SEARCH

SEARCH BY CITATION

References

  • 1
    Rankin EB, Giaccia AJ. The role of hypoxia-inducible factors in tumorigenesis. Cell Death Differ. 2008; 15: 67885.
  • 2
    Bracken CP, Whitelaw ML, Peet DJ. The hypoxia-inducible factors: key transcriptional regulators of hypoxic responses. Cell Mol Life Sci. 2003; 60: 137693.
  • 3
    Semenza GL. Hypoxia-inducible factor 1 and cancer pathogenesis. IUBMB Life. 2008; 60: 5917.
  • 4
    Semenza GL. Targeting HIF-1 for cancer therapy. Nat Rev Cancer. 2003; 3: 72132.
  • 5
    Schofield CJ, Ratcliffe PJ. Oxygen sensing by HIF hydroxylases. Nat Rev Mol Cell Biol. 2004; 5: 34354.
  • 6
    Wenger RH, Stiehl DP, Camenisch G. Integration of oxygen signaling at the consensus HRE. Sci STKE. 2005; 306: re12.
  • 7
    Carrero P, Okamoto K, Coumailleau P, et al . Redox-regulated recruitment of the transcriptional coactivators CREB-binding protein and SRC-1 to hypoxia-inducible factor 1alpha. Mol Cell Biol. 2000; 20: 40215.
  • 8
    Shih SC, Claffey KP. Hypoxia-mediated regulation of gene expression in mammalian cells. Int J Exp Pathol. 1998; 79: 34757.
  • 9
    Gardner LB, Corn PG. Hypoxic regulation of mRNA expression. Cell Cycle. 2008; 7: 191624.
  • 10
    Johnson AB, Barton MC. Hypoxia-induced and stress-specific changes in chromatin structure and function. Mutat Res. 2007; 618: 14962.
  • 11
    Johnson AB, Denko N, Barton MC. Hypoxia induces a novel signature of chromatin modifications and global repression of transcription. Mutat Res. 2008; 640: 1749.
  • 12
    Ignacak ML, Harbaugh SV, Dayyat E, et al . Intermittent hypoxia regulates RNA polymerase II in hippocampus and prefrontal cortex. Neuroscience. 2009; 158: 143645.
  • 13
    Mitchell P, Tollervey D. mRNA turnover. Curr Opin Cell Biol. 2001; 13: 3205.
  • 14
    Wilusz CJ, Wormington M, Peltz SW. The cap-to-tail guide to mRNA turnover. Nat Rev Mol Cell Biol. 2001; 2: 23746.
  • 15
    Chen CY, Gherzi R, Ong SE, et al . AU binding proteins recruit the exosome to degrade ARE-containing mRNAs. Cell 2001; 107: 45164.
  • 16
    Butler JS. The yin and yang of the exosome. Trends Cell Biol. 2002; 12: 906.
  • 17
    Mukherjee D, Gao M, O’Connor JP, et al . The mammalian exosome mediates the efficient degradation of mRNAs that contain AU-rich elements. EMBO J. 2002; 21: 16574.
  • 18
    Gherzi R, Lee KY, Briata P, et al . A KH-domain RNA-binding protein, KSRP, promotes ARE-directed mRNA turnover by recruiting the degradation machinery. Mol Cell. 2004; 14: 57183.
  • 19
    Ingelfinger D, Arndt-Jovin DJ, Luhrmann R, et al . The human LSm1–7 proteins colocalize with the mRNA-degrading enzymes Dcp1/2 and Xrnl in distinct cytoplasmic foci. RNA 2002; 8: 1489501.
  • 20
    Eystathioy T, Jakymiw A, Chan EK, et al . The GW182 protein colocalizes with mRNA degradation associated proteins hDcp1 and hLSm4 in cytoplasmic GW bodies. RNA. 2003; 9: 11713.
  • 21
    Cougot N, Babajko S, Seraphin B. Cytoplasmic foci are sites of mRNA decay in human cells. J. Cell Biol. 2004; 165: 3140.
  • 22
    Kedersha N, Stoecklin G, Ayodele M, et al . Stress granules and processing bodies are dynamically linked sites of mRNP remodeling. J Cell Biol. 2005; 169: 87184.
  • 23
    Parker R, Sheth U. P bodies and the control of mRNA translation and degradation. Mol Cell. 2007; 25: 63546.
  • 24
    Ciais D, Cherradi N, Bailly S, et al . Destabilization of vascular endothelial growth factor mRNA by the zinc-finger protein TIS11b. Oncogene. 2004; 23: 867380.
  • 25
    Zhao Z, Chang FC, Furneaux HM. The identification of an endonuclease that cleaves within an HuR binding site in mRNA. Nucleic Acids Res. 2000; 28: 2695701.
  • 26
    Abdelmohsen K, Kuwano Y, Kim HH, et al . Posttranscriptional gene regulation by RNA-binding proteins during oxidative stress: implications for cellular senescence. Biol Chem. 2008; 389: 24355.
  • 27
    Hinman MN, Lou H. Diverse molecular functions of Hu proteins. Cell Mol Life Sci. 2008; 65: 316881.
  • 28
    Shi L, Godfrey WR, Lin J, et al . NF90 regulates inducible IL-2 gene expression in T cells. J Exp Med. 2007; 204: 9717.
  • 29
    Kiledjian M, Wang X, Liebhaber SA. Identification of two KH domain proteins in the alpha-globin mRNP stability complex. EMBO J. 1995; 14: 435764.
  • 30
    Onesto C, Berra E, Grépin R, et al . Poly(A)-binding protein-interacting protein 2, a strong regulator of vascular endothelial growth factor mRNA. J Biol Chem. 2004; 279: 3421726.
  • 31
    Rondon IJ, Scandurro AB, Wilson RB, et al . Changes in redox affect the activity of erythropoietin RNA binding protein. FEBS Lett. 1995; 359: 26770.
  • 32
    McGary EC, Rondon IJ, Beckman BS. Post-transcriptional regulation of erythropoietin mRNA stability by erythropoietin mRNA-binding protein. J Biol Chem. 1997; 272: 862834.
  • 33
    Sawicka K, Bushell M, Spriggs KA, et al . Polypyrimidine-tract-binding protein: a multifunctional RNA-binding protein. Biochem Soc Trans. 2008; 36: 6417.
  • 34
    Wouters BG, Van Den Beucken T, Magagnin MG, et al . Control of the hypoxic response through regulation of mRNA translation. Semin Cell Dev Biol. 2005; 16: 487501.
  • 35
    Leipuviene R, Theil EC. The family of iron responsive RNA structures regulated by changes in cellular iron and oxygen. Cell Mol Life Sci. 2007; 64: 294555.
  • 36
    Piecyk M, Wax S, Beck AR, et al . TIA-1 is a translational silencer that selectively regulates the expression of TNF-α. EMBO J. 2000; 19: 415463.
  • 37
    López de Silanes I, Galban S, Martindale JL, et al . Identification and functional outcome of mRNAs associated with RNA-binding protein TIA-1. Mol Cell Biol. 2005; 25: 952031.
  • 38
    Kim HS, Kuwano Y, Zhan M, et al . Elucidation of a C-rich signature motif in target mRNAs of RNA-binding protein TIAR. Mol Cell Biol. 2007; 27: 680617.
  • 39
    Xu YH, Busald C, Grabowski GA. Reconstitution of TCP80/NF90 translation inhibition activity in insect cells. Mol Genet Metab. 2000; 70: 10615.
  • 40
    Paillard L, Legagneux V, Maniey D, et al . c-Jun ARE targets mRNA deadenylation by an EDEN-BP (embryo deadenylation element-binding protein)-dependent pathway. J Biol Chem. 2002; 277: 32325.
  • 41
    Hamilton BJ, Nichols RC, Tsukamoto H, et al . hnRNP A2 and hnRNP L bind the 3′UTR of glucose transporter 1 mRNA and exist as a complex in vivo. Biochem Biophys Res Commun. 1999; 261: 64651.
  • 42
    Kedersha N, Anderson P. Mammalian stress granules and processing bodies. Methods Enzymol. 2007; 431: 6181.
  • 43
    Anderson P, Kedersha N. RNA granules. J Cell Biol. 2006; 172: 8038.
  • 44
    Hägele S, Kühn U, Böning M, et al . Cytoplasmic polyadenylation-element-binding protein (CPEB)1 and 2 bind to the HIF-1alpha mRNA 3′-UTR and modulate HIF-1alpha protein expression. Biochem J. 2009; 417: 23546.
  • 45
    Yang R, Weber DJ, Carrier F. Post-transcriptional regulation of thioredoxin by the stress inducible heterogenous ribonucleoprotein A18. Nucleic Acids Res. 2006; 34: 122436.
  • 46
    López de Silanes I, Zhan M, Lal A, et al . Identification of a target RNA motif for RNA-binding protein HuR. Proc Natl Acad Sci USA. 2004; 101: 298792.
  • 47
    Wang W, Furneaux H, Cheng H, et al . HuR regulates p21 mRNA stabilization by UV light. Mol Cell Biol. 2000; 20: 76069.
  • 48
    Lal A, Kawai T, Yang X, et al . Anti-apoptotic function of RNA-binding HuR effected through prothymosin-alpha. EMBO J. 2005; 24: 185262.
  • 49
    Abdelmohsen K, Lal A, Kim HH, et al . Posttranscriptional orchestration of an anti-apoptotic program by HuR. Cell Cycle. 2007; 6: 128892.
  • 50
    Abdelmohsen K, Pullmann R Jr, Lal A, et al . Phosphorylation of HuR by Chk2 regulates SIRT1 expression. Mol Cell. 2007; 25: 54357.
  • 51
    Abdelmohsen K, Srikantan S, Kuwano Y, et al . miR-519 reduces cell proliferation by lowering RNA-binding protein HuR levels. Proc Natl Acad Sci USA. 2008; 105: 20297302.
  • 52
    Gorospe M. HuR in the mammalian genotoxic response: post-transcriptional multitasking. Cell Cycle. 2003; 2: 4124.
  • 53
    López de Silanes I, Fan J, Yang X, et al . Role of the RNA-binding protein HuR in colon carcinogenesis. Oncogene. 2003; 22: 714654.
  • 54
    Galbán S, Kuwano Y, Pullmann R Jr, et al . RNA-binding proteins HuR and PTB promote the translation of hypoxia-inducible factor 1α. Mol Cell Biol. 2008; 28: 93107.
  • 55
    Doller A, Huwiler A, Müller R, et al . Protein kinase C alpha-dependent phosphorylation of the mRNA-stabilizing factor HuR: implications for posttranscriptional regulation of cyclooxygenase-2. Mol Biol Cell. 2007; 18: 213748.
  • 56
    Doller A, Akool El-S, Huwiler A, et al . Posttranslational modification of the AU-rich element binding protein HuR by protein kinase Cdelta elicits angiotensin II-induced stabilization and nuclear export of cyclooxygenase 2 mRNA. Mol Cell Biol. 2008; 28: 260825.
  • 57
    Gibson SL, Bindra RS, Glazer PM. Hypoxia-induced phosphorylation of Chk2 in an ataxia telangiectasia mutated-dependent manner. Cancer Res. 2005; 65: 1073441.
  • 58
    Sahai A, Mei C, Pattison TA, et al . Chronic hypoxia induces proliferation of cultured mesangial cells: role of calcium and protein kinase C. Am J Physiol Renal Physiol. 1997; 273: 95460.
  • 59
    Sheflin LG, Zou AP, Spaulding SW. Androgens regulate the binding of endogenous HuR to the AU-rich 3′UTRs of HIF-1alpha and EGF mRNA. Biochem Biophys Res Commun. 2004; 322: 64451.
  • 60
    Kim WY, Kaelin WG. Role of VHL gene mutation in human cancer. J Clin Oncol. 2004; 22: 49915004.
  • 61
    Schofield CJ, Ratcliffe PJ. Signalling hypoxia by HIF hydroxylases. Biochem Biophys Res Commun. 2005; 338: 61726.
  • 62
    Abdelmohsen K, Srikantan S, Yang X, et al . Ubiquitin-mediated proteolysis of HuR by heat shock. EMBO J. 2009; 28: 127182.
  • 63
    Danilin S, Sourbier C, Thomas L, et al . von Hippel-Lindau tumor suppressor gene-dependent mRNA stabilization of the survival factor parathyroid hormone-related protein in human renal cell carcinoma by the RNA-binding protein HuR. Carcinogenesis. 2009; 30: 38796.
  • 64
    Turcotte S, Desrosiers RR, Béliveau R. Hypoxia upregulates von Hippel-Lindau tumor-suppressor protein through RhoA-dependent activity in renal cell carcinoma. Am J Physiol Renal Physiol. 2004; 286: F33848.
  • 65
    Yancopoulos GD, Davis S, Gale NW, et al . Vascular-specific growth factors and blood vessel formation. Nature. 2000; 407: 2428.
  • 66
    Neufeld G, Cohen T, Gengrinovitch S, et al . Vascular endothelial growth factor (VEGF) and its receptors. FASEB J. 1999; 13: 922.
  • 67
    Veikkola T, Alitalo K. VEGFs, receptors and angiogenesis. Semin Cancer Biol. 1999; 9: 21120.
  • 68
    Goodall GJ, Coles LS, Bartley MA, et al . Post-transcriptional regulation of VEGF. In: HoyingJB, editors. Genetics of angiogenesis. BIOS Scientific Publishers, 2002; pp. 6983.
  • 69
    Pages G, Berra E, Milanini J, et al . Stress-activated protein kinases (JNK and p38/HOG) are essential for vascular endothelial growth factor mRNA stability. J Biol Chem. 2000; 275: 2648491.
  • 70
    Levy NS, Chung S, Furneaux H, et al . Hypoxic stabilization of vascular endothelial growth factor mRNA by the RNA-binding protein HuR. J Biol Chem. 1998; 273: 641723.
  • 71
    Shih SC, Mullen A, Abrams K, et al . Role of protein kinase C isoforms in phorbol ester-induced vascular endothelial growth factor expression in human glioblastoma cells. J Biol Chem. 1999; 274: 1540714.
  • 72
    Ema M, Taya S, Yokotani N, et al . A novel bHLH-PAS factor with close sequence similarity to hypoxia-inducible factor 1 regulates VEGF expression and is potentially involved in lung and vascular development. Proc Natl Acad Sci USA. 1997; 94: 42738.
  • 73
    Flamme I, Frohlich T, Von Reutern M, et al . HRF, a putative basic helix-loop-helix-PAS-domain transcription factor is closely related to hypoxia-inducible factor-1 alpha and developmentally expressed in blood vessels. Mech Dev. 1997; 63: 5160.
  • 74
    Ouiddir A, Planès C, Fernandes I, et al . Hypoxia upregulates activity and expression of the glucose transporter GLUT1 in alveolar epithelial cells. Am J Respir Cell Mol Biol. 1999; 21: 7108.
  • 75
    Simpson IA, Appel NM, Hokari M, et al . Blood-brain barrier glucose transporter: effects of hypo- and hyperglycemia revisited. J Neurochem. 1999; 72: 23847.
  • 76
    Qi C, Pekala PH. The influence of mRNA stability on glucose transporter (GLUT1) gene expression. Biochem Biophys Res Commun. 1999; 263: 2659.
  • 77
    Chen C, Pore N, Behrooz A, et al . Regulation of glut1 mRNA by hypoxia-inducible factor-1. Interaction between H-ras and hypoxia. J Biol Chem. 2001; 276: 951925.
  • 78
    Gantt KR, Cherry J, Richardson M, et al . The regulation of glucose transporter (GLUT1) expression by the RNA binding protein HuR. J Cell Biochem. 2006; 99: 56574.
  • 79
    Graeber TG, Peterson JF, Tsai M, et al . Hypoxia induces accumulation of p53 protein, but activation of a G1-phase checkpoint by low-oxygen conditions is independent of p53 status. Mol Cell Biol. 1994; 14: 626477.
  • 80
    Alarcón R, Koumenis C, Geyer RK, et al . Hypoxia induces p53 accumulation through MDM2 down-regulation and inhibition of E6-mediated degradation. Cancer Res. 1999; 59: 604651.
  • 81
    Mazan-Mamczarz K, Galbán S, Lápez de Silanes I, et al . RNA-binding protein HuR enhances p53 translation in response to ultraviolet light irradiation. Proc Natl Acad Sci USA. 2003; 100: 83549.
  • 82
    Zou T, Mazan-Mamczarz K, Rao JN, et al . Polyamine depletion increases cytoplasmic levels of RNA-binding protein HuR leading to stabilization of nucleophosmin and p53 mRNAs. J Biol Chem. 2006; 281: 1938794.
  • 83
    Nunoyama H, Kusachi S, Ninomiya Y, et al . Hypoxia increases transforming growth factor-β1 concomitantly with types I and III collagen without further enhancement by reoxygenation in cultured rat cardiac fibroblasts. Connective tissue. 1998; 30: 20711.
  • 84
    Yu AL, Fuchshofer R, Birke M, et al . Hypoxia/reoxygenation and TGF-β increase αB-crystallin expression in human optic nerve head astrocytes. Exp Eye Res. 2007; 84: 694706.
  • 85
    Nabors LB, Gillespie GY, Harkins L, et al . HuR, a RNA stability factor, is expressed in malignant brain tumors and binds to adenine- and uridine-rich elements within the 3′ untranslated regions of cytokine and angiogenic factor mRNAs. Cancer Res. 2001; 61: 215461.
  • 86
    Lafon I, Carballès F, Brewer G, et al . Developmental expression of AUF1 and HuR, two c-myc mRNA binding proteins. Oncogene. 1998; 16: 341321.
  • 87
    Knies-Bamforth UE, Fox SB, Poulsom R, et al . c-Myc interacts with hypoxia to induce angiogenesis in vivo by a vascular endothelial growth factor-dependent mechanism. Cancer Res. 2004; 64: 656370.
  • 88
    Mizukami Y, Fujiki K, Duerr EM, et al . Hypoxic regulation of vascular endothelial growth factor through the induction of phosphatidylinositol 3-kinase/Rho/ROCK and c-Myc. J Biol Chem. 2006; 281: 1395763.
  • 89
    Dang CV, Kim, JW, Gao P, et al . The interplay between MYC and HIF in cancer. Nat Rev Cancer. 2008; 8: 516.
  • 90
    Patel SA, Simon MC. Biology of hypoxia-inducible factor 2a in development and disease. Cell Death Differ. 2008; 15: 62834.
  • 91
    Auweter SD, Oberstrass FC, Allain FHT. Solving the structure of PTB in complex with pyrimidine tracts: an NMR study of protein-RNA complexes of weak affinities. J Mol Biol. 2007; 367: 17486.
  • 92
    Oh YL, Hahm B, Kim YK, et al . Determination of functional domains in polypyrimidine-tract-binding protein. Biochem J. 1998; 331: 16975.
  • 93
    Oberstrass FC, Auweter SD, Erat M, et al . Structure of PTB bound to RNA: specific binding and implications for splicing regulation. Science. 2005; 309: 20547.
  • 94
    Simpson PJ, Monie TP, Szendroi A, et al . Structute and RNA interactions of the N-terminal RRM domains of PTB. Structure. 2004; 12: 163143.
  • 95
    Petoukhov MV, Monie TP, Allain FHT, et al . Conformation of polypyrimidine tract binding protein in solution. Structure. 2006; 14: 10217.
  • 96
    Mitchell SA, Spriggs KA, Coldwell MJ, et al . The Apaf-1 internal ribosome entry segment attains the correct structural conformation for function via interactions with PTB and unr. Mol Cell. 2003; 11: 75771.
  • 97
    Ghetti A, Pinolroma S, Michael WM, et al . hnRNP-1, the polypyrimidine tract-binding protein: distinct nuclear localization and association with hnRNAs. Nucleic Acids Res. 1992; 20: 36718.
  • 98
    Gil A, Sharp PA, Jamison SF, et al . Characterization of cDNAs encoding the polypyrimidine tract-binding protein. Genes Dev. 1991; 5: 122436.
  • 99
    Wollerton MC, Gooding C, Robinson F, et al . Differential alternative splicing activity of isoforms of polypyrimidine tract binding protein (PTB). RNA. 2001; 7: 81932.
  • 100
    Wagner EJ, Carstens RP, Garcia-Blanco MA. A novel isoform ratio swich of the polypyrimidine tract binding protein. Electrophoresis. 1999; 20: 10826.
  • 101
    Garcia-Blanco MA, Jamison SF, Sharp PA. Identification and purification of a 62,000-dalton protein that binds specifically to the polypyrimidine tract of introns. Genes Dev. 1989; 3: 187486.
  • 102
    Lou H, Helfman DM, Gagel RF, et al . Polypyrimidine tract-binding protein positively regulates inclusion of an alternative 3′-terminal exon. Mol Cell Biol. 1999; 19: 7885.
  • 103
    Castelo-Branco P, Fugrer A, Wollerton MC, et al . Polypyrimidine tract binding protein modulates efficiency of polyadenylation. Mol Cell Biol. 2004; 24: 417483.
  • 104
    Wollerton MC, Gooding C, Wagner EJ, et al . Autoregulation of polypyrimidine tract binding protein by alternative splicing leading to nonsense-mediated decay. Mol Cell. 2004; 13: 91100.
  • 105
    Jang SK, Wilmmer E. Cap-independent translation of encephalomyocarditis virus RNA: structural elements of the internal ribosome entry site and involvement of a cellular 57-kDa RNA-binding protein. Genes Dev. 1990; 4: 156072.
  • 106
    Schepens B, Tinton SA, Bruynooghe Y, et al . The polypyrimidine tract-binding protein stimulates HIF-1alpha IRES-mediated translation during hypoxia. Nucleic Acids Res. 2005; 33: 688494.
  • 107
    Coles LC, Bartley MA, Bert A, et al . A multi-protein complex containing cold shock domain (Y-box) and polypyrimidine tract binding proteins forms on the VEGF mRNA. Eur J Biochem. 2004; 271: 64860.
  • 108
    Huez I, Créancier L, Audigier S, et al . Two independent internal ribosome entry sites are involved in translation initiation of vascular endothelial growth factor mRNA. Mol Cell Biol. 1998; 18: 617890.
  • 109
    Song Y, Tzima E, Ochs K, et al . Evidence for an RNA chaperone function of polypyrimidine tract-binding protein in picornavirus translation. RNA. 2005; 11: 180924.
  • 110
    Tillmar L, Carlsson C, Welsh N. Control of insulin mRNA stability in rat pancreatic islets: regulatory role of a 3′-UTR pyrimidine-rich sequence. J Biol Chem. 2002; 277: 1099106.
  • 111
    Welsh M, Nielsen DA, MacKrell AJ, et al . Control of insulin gene expression in pancreatic beta cells and in an insulin-producing cell line, RIN-5F cells. II. Regulation of insulin mRNA stability. J Biol Chem. 1985; 260: 135904.
  • 112
    Wicksteed B, Herbert TP, Alarcon C, et al . Cooperativity between the preproinsulin mRNA untranslated regions is necessary for glucose-stimulated translation. J Biol Chem. 2001; 276: 225538.
  • 113
    Tillmar L, Welsh N. Hypoxia may increase rat insulin mRNA levels by promoting binding of the polypyrimidine tract-binding protein (PTB) to the pyrimidine-rich insulin mRNA 3′-untranslated region. Mol Med. 2002; 8: 26372.
  • 114
    Tillmar L, Welsh N. Glucose-induced binding of the polypyrimidine tract-binding protein (PTB) to the 3′-untranslated region of the insulin mRNA (ins-PRS) is inhibited by rapamycin. Mol Cell Biochem. 2004; 260: 8590.
  • 115
    Fred RG, Welsh N. Increased expression of polypyrimidine tract binding protein results in higher insulin mRNA levels. Biochem Biophys Res Commun. 2005; 328: 3842.
  • 116
    Knoch KP, Meisterfeld R, Bergert H, et al . Regulation of PTB nucleocytoplasmic translocation and expression of secretory granule proteins in INS-1 cells. Diabetologia. 2004; 47: A153.
  • 117
    Knoch KP, Schneider H, Ehehalt F, et al . PTB1 binds to the 5′-UTR of mRNAs encoding proteins of the insulin secretory granules. Diabetologia. 2006; 49: 1567.
  • 118
    Knoch KP, Meisterfeld R, Kersting S, et al . cAMP-dependent phosphorylation of PTB1 promotes the expression of insulin secretory granule proteins in β-cells. Cell Metab. 2006; 3: 12334.
  • 119
    Knoch KP, Bergert H, Borgonovo B, et al . Polypyrimidine tract-binding protein promotes insulin secretory granule biogenesis. Nat Cell Biol. 2004; 6: 20714.
  • 120
    Sanchez M, Galy B, Muckenthaler MU, et al . Iron-regulatory proteins limit hypoxia-inducible factor-2alpha expression in iron deficiency. Nat Struct Mol Biol. 2007; 14: 4206.
  • 121
    Zimmer M, Ebert BL, Neil C, et al . Small-molecule inhibitors of HIF-2a translation link its 5′UTR iron-responsive element to oxygen sensing. Mol Cell. 2008; 32: 83848.
  • 122
    Yang C, Carrier F. The UV-inducible RNA-binding protein A18 (A18 hnRNP) plays a protective role in the genotoxic stress response. J Biol Chem. 2001; 276: 4727784.
  • 123
    Jin K, Li W, Nagayama T, et al . Expression of the RNA-binding protein TIAR is increased in neurons after ischemic cerebral injury. J Neurosci Res. 2000; 59: 76774.
  • 124
    Osborne NN, Nash MS, Wood JP. Melatonin counteracts ischemia-induced apoptosis in human retinal pigment epithelial cells. Invest Ophthalmol Vis Sci. 1998; 39: 237483.
  • 125
    Jud MC, Czerwinski MJ, Wood MP, et al . Large P body-like RNPs form in C. elegans oocytes in response to arrested ovulation, heat shock, osmotic stress, and anoxia and are regulated by the major sperm protein pathway. Dev Biol. 2008; 318: 3851.
  • 126
    Anderson P, Kedersha N. Stress granules: the Tao of RNA triage. Trends Biochem Sci. 2008; 33: 14150.
  • 127
    Galban S, Gorospe M. Factors interacting with HIF-1α mRNA: novel therapeutic targets. Current Pharmaceutical Design. 2009, In Press.
  • 128
    Brahimi-Horn MC, Pouysségur J. Harnessing the hypoxia-inducible factor in cancer and ischemic disease. Biochem Pharmacol. 2007; 73: 4507.
  • 129
    Ziello JE, Jovin IS, Huang Y. Hypoxia-Inducible Factor (HIF)-1 regulatory pathway and its potential for therapeutic intervention in malignancy and ischemia. Yale J Biol Med. 2007; 80: 5160.
  • 130
    Vogelstein B, Kinzler KW. Cancer genes and the pathways they control. Nat Med. 2004; 10: 78999.
  • 131
    Chan DA, Krieg AJ, Turcotte S, et al . HIF gene expression in cancer therapy. Methods Enzymol. 2007; 435: 32345.
  • 132
    Liao D, Johnson RS. Hypoxia: a key regulator of angiogenesis in cancer. Cancer Metastasis Rev. 2007; 26: 28190.
  • 133
    Melillo G. Targeting hypoxia cell signaling for cancer therapy. Cancer Metastasis Rev. 2007; 26: 34152.
  • 134
    Norrby K. In vivo models of angiogenesis. J Cell Mol Med. 2006; 10: 588612.
  • 135
    Silvestre JS, Lévy BI. Angiogenesis therapy in ischemic disease. Arch Mal Coeur Vaiss. 2002; 95: 18996.
  • 136
    Fraisl P, Aragonés J, Carmeliet P. Inhibition of oxygen sensors as a therapeutic strategy for ischaemic and inflammatory disease. Nat Rev Drug Discov. 2009; 8: 13952.