SEARCH

SEARCH BY CITATION

References

  • 1
    Chung KF, Adcock IM. Multifaceted mechanisms in COPD: inflammation, immunity, and tissue repair and destruction. Eur Respir J. 2008; 31: 133456.
  • 2
    Kiri VA, Fabbri LM, Davis KJ, et al . Inhaled corticosteroids and risk of lung cancer among COPD patients who quit smoking. Respir Med. 2008; 103: 8590.
  • 3
    Houghton AM, Mouded M, Shapiro SD. Common origins of lung cancer and COPD. Nat Med. 2008; 14: 10234.
  • 4
    Turner MC, Chen Y, Krewski D, et al . Chronic obstructive pulmonary disease is associated with lung cancer mortality in a prospective study of never smokers. Am J Respir Crit Care Med. 2007; 176: 28590.
  • 5
    Sun S, Schiller JH, Gazdar AF. Lung cancer in never smokers – a different disease. Nat Rev Cancer. 2007; 7: 77890.
  • 6
    Sato M, Shames DS, Gazdar AF, et al . A translational view of the molecular pathogenesis of lung cancer. J Thorac Oncol. 2007; 2: 32743.
  • 7
    Stampfli MR, Anderson GP. How cigarette smoke skews immune responses to promote infection, lung disease and cancer. Nat Rev Immunol. 2009; 9: 37784.
  • 8
    Kaushik G, Kaushik T, Khanduja S, et al . Cigarette smoke condensate promotes cell proliferation through disturbance in cellular redox homeostasis of transformed lung epithelial type-II cells. Cancer Lett. 2008; 270: 12031.
  • 9
    Izzotti A, Calin GA, Arrigo P, et al . Downregulation of microRNA expression in the lungs of rats exposed to cigarette smoke. FASEB J. 2009; 23: 80612.
  • 10
    Kometani T, Yoshino I, Miura N, et al . Benzo[a]pyrene promotes proliferation of human lung cancer cells by accelerating the epidermal growth factor receptor signaling pathway. Cancer Lett. 2009; 278: 2733.
  • 11
    Khan EM, Lanir R, Danielson AR, et al . Epidermal growth factor receptor exposed to cigarette smoke is aberrantly activated and undergoes perinuclear trafficking. FASEB J. 2008; 22: 9107.
  • 12
    Das A, Bhattacharya A, Chakrabarti G. Cigarette smoke extract induces disruption of structure and function of tubulin-microtubule in lung epithelium cells and in vitro. Chem Res Toxicol. 2009; 22: 44659.
  • 13
    Tsuji T, Aoshiba K, Nagai A. Cigarette smoke induces senescence in alveolar epithelial cells. Am J Respir Cell Mol Biol. 2004; 31: 6439.
  • 14
    Yao H, Yang SR, Edirisinghe I, et al . Disruption of p21 attenuates lung inflammation induced by cigarette smoke, LPS, and fMLP in mice. Am J Respir Cell Mol Biol. 2008; 39: 718.
  • 15
    Marwick JA, Stevenson CS, Giddings J, et al . Cigarette smoke disrupts VEGF165-VEGFR-2 receptor signaling complex in rat lungs and patients with COPD: morphological impact of VEGFR-2 inhibition. Am J Physiol Lung Cell Mol Physiol. 2006; 290: L897908.
  • 16
    Edirisinghe I, Yang SR, Yao H, et al . VEGFR-2 inhibition augments cigarette smoke-induced oxidative stress and inflammatory responses leading to endothelial dysfunction. FASEB J. 2008; 22: 2297310.
  • 17
    Hodge S, Hodge G, Ahern J, et al . Smoking alters alveolar macrophage recognition and phagocytic ability: implications in chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol. 2007; 37: 74855.
  • 18
    Herbst RS, Heymach JV, Lippman SM. Lung cancer. N Engl J Med. 2008; 359: 136780.
  • 19
    Risch A, Plass C. Lung cancer epigenetics and genetics. Int J Cancer. 2008; 123: 17.
  • 20
    Belinsky SA. Gene-promoter hypermethylation as a biomarker in lung cancer. Nat Rev Cancer. 2004; 4: 70717.
  • 21
    Toyooka S, Matsuo K, Gazdar AF. DNA methylation in lung cancer. N Engl J Med. 2008; 358: 25134.
  • 22
    Feinberg AP, Tycko B. The history of cancer epigenetics. Nat Rev Cancer. 2004; 4: 14353.
  • 23
    Damiani LA, Yingling CM, Leng S, et al . Carcinogen-induced gene promoter hypermethylation is mediated by DNMT1 and causal for transformation of immortalized bronchial epithelial cells. Cancer Res. 2008; 68: 900514.
  • 24
    Barlesi F, Giaccone G, Gallegos-Ruiz MI, et al . Global histone modifications predict prognosis of resected non small-cell lung cancer. J Clin Oncol. 2007; 25: 435864.
  • 25
    Van Den Broeck A, Brambilla E, Moro-Sibilot D, et al . Loss of histone H4K20 trimethylation occurs in preneoplasia and influences prognosis of non-small cell lung cancer. Clin Cancer Res. 2008; 14: 723745.
  • 26
    Watanabe H, Soejima K, Yasuda H, et al . Deregulation of histone lysine methyltransferases contributes to oncogenic transformation of human bronchoepithelial cells. Cancer Cell Int. 2008; doi: 10.1186/1475-2867-8-15.
  • 27
    Barnes PJ. Role of HDAC2 in the Pathophysiology of COPD. Annu Rev Physiol. 2008; 71: 45164.
  • 28
    Ciencewicki J, Trivedi S, Kleeberger SR. Oxidants and the pathogenesis of lung diseases. J Allergy Clin Immunol. 2008; 122: 45668.
  • 29
    Li Q, Xiao H, Isobe K. Histone acetyltransferase activities of cAMP-regulated enhancer-binding protein and p300 in tissues of fetal, young, and old mice. J Gerontol A Biol Sci Med Sci. 2002; 57: B938.
  • 30
    Yamauchi T, Yamauchi J, Kuwata T, et al . Distinct but overlapping roles of histone acetylase PCAF and of the closely related PCAF-B/GCN5 in mouse embryogenesis. Proc Natl Acad Sci USA. 2000; 97: 113036.
  • 31
    Phan HM, Xu AW, Coco C, et al . GCN5 and p300 share essential functions during early embryogenesis. Dev Dyn. 2005; 233: 133747.
  • 32
    Naltner A, Wert S, Whitsett JA, et al . Temporal/spatial expression of nuclear receptor coactivators in the mouse lung. Am J Physiol Lung Cell Mol Physiol. 2000; 279: L106674.
  • 33
    Partanen A, Motoyama J, Hui CC. Developmentally regulated expression of the transcriptional cofactors/histone acetyltransferases CBP and p300 during mouse embryogenesis. Int J Dev Biol. 1999; 43: 48794.
  • 34
    Xu W, Edmondson DG, Evrard YA, et al . Loss of Gcn5l2 leads to increased apoptosis and mesodermal defects during mouse development. Nat Genet. 2000; 26: 22932.
  • 35
    Shikama N, Lutz W, Kretzschmar R, et al . Essential function of p300 acetyltransferase activity in heart, lung and small intestine formation. EMBO J. 2003; 22: 517585.
  • 36
    Yin Z, Gonzales L, Kolla V, et al . Hop functions downstream of Nkx2.1 and GATA6 to mediate HDAC-dependent negative regulation of pulmonary gene expression. Am J Physiol Lung Cell Mol Physiol. 2006; 291: L1919.
  • 37
    Ito K, Ito M, Elliott WM, et al . Decreased histone deacetylase activity in chronic obstructive pulmonary disease. N Engl J Med. 2005; 352: 196776.
  • 38
    Szulakowski P, Crowther AJ, Jimenez LA, et al . The effect of smoking on the transcriptional regulation of lung inflammation in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2006; 174: 4150.
  • 39
    Ito K, Caramori G, Lim S, et al . Expression and activity of histone deacetylases in human asthmatic airways. Am J Respir Crit Care Med. 2002; 166: 3926.
  • 40
    Ito K, Lim S, Caramori G, et al . A molecular mechanism of action of theophylline: Induction of histone deacetylase activity to decrease inflammatory gene expression. Proc Natl Acad Sci USA. 2002; 99: 89216.
  • 41
    Ito K, Lim S, Caramori G, et al . Cigarette smoking reduces histone deacetylase 2 expression, enhances cytokine expression, and inhibits glucocorticoid actions in alveolar macrophages. FASEB J. 2001; 15: 11102.
  • 42
    Ito K, Hanazawa T, Tomita K, et al . Oxidative stress reduces histone deacetylase 2 activity and enhances IL-8 gene expression: role of tyrosine nitration. Biochem Biophys Res Commun. 2004; 315: 2405.
  • 43
    Rajendrasozhan S, Yang SR, Kinnula VL, et al . SIRT1, an antiinflammatory and antiaging protein, is decreased in lungs of patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2008; 177: 86170.
  • 44
    Guo X, Lin HM, Lin Z, et al . Surfactant protein gene A, B, and D marker alleles in chronic obstructive pulmonary disease of a Mexican population. Eur Respir J. 2001; 18: 48290.
  • 45
    Behera D, Balamugesh T, Venkateswarlu D, et al . Serum surfactant protein-A levels in chronic bronchitis and its relation to smoking. Indian J Chest Dis Allied Sci. 2005; 47: 137.
  • 46
    Kobayashi H, Kanoh S, Motoyoshi K. Serum surfactant protein-A, but not surfactant protein-D or KL-6, can predict preclinical lung damage induced by smoking. Biomarkers. 2008; 13: 38592.
  • 47
    Ohlmeier S, Vuolanto M, Toljamo T, et al . Proteomics of human lung tissue identifies surfactant protein a as a marker of chronic obstructive pulmonary disease. J Proteome Res. 2008; 7: 512532.
  • 48
    Bruno MD, Korfhagen TR, Liu C, et al . GATA-6 activates transcription of surfactant protein A. J Biol Chem. 2000; 275: 10439.
  • 49
    Henning LN, Azad AK, Parsa KV, et al . Pulmonary surfactant protein A regulates TLR expression and activity in human macrophages. J Immunol. 2008; 180: 784758.
  • 50
    Sasaki H, Moriyama S, Nakashima Y, et al . Histone deacetylase 1 mRNA expression in lung cancer. Lung Cancer. 2004; 46: 1718.
  • 51
    Nakagawa M, Oda Y, Eguchi T, et al . Expression profile of class I histone deacetylases in human cancer tissues. Oncol Rep. 2007; 18: 76974.
  • 52
    Bartling B, Hofmann HS, Boettger T, et al . Comparative application of antibody and gene array for expression profiling in human squamous cell lung carcinoma. Lung Cancer. 2005; 49: 14554.
  • 53
    Yang XJ, Seto E. The Rpd3/Hda1 family of lysine deacetylases: from bacteria and yeast to mice and men. Nat Rev Mol Cell Biol. 2008; 9: 20618.
  • 54
    Suzuki H, Ouchida M, Yamamoto H, et al . Decreased expression of the SIN3A gene, a candidate tumor suppressor located at the prevalent allelic loss region 15q23 in non-small cell lung cancer. Lung Cancer. 2008; 59: 2431.
  • 55
    Watanabe H, Mizutani T, Haraguchi T, et al . SWI/SNF complex is essential for NRSF-mediated suppression of neuronal genes in human nonsmall cell lung carcinoma cell lines. Oncogene. 2006; 25: 4709.
  • 56
    Reisman DN, Sciarrotta J, Wang W, et al . Loss of BRG1/BRM in human lung cancer cell lines and primary lung cancers: correlation with poor prognosis. Cancer Res. 2003; 63: 5606.
  • 57
    Girard L, Zochbauer-Muller S, Virmani AK, et al . Genome-wide allelotyping of lung cancer identifies new regions of allelic loss, differences between small cell lung cancer and non-small cell lung cancer, and loci clustering. Cancer Res. 2000; 60: 4894906.
  • 58
    Wong AK, Shanahan F, Chen Y, et al . BRG1, a component of the SWI-SNF complex, is mutated in multiple human tumor cell lines. Cancer Res. 2000; 60: 61717.
  • 59
    Medina PP, Carretero J, Fraga MF, et al . Genetic and epigenetic screening for gene alterations of the chromatin-remodeling factor, SMARCA4/BRG1, in lung tumors. Genes Chromosomes Cancer. 2004; 41: 1707.
  • 60
    Medina PP, Romero OA, Kohno T, et al . Frequent BRG1/SMARCA4-inactivating mutations in human lung cancer cell lines. Hum Mutat. 2008; 29: 61722.
  • 61
    Bourachot B, Yaniv M, Muchardt C. Growth inhibition by the mammalian SWI-SNF subunit Brm is regulated by acetylation. EMBO J. 2003; 22: 650515.
  • 62
    Yamamichi N, Yamamichi-Nishina M, Mizutani T, et al . The Brm gene suppressed at the post-transcriptional level in various human cell lines is inducible by transient HDAC inhibitor treatment, which exhibits antioncogenic potential. Oncogene. 2005; 24: 547181.
  • 63
    Glaros S, Cirrincione GM, Muchardt C, et al . The reversible epigenetic silencing of BRM: implications for clinical targeted therapy. Oncogene. 2007; 26: 705866.
  • 64
    Fukuoka J, Fujii T, Shih JH, et al . Chromatin remodeling factors and BRM/RG1 expression as prognostic indicators in non-small cell lung cancer. Clin Cancer Res. 2004; 10: 431424.
  • 65
    Sasaki H, Moriyama S, Nakashima Y, et al . Expression of the MTA1 mRNA in advanced lung cancer. Lung Cancer. 2002; 35: 14954.
  • 66
    Iguchi H, Imura G, Toh Y, et al . Expression of MTA1, a metastasis-associated gene with histone deacetylase activity in pancreatic cancer. Int J Oncol. 2000; 16: 12114.
  • 67
    Mazumdar A, Wang RA, Mishra SK, et al . Transcriptional repression of oestrogen receptor by metastasis-associated protein 1 corepressor. Nat Cell Biol. 2001; 3: 307.
  • 68
    Xue Y, Wong J, Moreno GT, et al . NURD, a novel complex with both ATP-dependent chromatin-remodeling and histone deacetylase activities. Mol Cell. 1998; 2: 85161.
  • 69
    Toh Y, Kuninaka S, Endo K, et al . Molecular analysis of a candidate metastasis-associated gene, MTA1: possible interaction with histone deacetylase 1. J Exp Clin Cancer Res. 2000; 19: 10511.
  • 70
    Yao YL, Yang WM. The metastasis-associated proteins 1 and 2 form distinct protein complexes with histone deacetylase activity. J Biol Chem. 2003; 278: 425608.
  • 71
    You A, Tong JK, Grozinger CM, et al . CoREST is an integral component of the CoREST- human histone deacetylase complex. Proc Natl Acad Sci USA. 2001; 98: 14548.
  • 72
    Kishimoto M, Kohno T, Okudela K, et al . Mutations and deletions of the CBP gene in human lung cancer. Clin Cancer Res. 2005; 11: 5129.
  • 73
    Yoon KA, Hwangbo B, Kim IJ, et al . Novel polymorphisms in the SUV39H2 histone methyltransferase and the risk of lung cancer. Carcinogenesis. 2006; 27: 221722.
  • 74
    Yoon KA, Park S, Hwangbo B, et al . Genetic polymorphisms in the Rb-binding zinc finger gene RIZ and the risk of lung cancer. Carcinogenesis. 2007; 28: 19717.
  • 75
    Jang JS, Lee SJ, Choi JE, et al . Methyl-CpG binding domain 1 gene polymorphisms and risk of primary lung cancer. Cancer Epidemiol Biomarkers Prev. 2005; 14: 247480.
  • 76
    El-Osta A, Baker EK, Wolffe AP. Profiling methyl-CpG specific determinants on transcriptionally silent chromatin. Mol Biol Rep. 2001; 28: 20915.
  • 77
    Wang F, Nguyen M, Qin FX, et al . SIRT2 deacetylates FOXO3a in response to oxidative stress and caloric restriction. Aging Cell. 2007; 6: 50514.
  • 78
    Sundaresan NR, Samant SA, Pillai VB, et al . SIRT3 is a stress-responsive deacetylase in cardiomyocytes that protects cells from stress-mediated cell death by deacetylation of Ku70. Mol Cell Biol. 2008; 28: 6384401.
  • 79
    Igarashi K, Sun J. The heme-Bach1 pathway in the regulation of oxidative stress response and erythroid differentiation. Antioxid Redox Signal. 2006; 8: 10718.
  • 80
    Dohi Y, Ikura T, Hoshikawa Y, et al . Bach1 inhibits oxidative stress-induced cellular senescence by impeding p53 function on chromatin. Nat Struct Mol Biol. 2008; 15: 124654.
  • 81
    Kensler TW, Wakabayashi N, Biswal S. Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu Rev Pharmacol Toxicol. 2007; 47: 89116.
  • 82
    Spiegelman BM. Transcriptional control of mitochondrial energy metabolism through the PGC1 coactivators. Novartis Found Symp. 2007; 287: 603.
  • 83
    Wang R, An J, Ji F, et al . Hypermethylation of the Keap1 gene in human lung cancer cell lines and lung cancer tissues. Biochem Biophys Res Commun. 2008; 373: 1514.
  • 84
    Ohta T, Iijima K, Miyamoto M, et al . Loss of Keap1 function activates Nrf2 and provides advantages for lung cancer cell growth. Cancer Res. 2008; 68: 13039.
  • 85
    Malhotra D, Thimmulappa R, Navas-Acien A, et al . Decline in NRF2-regulated antioxidants in chronic obstructive pulmonary disease lungs due to loss of its positive regulator, DJ-1. Am J Respir Crit Care Med. 2008; 178: 592604.
  • 86
    Goven D, Boutten A, Lecon-Malas V, et al . Altered Nrf2/Keap1-Bach1 equilibrium in pulmonary emphysema. Thorax. 2008; 63: 91624.
  • 87
    Cho HY, Reddy SP, Kleeberger SR. Nrf2 defends the lung from oxidative stress. Antioxid Redox Signal. 2006; 8: 7687.
  • 88
    Katoh Y, Itoh K, Yoshida E, et al . Two domains of Nrf2 cooperatively bind CBP, a CREB binding protein, and synergistically activate transcription. Genes Cells. 2001; 6: 85768.
  • 89
    Lin W, Shen G, Yuan X, et al . Regulation of Nrf2 transactivation domain activity by p160 RAC3/SRC3 and other nuclear co-regulators. J Biochem Mol Biol. 2006; 39: 30410.
  • 90
    Zhang J, Ohta T, Maruyama A, et al . BRG1 interacts with Nrf2 to selectively mediate HO-1 induction in response to oxidative stress. Mol Cell Biol. 2006; 26: 794252.
  • 91
    Liu GH, Qu J, Shen X. NF-kappaB/p65 antagonizes Nrf2-ARE pathway by depriving CBP from Nrf2 and facilitating recruitment of HDAC3 to MafK. Biochim Biophys Acta. 2008; 1783: 71327.
  • 92
    Ryter SW, Kim HP, Nakahira K, et al . Protective functions of heme oxygenase-1 and carbon monoxide in the respiratory system. Antioxid Redox Signal. 2007; 9: 215773.
  • 93
    Sun J, Brand M, Zenke Y, et al . Heme regulates the dynamic exchange of Bach1 and NF-E2-related factors in the Maf transcription factor network. Proc Natl Acad Sci USA. 2004; 101: 14616.
  • 94
    Zhang J, Hosoya T, Maruyama A, et al . Nrf2 Neh5 domain is differentially utilized in the transactivation of cytoprotective genes. Biochem J. 2007; 404: 45966.
  • 95
    Pouyssegur J, Dayan F, Mazure NM. Hypoxia signalling in cancer and approaches to enforce tumour regression. Nature. 2006; 441: 43743.
  • 96
    Goudar RK, Vlahovic G. Hypoxia, angiogenesis, and lung cancer. Curr Oncol Rep. 2008; 10: 27782.
  • 97
    Raguso CA, Guinot SL, Janssens JP, et al . Chronic hypoxia: common traits between chronic obstructive pulmonary disease and altitude. Curr Opin Clin Nutr Metab Care. 2004; 7: 4117.
  • 98
    Le QT, Chen E, Salim A, et al . An evaluation of tumor oxygenation and gene expression in patients with early stage non-small cell lung cancers. Clin Cancer Res. 2006; 12: 150714.
  • 99
    Le QT, Shi G, Cao H, et al . Galectin-1: a link between tumor hypoxia and tumor immune privilege. J Clin Oncol. 2005; 23: 893241.
  • 100
    Swinson DE, Jones JL, Cox G, et al . Hypoxia-inducible factor-1 alpha in non small cell lung cancer: relation to growth factor, protease and apoptosis pathways. Int J Cancer. 2004; 111: 4350.
  • 101
    Swinson DE, Jones JL, Richardson D, et al . Carbonic anhydrase IX expression, a novel surrogate marker of tumor hypoxia, is associated with a poor prognosis in non-small-cell lung cancer. J Clin Oncol. 2003; 21: 47382.
  • 102
    Kamlah F, Eul BG, Li S, et al . Intravenous injection of siRNA directed against hypoxia-inducible factors prolongs survival in a Lewis lung carcinoma cancer model. Cancer Gene Ther. 2009; 16: 195205.
  • 103
    Polosukhin VV, Lawson WE, Milstone AP, et al . Association of progressive structural changes in the bronchial epithelium with subepithelial fibrous remodeling: a potential role for hypoxia. Virchows Arch. 2007; 451: 793803.
  • 104
    Pialoux V, Mounier R, Brown AD, et al . Relationship between oxidative stress and HIF-1alpha mRNA during sustained hypoxia in humans. Free Radic Biol Med. 2009; 46: 3216.
  • 105
    Pollard PJ, Loenarz C, Mole DR, et al . Regulation of Jumonji-domain-containing histone demethylases by hypoxia-inducible factor (HIF)-1alpha. Biochem J. 2008; 416: 38794.
  • 106
    Beyer S, Kristensen MM, Jensen KS, et al . The histone demethylases JMJD1A and JMJD2B are transcriptional targets of hypoxia-inducible factor HIF. J Biol Chem. 2008; 283: 3654252.
  • 107
    Wellmann S, Bettkober M, Zelmer A, et al . Hypoxia upregulates the histone demethylase JMJD1A via HIF-1. Biochem Biophys Res Commun. 2008; 372: 8927.
  • 108
    Kim SH, Jeong JW, Park JA, et al . Regulation of the HIF-1alpha stability by histone deacetylases. Oncol Rep. 2007; 17: 64751.
  • 109
    Kasper LH, Brindle PK. Mammalian gene expression program resiliency: the roles of multiple coactivator mechanisms in hypoxia-responsive transcription. Cell Cycle. 2006; 5: 1426.
  • 110
    Qian DZ, Kachhap SK, Collis SJ, et al . Class II histone deacetylases are associated with VHL-independent regulation of hypoxia-inducible factor 1 alpha. Cancer Res. 2006; 66: 881421.
  • 111
    Kato H, Tamamizu-Kato S, Shibasaki F. Histone deacetylase 7 associates with hypoxia-inducible factor 1alpha and increases transcriptional activity. J Biol Chem. 2004; 279: 4196674.
  • 112
    Moon HE, Cheon H, Chun KH, et al . Metastasis-associated protein 1 enhances angiogenesis by stabilization of HIF-1alpha. Oncol Rep. 2006; 16: 92935.
  • 113
    Yoo YG, Kong G, Lee MO. Metastasis-associated protein 1 enhances stability of hypoxia-inducible factor-1alpha protein by recruiting histone deacetylase 1. EMBO J. 2006; 25: 123141.
  • 114
    Kim SH, Kim KW, Jeong JW. Inhibition of hypoxia-induced angiogenesis by sodium butyrate, a histone deacetylase inhibitor, through hypoxia-inducible factor-1alpha suppression. Oncol Rep. 2007; 17: 7937.
  • 115
    Liang D, Kong X, Sang N. Effects of histone deacetylase inhibitors on HIF-1. Cell Cycle. 2006; 5: 24305.
  • 116
    Fath DM, Kong X, Liang D, et al . Histone deacetylase inhibitors repress the transactivation potential of hypoxia-inducible factors independently of direct acetylation of HIF-alpha. J Biol Chem. 2006; 281: 136129.
  • 117
    Kong X, Lin Z, Liang D, et al . Histone deacetylase inhibitors induce VHL and ubiquitin-independent proteasomal degradation of hypoxia-inducible factor 1alpha. Mol Cell Biol. 2006; 26: 201928.
  • 118
    Mie Lee Y, Kim SH, Kim HS, et al . Inhibition of hypoxia-induced angiogenesis by FK228, a specific histone deacetylase inhibitor, via suppression of HIF-1alpha activity. Biochem Biophys Res Commun. 2003; 300: 2416.
  • 119
    Xenaki G, Ontikatze T, Rajendran R, et al . PCAF is an HIF-1alpha cofactor that regulates p53 transcriptional activity in hypoxia. Oncogene. 2008; 27: 578596.
  • 120
    Ruas JL, Poellinger L, Pereira T. Role of CBP in regulating HIF-1-mediated activation of transcription. J Cell Sci. 2005; 118: 30111.
  • 121
    Ruas JL, Poellinger L, Pereira T. Functional analysis of hypoxia-inducible factor-1 alpha-mediated transactivation. Identification of amino acid residues critical for transcriptional activation and/or interaction with CREB-binding protein. J Biol Chem. 2002; 277: 3872330.
  • 122
    Carrero P, Okamoto K, Coumailleau P, et al . Redox-regulated recruitment of the transcriptional coactivators CREB-binding protein and SRC-1 to hypoxia-inducible factor 1alpha. Mol Cell Biol. 2000; 20: 40215.
  • 123
    Kasper LH, Boussouar F, Boyd K, et al . Two transactivation mechanisms cooperate for the bulk of HIF-1-responsive gene expression. EMBO J. 2005; 24: 384658.
  • 124
    Puigserver P, Wu Z, Park CW, et al . A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell. 1998; 92: 82939.
  • 125
    Finck BN, Kelly DP. PGC-1 coactivators: inducible regulators of energy metabolism in health and disease. J Clin Invest. 2006; 116: 61522.
  • 126
    Nemoto S, Fergusson MM, Finkel T. SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1{alpha}. J Biol Chem. 2005; 280: 1645660.
  • 127
    Puigserver P, Adelmant G, Wu Z, et al . Activation of PPARgamma coactivator-1 through transcription factor docking. Science. 1999; 286: 136871.
  • 128
    St-Pierre J, Drori S, Uldry M, et al . Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell. 2006; 127: 397408.
  • 129
    Kukidome D, Nishikawa T, Sonoda K, et al . Activation of AMP-activated protein kinase reduces hyperglycemia-induced mitochondrial reactive oxygen species production and promotes mitochondrial biogenesis in human umbilical vein endothelial cells. Diabetes. 2006; 55: 1207.
  • 130
    St-Pierre J, Lin J, Krauss S, et al . Bioenergetic analysis of peroxisome proliferator-activated receptor gamma coactivators 1alpha and 1beta (PGC-1alpha and PGC-1beta) in muscle cells. J Biol Chem. 2003; 278: 26597603.
  • 131
    Valle I, Alvarez-Barrientos A, Arza E, et al . PGC-1alpha regulates the mitochondrial antioxidant defense system in vascular endothelial cells. Cardiovasc Res. 2005; 66: 56273.
  • 132
    Brand MD. Uncoupling to survive? The role of mitochondrial inefficiency in ageing. Exp Gerontol. 2000; 35: 81120.
  • 133
    Bezaire V, Seifert EL, Harper ME. Uncoupling protein-3: clues in an ongoing mitochondrial mystery. FASEB J. 2007; 21: 31224.
  • 134
    Borniquel S, Valle I, Cadenas S, et al . Nitric oxide regulates mitochondrial oxidative stress protection via the transcriptional coactivator PGC-1alpha. FASEB J. 2006; 20: 188991.
  • 135
    Quon BS, Gan WQ, Sin DD. Contemporary management of acute exacerbations of COPD: a systematic review and metaanalysis. Chest. 2008; 133: 75666.
  • 136
    Adcock IM, Barnes PJ. Molecular mechanisms of corticosteroid resistance. Chest. 2008; 134: 394401.
  • 137
    Wu Y, Adam S, Hamann L, et al . Accumulation of inhibitory kappaB-alpha as a mechanism contributing to the anti-inflammatory effects of surfactant protein-A. Am J Respir Cell Mol Biol. 2004; 31: 58794.
  • 138
    Islam KN, Mendelson CR. Glucocorticoid/glucocorticoid receptor inhibition of surfactant protein-A (SP-A) gene expression in lung type II cells is mediated by repressive changes in histone modification at the SP-A promoter. Mol Endocrinol. 2008; 22: 58596.
  • 139
    Amat R, Solanes G, Giralt M, et al . SIRT1 is involved in glucocorticoid-mediated control of uncoupling protein-3 gene transcription. J Biol Chem. 2007; 282: 3406676.
  • 140
    Qiu Y, Zhao Y, Becker M, et al . HDAC1 acetylation is linked to progressive modulation of steroid receptor-induced gene transcription. Mol Cell. 2006; 22: 66979.
  • 141
    Kovacs JJ, Murphy PJ, Gaillard S, et al . HDAC6 regulates Hsp90 acetylation and chaperone-dependent activation of glucocorticoid receptor. Mol Cell. 2005; 18: 6017.
  • 142
    Ito K, Barnes PJ, Adcock IM. Glucocorticoid receptor recruitment of histone deacetylase 2 inhibits interleukin-1beta-induced histone H4 acetylation on lysines 8 and 12. Mol Cell Biol. 2000; 20: 6891903.
  • 143
    Ito K, Jazrawi E, Cosio B, et al . p65-activated histone acetyltransferase activity is repressed by glucocorticoids: mifepristone fails to recruit HDAC2 to the p65-HAT complex. J Biol Chem. 2001; 276: 3020815.
  • 144
    Ito K, Yamamura S, Essilfie-Quaye S, et al . Histone deacetylase 2-mediated deacetylation of the glucocorticoid receptor enables NF-kappaB suppression. J Exp Med. 2006; 203: 713.
  • 145
    Hussain SP, Harris CC. Inflammation and cancer: an ancient link with novel potentials. Int J Cancer. 2007; 121: 237380.
  • 146
    De Boer WI, Yao H, Rahman I. Future therapeutic treatment of COPD: struggle between oxidants and cytokines. Int J Chron Obstruct Pulmon Dis. 2007; 2: 20528.
  • 147
    Azad N, Rojanasakul Y, Vallyathan V. Inflammation and lung cancer: roles of reactive oxygen/nitrogen species. J Toxicol Environ Health B Crit Rev. 2008; 11: 115.
  • 148
    Naugler WE, Karin M. NF-kappaB and cancer-identifying targets and mechanisms. Curr Opin Genet Dev. 2008; 18: 1926.
  • 149
    Rahman I, Gilmour PS, Jimenez LA, et al . Oxidative stress and TNF-alpha induce histone acetylation and NF-kappaB/AP-1 activation in alveolar epithelial cells: potential mechanism in gene transcription in lung inflammation. Mol Cell Biochem. 2002; 234–235: 23948.
  • 150
    Gerritsen ME, Williams AJ, Neish AS, et al . CREB-binding protein/p300 are transcriptional coactivators of p65. Proc Natl Acad Sci USA. 1997; 94: 292732.
  • 151
    Perkins ND, Felzien LK, Betts JC, et al . Regulation of NF-kappaB by cyclin-dependent kinases associated with the p300 coactivator. Science. 1997; 275: 5237.
  • 152
    Wadgaonkar R, Phelps KM, Haque Z, et al . CREB-binding protein is a nuclear integrator of nuclear factor-kappaB and p53 signaling. J Biol Chem. 1999; 274: 187982.
  • 153
    Na SY, Lee SK, Han SJ, et al . Steroid receptor coactivator-1 interacts with the p50 subunit and coactivates nuclear factor kappaB-mediated transactivations. J Biol Chem. 1998; 273: 108314.
  • 154
    Vanden Berghe W, De Bosscher K, Boone E, et al . The nuclear factor-kappaB engages CBP/p300 and histone acetyltransferase activity for transcriptional activation of the interleukin-6 gene promoter. J Biol Chem. 1999; 274: 320918.
  • 155
    Bartling TR, Drumm ML. Oxidative Stress Causes IL8 Promoter Hyperacetylation in Cystic Fibrosis Airway Cell Models. Am J Respir Cell Mol Biol. 2008.
  • 156
    Rajendrasozhan S, Yang SR, Edirisinghe I, et al . Deacetylases and NF-kappaB in redox regulation of cigarette smoke-induced lung inflammation: epigenetics in pathogenesis of COPD. Antioxid Redox Signal. 2008; 10: 799811.
  • 157
    Lee SK, Kim JH, Lee YC, et al . Silencing mediator of retinoic acid and thyroid hormone receptors, as a novel transcriptional corepressor molecule of activating protein-1, nuclear factor-kappaB, and serum response factor. J Biol Chem. 2000; 275: 124704.
  • 158
    Chen L, Fischle W, Verdin E, et al . Duration of nuclear NF-kappaB action regulated by reversible acetylation. Science. 2001; 293: 16537.
  • 159
    Ashburner BP, Westerheide SD, Baldwin AS Jr. The p65 (RelA) subunit of NF-kappaB interacts with the histone deacetylase (HDAC) corepressors HDAC1 and HDAC2 to negatively regulate gene expression. Mol Cell Biol. 2001; 21: 706577.
  • 160
    Karin M. The IkappaB kinase - a bridge between inflammation and cancer. Cell Res. 2008; 18: 33442.
  • 161
    Espinosa L, Santos S, Ingles-Esteve J, et al . p65-NFkappaB synergizes with Notch to activate transcription by triggering cytoplasmic translocation of the nuclear receptor corepressor N-CoR. J Cell Sci. 2002; 115: 1295303.
  • 162
    Nagy L, Kao HY, Chakravarti D, et al . Nuclear receptor repression mediated by a complex containing SMRT, mSin3A, and histone deacetylase. Cell. 1997; 89: 37380.
  • 163
    Espinosa L, Ingles-Esteve J, Robert-Moreno A, et al . IkappaBalpha and p65 regulate the cytoplasmic shuttling of nuclear corepressors: cross-talk between Notch and NFkappaB pathways. Mol Biol Cell. 2003; 14: 491502.
  • 164
    Hoberg JE, Popko AE, Ramsey CS, et al . IkappaB kinase alpha-mediated derepression of SMRT potentiates acetylation of RelA/p65 by p300. Mol Cell Biol. 2006; 26: 45771.
  • 165
    Hoberg JE, Yeung F, Mayo MW. SMRT derepression by the IkappaB kinase alpha: a prerequisite to NF-kappaB transcription and survival. Mol Cell. 2004; 16: 24555.
  • 166
    Park J, Lee JH, La M, et al . Inhibition of NF-kappaB acetylation and its transcriptional activity by Daxx. J Mol Biol. 2007; 368: 38897.
  • 167
    Hollenbach AD, McPherson CJ, Mientjes EJ, et al . Daxx and histone deacetylase II associate with chromatin through an interaction with core histones and the chromatin-associated protein Dek. J Cell Sci. 2002; 115: 331930.
  • 168
    Kuo HY, Chang CC, Jeng JC, et al . SUMO modification negatively modulates the transcriptional activity of CREB-binding protein via the recruitment of Daxx. Proc Natl Acad Sci USA. 2005; 102: 169738.
  • 169
    Yang SR, Chida AS, Bauter MR, et al . Cigarette smoke induces proinflammatory cytokine release by activation of NF-kappaB and posttranslational modifications of histone deacetylase in macrophages. Am J Physiol Lung Cell Mol Physiol. 2006; 291: L4657.
  • 170
    Yeung F, Hoberg JE, Ramsey CS, et al . Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J. 2004; 23: 236980.
  • 171
    Yang SR, Wright J, Bauter M, et al . Sirtuin regulates cigarette smoke-induced proinflammatory mediator release via RelA/p65 NF-kappaB in macrophages in vitro and in rat lungs in vivo: implications for chronic inflammation and aging. Am J Physiol Lung Cell Mol Physiol. 2007; 292: L56776.
  • 172
    Calao M, Burny A, Quivy V, et al . A pervasive role of histone acetyltransferases and deacetylases in an NF-kappaB-signaling code. Trends Biochem Sci. 2008; 33: 33949.
  • 173
    Miller-Kasprzak E, Jagodzinski PP. 5-Aza-2’-deoxycytidine increases the expression of anti-angiogenic vascular endothelial growth factor 189b variant in human lung microvascular endothelial cells. Biomed Pharmacother. 2008; 62: 15863.
  • 174
    Yue W, Dacic S, Sun Q, et al . Frequent inactivation of RAMP2, EFEMP1 and Dutt1 in lung cancer by promoter hypermethylation. Clin Cancer Res. 2007; 13: 433644.
  • 175
    Chen Y, Pacyna-Gengelbach M, Ye F, et al . Insulin-like growth factor binding protein-related protein 1 (IGFBP-rP1) has potential tumour-suppressive activity in human lung cancer. J Pathol. 2007; 211: 4318.
  • 176
    Shames DS, Girard L, Gao B, et al . A genome-wide screen for promoter methylation in lung cancer identifies novel methylation markers for multiple malignancies. PLoS Med. 2006; 3: e486.
  • 177
    Chang HC, Cho CY, Hung WC. Downregulation of RECK by promoter methylation correlates with lymph node metastasis in non-small cell lung cancer. Cancer Sci. 2007; 98: 16973.
  • 178
    Chen H, Suzuki M, Nakamura Y, et al . Aberrant methylation of RASGRF2 and RASSF1A in human non-small cell lung cancer. Oncol Rep. 2006; 15: 12815.
  • 179
    Tada Y, Brena RM, Hackanson B, et al . Epigenetic modulation of tumor suppressor CCAAT/enhancer binding protein alpha activity in lung cancer. J Natl Cancer Inst. 2006; 98: 396406.
  • 180
    Smith LT, Lin M, Brena RM, et al . Epigenetic regulation of the tumor suppressor gene TCF21 on 6q23-q24 in lung and head and neck cancer. Proc Natl Acad Sci USA. 2006; 103: 9827.
  • 181
    Izumi H, Inoue J, Yokoi S, et al . Frequent silencing of DBC1 is by genetic or epigenetic mechanisms in non-small cell lung cancers. Hum Mol Genet. 2005; 14: 9971007.
  • 182
    Gal-Yam EN, Saito Y, Egger G, et al . Cancer epigenetics: modifications, screening, and therapy. Annu Rev Med. 2008; 59: 26780.
  • 183
    Tessema M, Belinsky SA. Mining the epigenome for methylated genes in lung cancer. Proc Am Thorac Soc. 2008; 5: 80610.
  • 184
    Lawless MW, Norris S, O'Byrne KJ, et al . Targeting histone deacetylases for the treatment of disease. J Cell Mol Med. 2009;13: 82652.
  • 185
    Lawless MW, Norris S, O'Byrne KJ, et al . Targeting Histone Deacetylases for the treatment of immune, endocrine & metabolic disorders. Endocr Metab Immune Disord – Drug Targets. 2009; 9: 84107.
  • 186
    Mann BS, Johnson JR, Cohen MH, et al . FDA approval summary: vorinostat for treatment of advanced primary cutaneous T-cell lymphoma. Oncologist. 2007; 12: 124752.
  • 187
    Kaminskas E, Farrell AT, Wang YC, et al . FDA drug approval summary: azacitidine (5-azacytidine, Vidaza) for injectable suspension. Oncologist. 2005; 10: 17682.
  • 188
    Gore SD, Jones C, Kirkpatrick P. Decitabine. Nat Rev Drug Discov. 2006; 5: 8912.
  • 189
    Talalay P, Fahey JW, Holtzclaw WD, et al . Chemoprotection against cancer by phase 2 enzyme induction. Toxicol Lett. 1995; 82–83: 1739.
  • 190
    Myzak MC, Karplus PA, Chung FL, et al . A novel mechanism of chemoprotection by sulforaphane: inhibition of histone deacetylase. Cancer Res. 2004; 64: 576774.
  • 191
    Mi L, Wang X, Govind S, et al . The role of protein binding in induction of apoptosis by phenethyl isothiocyanate and sulforaphane in human non-small lung cancer cells. Cancer Res. 2007; 67: 640916.
  • 192
    Mi L, Xiao Z, Hood BL, et al . Covalent binding to tubulin by isothiocyanates. A mechanism of cell growth arrest and apoptosis. J Biol Chem. 2008; 283: 2213646.
  • 193
    Mi L, Chung FL. Binding to protein by isothiocyanates: a potential mechanism for apoptosis induction in human nonsmall lung cancer cells. Nutr Cancer. 2008; 60: 1220.
  • 194
    Liang H, Lai B, Yuan Q. Sulforaphane induces cell-cycle arrest and apoptosis in cultured human lung adenocarcinoma LTEP-A2 cells and retards growth of LTEP-A2 xenografts in vivo. J Nat Prod. 2008; 71: 19114.
  • 195
    Jin CY, Moon DO, Lee JD, et al . Sulforaphane sensitizes tumor necrosis factor-related apoptosis-inducing ligand-mediated apoptosis through downregulation of ERK and Akt in lung adenocarcinoma A549 cells. Carcinogenesis. 2007; 28: 105866.
  • 196
    Conaway CC, Wang CX, Pittman B, et al . Phenethyl isothiocyanate and sulforaphane and their N-acetylcysteine conjugates inhibit malignant progression of lung adenomas induced by tobacco carcinogens in A/J mice. Cancer Res. 2005; 65: 854857.
  • 197
    Menon VP, Sudheer AR. Antioxidant and anti-inflammatory properties of curcumin. Adv Exp Med Biol. 2007; 595: 10525.
  • 198
    Rahman I. Dietary polyphenols mediated regulation of oxidative stress and chromatin remodeling in inflammation. Nutr Rev. 2008; 66: S425.
  • 199
    Venkatesan N, Punithavathi D, Babu M. Protection from acute and chronic lung diseases by curcumin. Adv Exp Med Biol. 2007; 595: 379405.
  • 200
    Anand P, Sundaram C, Jhurani S, et al . Curcumin and cancer: an “old-age” disease with an “age-old” solution. Cancer Lett. 2008; 267: 13364.
  • 201
    Lee J, Jung HH, Im YH, et al . Interferon-alpha resistance can be reversed by inhibition of IFN-alpha-induced COX-2 expression potentially via STAT1 activation in A549 cells. Oncol Rep. 2006; 15: 15419.
  • 202
    Andjelkovic T, Pesic M, Bankovic J, et al . Synergistic effects of the purine analog sulfinosine and curcumin on the multidrug resistant human non-small cell lung carcinoma cell line (NCI-H460/R). Cancer Biol Ther. 2008; 7: 102432.
  • 203
    Sen S, Sharma H, Singh N. Curcumin enhances Vinorelbine mediated apoptosis in NSCLC cells by the mitochondrial pathway. Biochem Biophys Res Commun. 2005; 331: 124552.
  • 204
    Sharma RA, Euden SA, Platton SL, et al . Phase I clinical trial of oral curcumin: biomarkers of systemic activity and compliance. Clin Cancer Res. 2004; 10: 684754.
  • 205
    Morimoto T, Sunagawa Y, Kawamura T, et al . The dietary compound curcumin inhibits p300 histone acetyltransferase activity and prevents heart failure in rats. J Clin Invest. 2008; 118: 86878.
  • 206
    Marcu MG, Jung YJ, Lee S, et al . Curcumin is an inhibitor of p300 histone acetylatransferase. Med Chem. 2006; 2: 16974.
  • 207
    Balasubramanyam K, Varier RA, Altaf M, et al . Curcumin, a novel p300/CREB-binding protein-specific inhibitor of acetyltransferase, represses the acetylation of histone/nonhistone proteins and histone acetyltransferase-dependent chromatin transcription. J Biol Chem. 2004; 279: 5116371.
  • 208
    Kang J, Chen J, Shi Y, et al . Curcumin-induced histone hypoacetylation: the role of reactive oxygen species. Biochem Pharmacol. 2005; 69: 120513.
  • 209
    Liu HL, Chen Y, Cui GH, et al . Curcumin, a potent anti-tumor reagent, is a novel histone deacetylase inhibitor regulating B-NHL cell line Raji proliferation. Acta Pharmacol Sin. 2005; 26: 6039.
  • 210
    Chen Y, Shu W, Chen W, et al . Curcumin, both histone deacetylase and p300/CBP-specific inhibitor, represses the activity of nuclear factor kappa B and Notch 1 in Raji cells. Basic Clin Pharmacol Toxicol. 2007; 101: 42733.
  • 211
    Plummer SM, Holloway KA, Manson MM, et al . Inhibition of cyclo-oxygenase 2 expression in colon cells by the chemopreventive agent curcumin involves inhibition of NF-kappaB activation via the NIK/IKK signalling complex. Oncogene. 1999; 18: 601320.
  • 212
    Bachmeier BE, Mohrenz IV, Mirisola V, et al . Curcumin downregulates the inflammatory cytokines CXCL1 and -2 in breast cancer cells via NFkappaB. Carcinogenesis. 2008; 29: 77989.
  • 213
    Nonn L, Duong D, Peehl DM. Chemopreventive anti-inflammatory activities of curcumin and other phytochemicals mediated by MAP kinase phosphatase-5 in prostate cells. Carcinogenesis. 2007; 28: 118896.
  • 214
    Andreadi CK, Howells LM, Atherfold PA, et al . Involvement of Nrf2, p38, B-Raf, and nuclear factor-kappaB, but not phosphatidylinositol 3-kinase, in induction of hemeoxygenase-1 by dietary polyphenols. Mol Pharmacol. 2006; 69: 103340.
  • 215
    Dickinson DA, Iles KE, Zhang H, et al . Curcumin alters EpRE and AP-1 binding complexes and elevates glutamate-cysteine ligase gene expression. FASEB J. 2003; 17: 4735.
  • 216
    Iqbal M, Sharma SD, Okazaki Y, et al . Dietary supplementation of curcumin enhances antioxidant and phase II metabolizing enzymes in ddY male mice: possible role in protection against chemical carcinogenesis and toxicity. Pharmacol Toxicol. 2003; 92: 338.
  • 217
    Meja KK, Rajendrasozhan S, Adenuga D, et al . Curcumin restores corticosteroid function in monocytes exposed to oxidants by maintaining HDAC2. Am J Respir Cell Mol Biol. 2008; 39: 31223.
  • 218
    Cheung KL, Khor TO, Kong AN. Synergistic effect of combination of phenethyl isothiocyanate and sulforaphane or curcumin and sulforaphane in the inhibition of inflammation. Pharm Res. 2009; 26: 22431.
  • 219
    Fang MZ, Wang Y, Ai N, et al . Tea polyphenol (-)-epigallocatechin-3-gallate inhibits DNA methyltransferase and reactivates methylation-silenced genes in cancer cell lines. Cancer Res. 2003; 63: 756370.
  • 220
    Lee WJ, Shim JY, Zhu BT. Mechanisms for the inhibition of DNA methyltransferases by tea catechins and bioflavonoids. Mol Pharmacol. 2005; 68: 101830.
  • 221
    Sriram N, Kalayarasan S, Sudhandiran G. Enhancement of antioxidant defense system by epigallocatechin-3-gallate during bleomycin induced experimental pulmonary fibrosis. Biol Pharm Bull. 2008; 31: 130611.
  • 222
    Yuan JH, Li YQ, Yang XY. Inhibition of epigallocatechin gallate on orthotopic colon cancer by upregulating the Nrf2-UGT1A signal pathway in nude mice. Pharmacology. 2007; 80: 26978.
  • 223
    Vittal R, Selvanayagam ZE, Sun Y, et al . Gene expression changes induced by green tea polyphenol (-)-epigallocatechin-3-gallate in human bronchial epithelial 21BES cells analyzed by DNA microarray. Mol Cancer Ther. 2004; 3: 10919.
  • 224
    Syed DN, Afaq F, Kweon MH, et al . Green tea polyphenol EGCG suppresses cigarette smoke condensate-induced NF-kappaB activation in normal human bronchial epithelial cells. Oncogene. 2007; 26: 67382.
  • 225
    Chen PC, Wheeler DS, Malhotra V, et al . A green tea-derived polyphenol, epigallocatechin-3-gallate, inhibits IkappaB kinase activation and IL-8 gene expression in respiratory epithelium. Inflammation. 2002; 26: 23341.
  • 226
    Xu Y, Ho CT, Amin SG, et al . Inhibition of tobacco-specific nitrosamine-induced lung tumorigenesis in A/J mice by green tea and its major polyphenol as antioxidants. Cancer Res. 1992; 52: 38759.
  • 227
    Komori A, Yatsunami J, Okabe S, et al . Anticarcinogenic activity of green tea polyphenols. Jpn J Clin Oncol. 1993; 23: 18690.
  • 228
    Mimoto J, Kiura K, Matsuo K, et al . (-)-Epigallocatechin gallate can prevent cisplatin-induced lung tumorigenesis in A/J mice. Carcinogenesis. 2000; 21: 9159.
  • 229
    Yang GY, Liao J, Kim K, et al . Inhibition of growth and induction of apoptosis in human cancer cell lines by tea polyphenols. Carcinogenesis. 1998; 19: 6116.
  • 230
    Okabe S, Suganuma M, Hayashi M, et al . Mechanisms of growth inhibition of human lung cancer cell line, PC-9, by tea polyphenols. Jpn J Cancer Res. 1997; 88: 63943.
  • 231
    Cao J, Xu Y, Chen J, Klaunig JE. Chemopreventive effects of green and black tea on pulmonary and hepatic carcinogenesis. Fundam Appl Toxicol. 1996; 29: 24450.
  • 232
    Fujimoto N, Sueoka N, Sueoka E, et al . Lung cancer prevention with (-)-epigallocatechin gallate using monitoring by heterogeneous nuclear ribonucleoprotein B1. Int J Oncol. 2002; 20: 12339.
  • 233
    Yang GY, Liao J, Li C, et al . Effect of black and green tea polyphenols on c-jun phosphorylation and H(2)O(2) production in transformed and non-transformed human bronchial cell lines: possible mechanisms of cell growth inhibition and apoptosis induction. Carcinogenesis. 2000; 21: 20359.
  • 234
    Witschi H, Espiritu I, Ly M, et al . Chemoprevention of tobacco smoke-induced lung tumors by inhalation of an epigallocatechin gallate (EGCG) aerosol: a pilot study. Inhal Toxicol. 2004; 16: 76370.
  • 235
    Yang CS, Liao J, Yang GY, et al . Inhibition of lung tumorigenesis by tea. Exp Lung Res. 2005; 31: 13544.
  • 236
    Yang J, Wei D, Liu J. Repressions of MMP-9 expression and NF-kappa B localization are involved in inhibition of lung carcinoma 95-D cell invasion by (-)-epigallocatechin-3-gallate. Biomed Pharmacother. 2005; 59: 98103.
  • 237
    Sadava D, Whitlock E, Kane SE. The green tea polyphenol, epigallocatechin-3-gallate inhibits telomerase and induces apoptosis in drug-resistant lung cancer cells. Biochem Biophys Res Commun. 2007; 360: 2337.
  • 238
    Yan Y, Cook J, McQuillan J, et al . Chemopreventive effect of aerosolized polyphenon E on lung tumorigenesis in A/J mice. Neoplasia. 2007; 9: 4015.
  • 239
    Banerjee S, Manna S, Mukherjee S, et al . Black tea polyphenols restrict benzopyrene-induced mouse lung cancer progression through inhibition of Cox-2 and induction of caspase-3 expression. Asian Pac J Cancer Prev. 2006; 7: 6616.
  • 240
    Ogasawara M, Matsunaga T, Suzuki H. Differential effects of antioxidants on the in vitro invasion, growth and lung metastasis of murine colon cancer cells. Biol Pharm Bull. 2007; 30: 2004.
  • 241
    Shirai T, Reshad K, Yoshitomi A, et al . Green tea-induced asthma: relationship between immunological reactivity, specific and non-specific bronchial responsiveness. Clin Exp Allergy. 2003; 33: 12525.
  • 242
    Cauchi S, Han W, Kumar SV, et al . Haplotype-environment interactions that regulate the human glutathione S-transferase P1 promoter. Cancer Res. 2006; 66: 643948.
  • 243
    Wang LI, Giovannucci EL, Hunter D, et al . Dietary intake of Cruciferous vegetables, Glutathione S-transferase (GST) polymorphisms and lung cancer risk in a Caucasian population. Cancer Causes Control. 2004; 15: 97785.
  • 244
    Zhao B, Seow A, Lee EJ, et al . Dietary isothiocyanates, glutathione S-transferase -M1, -T1 polymorphisms and lung cancer risk among Chinese women in Singapore. Cancer Epidemiol Biomarkers Prev. 2001; 10: 10637.
  • 245
    London SJ, Yuan JM, Chung FL, et al . Isothiocyanates, glutathione S-transferase M1 and T1 polymorphisms, and lung-cancer risk: a prospective study of men in Shanghai, China. Lancet. 2000; 356: 7249.
  • 246
    Spitz MR, Duphorne CM, Detry MA, et al . Dietary intake of isothiocyanates: evidence of a joint effect with glutathione S-transferase polymorphisms in lung cancer risk. Cancer Epidemiol Biomarkers Prev. 2000; 9: 101720.
  • 247
    Riedl MA, Saxon A, Diaz-Sanchez D. Oral sulforaphane increases Phase II antioxidant enzymes in the human upper airway. Clin Immunol. 2009; 130: 24451.
  • 248
    Tang L, Zirpoli GR, Reid ME, et al . Cruciferous vegetable intake is inversely associated with lung cancer risk among smokers. Seventh Annual AACR International Conference on Frontiers in Cancer Prevention Research. 2008: Poster B132.
  • 249
    Riso P, Martini D, Visioli F, et al . Effect of broccoli intake on markers related to oxidative stress and cancer risk in healthy smokers and nonsmokers. Nutr Cancer. 2009; 61: 2327.
  • 250
    Paolini M, Perocco P, Canistro D, et al . Induction of cytochrome P450, generation of oxidative stress and in vitro cell-transforming and DNA-damaging activities by glucoraphanin, the bioprecursor of the chemopreventive agent sulforaphane found in broccoli. Carcinogenesis. 2004; 25: 617.
  • 251
    Lao CD, Ruffin MTt, Normolle D, et al . Dose escalation of a curcuminoid formulation. BMC Complement Altern Med. doi: 10.1186/1472-6882-6-10.
  • 252
    Dhillon N, Aggarwal BB, Newman RA, et al . Phase II trial of curcumin in patients with advanced pancreatic cancer. Clin Cancer Res. 2008; 14: 44919.
  • 253
    Kurien BT, Singh A, Matsumoto H, et al . Improving the solubility and pharmacological efficacy of curcumin by heat treatment. Assay Drug Dev Technol. 2007; 5: 56776.
  • 254
    Ferrari E, Lazzari S, Marverti G, et al . Synthesis, cytotoxic and combined cDDP activity of new stable curcumin derivatives. Bioorg Med Chem. 2009; 17: 304352.
  • 255
    Vermeulen M, Klopping-Ketelaars IW, Van Den Berg R, et al . Bioavailability and kinetics of sulforaphane in humans after consumption of cooked versus raw broccoli. J Agric Food Chem. 2008; 56: 105059.
  • 256
    Conaway CC, Getahun SM, Liebes LL, et al . Disposition of glucosinolates and sulforaphane in humans after ingestion of steamed and fresh broccoli. Nutr Cancer. 2000; 38: 16878.
  • 257
    Hanlon N, Coldham N, Gielbert A, et al . Absolute bioavailability and dose-dependent pharmacokinetic behaviour of dietary doses of the chemopreventive isothiocyanate sulforaphane in rat. Br J Nutr. 2008; 99: 55964.
  • 258
    Hanlon N, Coldham N, Gielbert A, et al . Repeated intake of broccoli does not lead to higher plasma levels of sulforaphane in human volunteers. Cancer Lett. doi: 10.1016/j.canlet.2009-04-004.
  • 259
    Pei XY, Dai Y, Grant S. Synergistic induction of oxidative injury and apoptosis in human multiple myeloma cells by the proteasome inhibitor bortezomib and histone deacetylase inhibitors. Clin Cancer Res. 2004; 10: 383952.
  • 260
    Feng R, Oton A, Mapara MY, et al . The histone deacetylase inhibitor, PXD101, potentiates bortezomib-induced anti-multiple myeloma effect by induction of oxidative stress and DNA damage. Br J Haematol. 2007; 139: 38597.
  • 261
    Portanova P, Russo T, Pellerito O, et al . The role of oxidative stress in apoptosis induced by the histone deacetylase inhibitor suberoylanilide hydroxamic acid in human colon adenocarcinoma HT-29 cells. Int J Oncol. 2008; 33: 32531.
  • 262
    Punturieri A, Szabo E, Croxton TL, et al . Lung cancer and chronic obstructive pulmonary disease: needs and opportunities for integrated research. J Natl Cancer Inst. 2009; 101: 5549.
  • 263
    Aoshiba K, Nagai A. Differences in airway remodeling between asthma and chronic obstructive pulmonary disease. Clin Rev Allergy Immunol. 2004; 27: 3543.
  • 264
    Bai TR, Knight DA. Structural changes in the airways in asthma: observations and consequences. Clin Sci. 2005; 108: 46377.
  • 265
    Spears M, McSharry C, Thomson NC. Peroxisome proliferator-activated receptor-gamma agonists as potential anti-inflammatory agents in asthma and chronic obstructive pulmonary disease. Clin Exp Allergy. 2006; 36: 1494504.
  • 266
    Cosio BG, Tsaprouni L, Ito K, et al . Theophylline restores histone deacetylase activity and steroid responses in COPD macrophages. J Exp Med. 2004; 200: 68995.
  • 267
    Cosio BG, Iglesias A, Rios A, et al . Low-dose theophylline enhances the anti-inflammatory effects of steroids during exacerbations of COPD. Thorax. 2009; 64: 4249.