SEARCH

SEARCH BY CITATION

Keywords:

  • BAFF;
  • receptor antagonist;
  • lupus, autoimmunity;
  • BXSB mice

Abstract

B-cell-activating factor (BAFF), a member of the tumour necrosis factor superfamily, plays a critical role in the maturation, homeostasis and function of B cells. In this study, we demonstrated the biological outcome of BAFF blockade in BXSB murine lupus model, using a soluble fusion protein consisting of human BAFF-R and human mutant IgG4 Fc. Mutation of Leu235 to Glu in IgG4 Fc eliminated antibody-dependent cell cytotoxicity (ADCC) and complement lysis activity, and generated a protein devoid of immune effector functions. Treatment of BXSB mice with BAFF-R-IgG4mut fusion protein for 5 weeks resulted in significant B-cell reduction in both the peripheral blood and spleen. Treated mice developed lower proteinuria, reduced glomerulonephritis and much delayed host death than untreated animals. Thus, BAFF blockade with BAFF-R-IgG4mut protein is an effective strategy to treat B-cell-mediated lupus-like pathology. Moreover, compared with other IgG isotypes with undesired effector functions, mutant IgG4 Fc should prove useful in constructing novel therapeutic reagents to block immune molecule signalling in various diseases.