; 114: 76376.
  • 152
    Chlmentl C, Kajstura J, Torella D, Urbanek K, Helenlak H, Colussl C, Di Megllo F, Nadal-Glnard B, Frustacl A, Leri A, Maseri A, Anversa P. Senescence and death of primitive cells and myocytes lead to premature cardiac aging and heart failure. Circ Res. 2003; 93: 60413.
  • 153
    Lapidot T, Petit I. Current understanding of stem cell mobilization: the roles of chemokines, proteolytic enzymes, adhesion molecules, cytokines, and stromal cells. Exp Hematol. 2002; 30: 97381.
  • 154
    Murry CE, Soonpaa MH, Reinecke H, Nakajima H, Nakajima HO, Rubart M, Pasurmathi KB, Viraq JI, Bartelmez SH, Poppa V, Bradford G, Dowell JD, Williams DA, Field LJ. Hematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature. 2004; 428: 6648.
  • 155
    Terada N, Hamazaki T, Oka M, Hoki M, Mastalerz DM, Nakano Y, Meyer EM, Morel L, Petersen BE, Scott EW. Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature. 2002; 416: 5425.
  • 156
    Kocher AA, Schuster MD, Szabolcs MJ, Takuma S, Burkhoff D, Wang J, Homma S, Edwards NM, Itescu S. Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents car-diomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med. 2001; 4: 4306.
  • 157
    Munoz JR, Stoutenger B, Robinson AP, Spees JL, Prockop DJ. Human stem/progenitor cells from bone marrow promote neurogenesis of endogenous neural stem cells in the hippocampus of mice. Proc Natl Acad Sci USA. 2005; 102: 181716.
  • 158
    Wollert KC, Meyer GP, Lotz J, Ringes-Lichtenberg S, Lippolt P, Breindenbach C, Fichtner S, Korte T, Hornig B, Messinger D, Arseniev L, Hertenstein B, Ganser A, Drexler H. Intracoronary autol-ogous bone-marrow cell transfer after myocardial infarction: the BOOST randomized controlled clinical trial. Lancet. 2004; 364: 1418.
  • 159
    Meyer G P, Wollert KC, Lotz J, Steffens J, Lippolt P, Fichtner S, Hecker H, Schaefer A, Arseniev L, Hertenstein B, Ganser A, Drexler H. Intracoronary bone marrow cell transfer after myocardial infarction: eighteen months follow-up data from the randomized, controlled BOOST (Bone Marrow Transfer to Enhance ST-elevation infarct regeneration) trial. Circulation. 2006; 113: 128794.
  • 160
    Schachinger V, Tonn T, Dimmeler S, Zeiher AM. Bone-marrow-derived progenitor cell therapy in need of proof of concept: design of the REPAIR-AMI trial. Nat Clin Prac Cardiovasc Med. 2006; 3: S238.
  • 161
    Schachinger V, Erbs S, Elsasser A, Haberbosch W, Hambrecht R, Holschermann H, Yu J, Corti R, Mathey DG, Hamm CW, Suselbeck T, Werner N, Germing A, Mark B, Assmus B, Tonn T, Dimmeler S, Zeiher AM, REPAIR-AMI Investigators. Improved clinical outcome after intracoronary administration of bone-marrow-derived progenitor cells in acute myocardial infarction: final 1 year results of the REPAIR-AMI trial. Eur Heart J. 2006; 27: 277583.
  • 162
    Lunde K, Solheim S, Aakhus S, Arnesen H, Abdelnoor M, Forfang K; ASTAMI Invetigators. Autologous stem cell transplantation in acute myocardial infarction: The ASTAMI randomized controlled trial. Intracoronary transplantation of autolo-gous mononuclear bone marrow cells, study design and safety aspects. Scand Cardiovasc J. 2006; 39: 1508.
  • 163
    Ince H, Petzsch M, Kleine HD, Eckard H, Rehders T, Burska D, Kische S, Freund M, Nienaber CA. Prevention of left ventricular remodeling with granulocyte colony-stimulating factor after acute myocardial infarction: final 1-year results of the Front-Integrated Revascularization and Stem Cell Liberation in Evolving Acute Myocardial Infarction by Granulocyte Colony Stimulating Factor (FIRSTLINE-AMI) Trial. Circulation. 2005; 112: 17380.
  • 164
    Ripa RS, Jorgensen E, Wang Y, Thune JJ, Nilsson JC, Sondergaard L, Johnsen HE, Kober L, Grande P, Kastrup J. Stem cell mobilization induced by subcutaneous granulocyte-colony stimulating factor to improve cardiac regeneration after acute ST-elevation myocardial infarction: result of the double-blind, randomized, placebo-controlled stem cells in myocardial infarction (STEMMI) trial. Circulation. 2006; 113: 198392.
  • 165
    Assmus B, Honold J, Schachinger V, Britten MB, Fischer-Rasokat U, Lehmann R, Teupe C, Martin H, Albomaali ND, Tonn T, Dimmeler S, Zeiher AM. Transcoronary transplantation of progenitor cells after myocardial infarction. N Engl J Med. 2006; 355: 122232.
  • 166
    Perin EC, Dohmann HF, Borojevic R, Silva SA, Sousa AL, Mesquita CT, Rossi MI, Carvalho AC, Dutra HS, Dohmann HJ, Silva GV, Belem L, Vivacqua R, Rangel FO, Esporcatte R, Geng YJ, Vauqhn WK, Assad JA, Mesquita ET, Willerson JT. Transendocardial, autologous bone marrow cell transplantation for severe, chronic ischemic heart failure. Circulation. 2003; 107: 2294302.