SEARCH

SEARCH BY CITATION

References

  • 1
    Fähling M. Cellular oxygen sensing, signalling and how to survive translational arrest in hypoxia. Acta Physiol. 2009; 195: 20530.
  • 2
    Harris AL. Hypoxia – a key regulatory factor in tumour growth. Nat Rev Cancer. 2002; 2: 3847.
  • 3
    Lopez-Barneo J, Del Toro R, Levitsky KL, et al . Regulation of oxygen sensing by ion channels. J Appl Physiol. 2004; 96: 118795.
  • 4
    Vaupel P, Hockel M, Mayer A. Detection and characterization of tumor hypoxia using pO2 histography. Antioxid Redox Signal. 2007; 9: 122135.
  • 5
    Giaccia AJ, Simon MC, Johnson R. The biology of hypoxia: the role of oxygen sensing in development, normal function, and disease. Genes Dev. 2004; 18: 218394.
  • 6
    Storey KB, Storey JM. Metabolic rate depression in animals: transcriptional and translational controls. Biol Rev Camb Philos Soc. 2004; 79: 20733.
  • 7
    Ebbesen P, Pettersen EO, Gorr TA, et al . Taking advantage of tumor cell adaptations to hypoxia for developing new tumor markers and treatment strategies. J Enzyme Inhib Med Chem. 2009; 24: 139.
  • 8
    Rolfe DF, Brown GC. Cellular energy utilization and molecular origin of standard metabolic rate in mammals. Physiol Rev. 1997; 77: 73158.
  • 9
    Hochachka PW, Buck LT, Doll CJ, et al . Unifying theory of hypoxia tolerance: molecular/metabolic defense and rescue mechanisms for surviving oxygen lack. Proc Natl Acad Sci USA. 1996; 93: 94938.
  • 10
    Chung FZ, Weber HW, Appleman MM. Extensive but reversible depletion of ATP via adenylate cyclase in rat adipocytes. Proc Natl Acad Sci USA. 1985; 82: 16147.
  • 11
    Holz MK, Ballif BA, Gygi SP, et al . mTOR and S6K1 mediate assembly of the translation preinitiation complex through dynamic protein interchange and ordered phosphorylation events. Cell. 2005; 123: 56980.
  • 12
    Scheper GC, Van Der Knaap MS, Proud CG. Translation matters: protein synthesis defects in inherited disease. Nat Rev Genet. 2007; 8: 71123.
  • 13
    Storey KB, Hochachka PW. Enzymes of energy metabolism from a vertebrate facultative anaerobe, Pseudemys scripta. Turtle heart phosphofructokinase. J Biol Chem. 1974; 249: 141722.
  • 14
    Hochachka PW. Defense strategies against hypoxia and hypothermia. Science. 1986; 231: 23441.
  • 15
    Lutz PL. Mechanisms for anoxic survival in the vertebrate brain. Annu Rev Physiol. 1992; 54: 60118.
  • 16
    Storey KB. Metabolic adaptations supporting anoxia tolerance in reptiles: recent advances. Comp Biochem Physiol B Biochem Mol Biol. 1996; 113: 2335.
  • 17
    Hand SC. Oxygen, pHi and arrest of biosynthesis in brine shrimp embryos. Acta Physiol Scand. 1997; 161: 54351.
  • 18
    Ibarguren I, Diaz-Enrich MJ, Cao J, et al . Regulation of the futile cycle of fructose phosphate in sea mussel. Comp Biochem Physiol B Biochem Mol Biol. 2000; 126: 495501.
  • 19
    Boutilier RG. Mechanisms of metabolic defense against hypoxia in hibernating frogs. Respir Physiol. 2001; 128: 36577.
  • 20
    Larade K, Storey KB. Reversible suppression of protein synthesis in concert with polysome disaggregation during anoxia exposure in Littorina littorea. Mol Cell Biochem. 2002; 232: 1217.
  • 21
    Tinton S, Calderon PB. Role of protein phosphorylation in the inhibition of protein synthesis caused by hypoxia in rat hepatocytes. Int J Toxicol. 2001; 20: 217.
  • 22
    Guppy M, Withers P. Metabolic depression in animals: physiological perspectives and biochemical generalizations. Biol Rev Camb Philos Soc. 1999; 74: 140.
  • 23
    Pettersen EO, Juul NO, Ronning OW. Regulation of protein metabolism of human cells during and after acute hypoxia. Cancer Res. 1986; 46: 434651.
  • 24
    Storey KB. Mammalian hibernation. Transcriptional and translational controls. Adv Exp Med Biol. 2003; 543: 2138.
  • 25
    DeGracia DJ, Kumar R, Owen CR, et al . Molecular pathways of protein synthesis inhibition during brain reperfusion: implications for neuronal survival or death. J Cereb Blood Flow Metab. 2002; 22: 12741.
  • 26
    Anderson LL, Mao X, Scott BA, et al . Survival from hypoxia in C. elegans by inactivation of aminoacyl-tRNA synthetases. Science. 2009; 323: 6303.
  • 27
    Gladden LB. Lactate metabolism: a new paradigm for the third millennium. J Physiol. 2004; 558: 530.
  • 28
    Kuznetsov AV, Janakiraman M, Margreiter R, et al . Regulating cell survival by controlling cellular energy production: novel functions for ancient signaling pathways FEBS Lett. 2004; 577: 14.
  • 29
    Mekhail K, Rivero-Lopez L, Khacho M, et al . Restriction of rRNA synthesis by VHL maintains energy equilibrium under hypoxia. Cell Cycle. 2006; 5: 240113.
  • 30
    Gebauer F, Hentze MW. Molecular mechanisms of translational control. Nat Rev Mol Cell Biol. 2004; 5: 82735.
  • 31
    Liu L, Cash TP, Jones RG, et al . Hypoxia-induced energy stress regulates mRNA translation and cell growth. Mol Cell. 2006; 21: 52131.
  • 32
    Thomas JD, Johannes GJ. Identification of mRNAs that continue to associate with polysomes during hypoxia. RNA. 2007; 13: 111631.
  • 33
    Koritzinsky M, Magagnin MG, Van Den Beucken T, et al . Gene expression during acute and prolonged hypoxia is regulated by distinct mechanisms of translational control. EMBO J. 2006; 25: 111425.
  • 34
    Land SC, Hochachka PW. Protein turnover during metabolic arrest in turtle hepatocytes: role and energy dependence of proteolysis. Am J Physiol. 1994; 266: C102836.
  • 35
    Hand SC. Quiescence in Artemia franciscana embryos: reversible arrest of metabolism and gene expression at low oxygen levels. J Exp Biol. 1998; 201: 123342.
  • 36
    Thomas JD, Dias LM, Johannes GJ. Translational repression during chronic hypoxia is dependent on glucose levels. RNA. 2008; 14: 77181.
  • 37
    Fähling M, Steege A, Mrowka R, et al . Rate of protein synthesis under hypometabolic conditions: the down and up and down. FASEB J. 2008; 22: 1174.
  • 38
    Van Den Beucken T, Koritzinsky M, Wouters BG. Translational control of gene expression during hypoxia. Cancer Biol Ther. 2006; 5: 74955.
  • 39
    Ingwall JS. Energy metabolism in heart failure and remodelling. Cardiovasc Res. 2009; 81: 4129.
  • 40
    Iyer NV, Kotch LE, Agani F, et al . Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1 alpha. Genes Dev. 1998; 12: 14962.
  • 41
    Clemens MJ, Bommer UA. Translational control: the cancer connection. Int J Biochem Cell Biol. 1999; 31: 123.
  • 42
    Preiss T, Hentze MW. From factors to mechanisms: translation and translational control in eukaryotes. Curr Opin Genet Dev. 1999; 9: 51521.
  • 43
    Dever TE. Gene-specific regulation by general translation factors. Cell. 2002; 108: 54556.
  • 44
    Ramakrishnan V. Ribosome structure and the mechanism of translation. Cell. 2002; 108: 55772.
  • 45
    Proud CG. Signalling to translation: how signal transduction pathways control the protein synthetic machinery. Biochem J. 2007; 403: 21734.
  • 46
    Steitz TA. A structural understanding of the dynamic ribosome machine. Nat Rev Mol Cell Biol. 2008; 9: 24253.
  • 47
    Zaher HS, Green R. Fidelity at the molecular level: lessons from protein synthesis. Cell. 2009; 136: 74662.
  • 48
    Kozak M. Initiation of translation in prokaryotes and eukaryotes. Gene. 1999; 234: 187208.
  • 49
    Sonenberg N, Hinnebusch AG. New modes of translational control in development, behavior, and disease. Mol Cell. 2007; 28: 7219.
  • 50
    Preiss T, Hentze W. Starting the protein synthesis machine: eukaryotic translation initiation. Bioessays. 2003; 25: 120111.
  • 51
    Blais JD, Filipenko V, Bi M, et al . Activating transcription factor 4 is translationally regulated by hypoxic stress. Mol Cell Biol. 2004; 24: 746982.
  • 52
    Kimball SR. Eukaryotic initiation factor eIF2. Int J Biochem Cell Biol. 1999; 31: 259.
  • 53
    Harding HP, Zhang Y, Ron D. Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature. 1999; 397: 2714.
  • 54
    Koumenis C, Wouters BG. “Translating” tumor hypoxia: unfolded protein response (UPR)-dependent and UPR-independent pathways. Mol Cancer Res. 2006; 4: 42336.
  • 55
    Koumenis C, Naczki C, Koritzinsky M, et al . Regulation of protein synthesis by hypoxia via activation of the endoplasmic reticulum kinase PERK and phosphorylation of the translation initiation factor eIF2alpha. Mol Cell Biol. 2002; 22: 740516.
  • 56
    Gingras AC, Raught B, Sonenberg N. Regulation of translation initiation by FRAP/mTOR. Genes Dev. 2001; 15: 80726.
  • 57
    Ma XM, Blenis J. Molecular mechanisms of mTOR-mediated translational control. Nat Rev Mol Cell Biol. 2009; 10: 30718.
  • 58
    Arsham AM, Howell JJ, Simon MC. A novel hypoxia-inducible factor-independent hypoxic response regulating mammalian target of rapamycin and its targets. J Biol Chem. 2003; 278: 2965560.
  • 59
    Brugarolas J, Lei K, Hurley RL, et al . Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex. Genes Dev. 2004; 18: 2893904.
  • 60
    Dubois L, Magagnin MG, Cleven AH, et al . Inhibition of 4E-BP1 sensitizes U87 glioblastoma xenograft tumors to irradiation by decreasing hypoxia tolerance. Int J Radiat Oncol Biol Phys. 2009; 73: 121927.
  • 61
    Magagnin MG, Van Den Beucken T, Sergeant K, et al . The mTOR target 4E-BP1 contributes to differential protein expression during normoxia and hypoxia through changes in mRNA translation efficiency. Proteomics. 2008; 8: 101928.
  • 62
    Wang X, Li W, Williams M, et al . Regulation of elongation factor 2 kinase by p90(RSK1) and p70 S6 kinase. EMBO J. 2001; 20: 43709.
  • 63
    Reiling JH, Sabatini DM. Stress and mTORture signaling. Oncogene. 2006; 25: 637383.
  • 64
    Wouters BG, Koritzinsky M. Hypoxia signalling through mTOR and the unfolded protein response in cancer. Nat Rev Cancer. 2008; 8: 85164.
  • 65
    Inoki K, Li Y, Xu T, Guan KL. Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes Dev. 2003; 17: 182934.
  • 66
    Borger DR, Gavrilescu LC, Bucur MC, et al . AMP-activated protein kinase is essential for survival in chronic hypoxia. Biochem Biophys Res Commun. 2008; 370: 2304.
  • 67
    Gwinn DM, Shackelford DB, Egan DF, et al . AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell. 2008; 30: 21426.
  • 68
    Horman S, Browne G, Krause U, et al . Activation of AMP-activated protein kinase leads to the phosphorylation of elongation factor 2 and an inhibition of protein synthesis. Curr Biol. 2002; 12: 141923.
  • 69
    Chen G, Gharib TG, Huang CC, et al . Discordant protein and mRNA expression in lung adenocarcinomas. Mol Cell Proteomics. 2002; 1: 30413.
  • 70
    Gygi SP, Rochon Y, Franza BR, Aebersold R. Correlation between protein and mRNA abundance in yeast. Mol Cell Biol. 1999; 19: 172030.
  • 71
    Fähling M, Steege A, Perlewitz A, et al . Role of nucleolin in posttranscriptional control of MMP-9 expression. Biochim Biophys Acta. 2005; 1731: 3240.
  • 72
    Fähling M, Mrowka R, Steege A, et al . Translational control of collagen prolyl 4-hydroxylase-alpha(I) gene expression under hypoxia. J Biol Chem. 2006; 281: 26089101.
  • 73
    Fähling M, Mrowka R, Steege A, et al . Translational regulation of the human achaete-scute homologue-1 by fragile X mental retardation protein. J Biol Chem. 2009; 284: 425566.
  • 74
    Ufer C, Wang CC, Fähling M, et al . Translational regulation of glutathione peroxidase 4 expression through guanine-rich sequence-binding factor 1 is essential for embryonic brain development. Genes Dev. 2008; 22: 183850.
  • 75
    Koritzinsky M, Seigneuric R, Magagnin MG, et al . The hypoxic proteome is influenced by gene-specific changes in mRNA translation. Radiother Oncol. 2005; 76: 17786.
  • 76
    Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004; 116: 28197.
  • 77
    Dalmay T, Edwards DR. MicroRNAs and the hallmarks of cancer. Oncogene. 2006; 25: 61705.
  • 78
    Chu CY, Rana TM. Small RNAs: regulators and guardians of the genome. J Cell Physiol. 2007; 213: 4129.
  • 79
    Meister G. miRNAs get an early start on translational silencing. Cell. 2007; 131: 258.
  • 80
    Filipowicz W, Bhattacharyya SN, Sonenberg N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight Nat Rev Genet. 2008; 9: 10214.
  • 81
    Czyzyk-Krzeska MF, Beresh JE. Characterization of the hypoxia-inducible protein binding site within the pyrimidine-rich tract in the 3′-untranslated region of the tyrosine hydroxylase mRNA. J Biol Chem. 1996; 271: 32939.
  • 82
    Donker RB, Mouillet JF, Nelson DM, Sadovsky Y. The expression of Argonaute2 and related microRNA biogenesis proteins in normal and hypoxic trophoblasts. Mol Hum Reprod. 2007; 13: 2739.
  • 83
    Kulshreshtha R, Ferracin M, Negrini M, et al . Regulation of microRNA expression: the hypoxic component. Cell Cycle. 2007; 6: 142631.
  • 84
    Fasanaro P, D’Alessandra Y, Di S, et al . MicroRNA-210 modulates endothelial cell response to hypoxia and inhibits the receptor tyrosine kinase ligand Ephrin-A3. J Biol Chem. 2008; 283: 1587883.
  • 85
    Giannakakis A, Sandaltzopoulos R, Greshock J, et al . miR-210 links hypoxia with cell cycle regulation and is deleted in human epithelial ovarian cancer. Cancer Biol Ther. 2008; 7: 25564.
  • 86
    Kulshreshtha R, Ferracin M, Wojcik SE, et al . A microRNA signature of hypoxia. Mol Cell Biol. 2007; 27: 185967.
  • 87
    Oh N, Kim KM, Choe J, Kim YK. Pioneer round of translation mediated by nuclear cap-binding proteins CBP80/20 occurs during prolonged hypoxia. FEBS Lett. 2007; 581: 515864.
  • 88
    Levine T, Rabouille C. Endoplasmic reticulum: one continuous network compartmentalized by extrinsic cues. Curr Opin Cell Biol. 2005; 17: 3628.
  • 89
    Christensen AK, Kahn LE, Bourne CM. Circular polysomes predominate on the rough endoplasmic reticulum of somatotropes and mammotropes in the rat anterior pituitary. Am J Anat. 1987; 178: 110.
  • 90
    Lerner RS, Nicchitta CV. mRNA translation is compartmentalized to the endoplasmic reticulum following physiological inhibition of cap-dependent translation. RNA. 2006; 12: 77589.
  • 91
    Stephens SB, Dodd RD, Brewer JW, et al . Stable ribosome binding to the endoplasmic reticulum enables compartment-specific regulation of mRNA translation. Mol Biol Cell. 2005; 16: 581931.
  • 92
    Anderson P, Kedersha N. RNA granules. J Cell Biol. 2006; 172: 8038.
  • 93
    Anderson P, Kedersha N. Stressful initiations. J Cell Sci. 2002; 115: 322734.
  • 94
    Kedersha NL, Gupta M, Li W, et al . RNA-binding proteins TIA-1 and TIAR link the phosphorylation of eIF-2 alpha to the assembly of mammalian stress granules. J Cell Biol. 1999; 147: 143142.
  • 95
    McEwen E, Kedersha N, Song B, et al . Heme-regulated inhibitor kinase-mediated phosphorylation of eukaryotic translation initiation factor 2 inhibits translation, induces stress granule formation, and mediates survival upon arsenite exposure. J Biol Chem. 2005; 280: 1692533.
  • 96
    Lopez-Lastra M, Rivas A, Barria MI. Protein synthesis in eukaryotes: the growing biological relevance of cap-independent translation initiation. Biol Res. 2005; 38: 12146.
  • 97
    Graber TE, Holcik M. Cap-independent regulation of gene expression in apoptosis. Mol Biosyst. 2007; 3: 82534.
  • 98
    Nakamoto T. The initiation of eukaryotic and prokaryotic protein synthesis: a selective accessibility and multisubstrate enzyme reaction. Gene. 2007; 403: 15.
  • 99
    Nakamoto T. Evolution and the universality of the mechanism of initiation of protein synthesis. Gene. 2009; 432: 16.
  • 100
    Shirokikh NE, Spirin AS. Poly(A) leader of eukaryotic mRNA bypasses the dependence of translation on initiation factors. Proc Natl Acad Sci USA. 2008; 105: 1073843.
  • 101
    Pende M, Um SH, Mieulet V, et al . S6K1(−/−)/S6K2(−/−) mice exhibit perinatal lethality and rapamycin-sensitive 5′-terminal oligopyrimidine mRNA translation and reveal a mitogen-activated protein kinase-dependent S6 kinase pathway. Mol Cell Biol. 2004; 24: 311224.
  • 102
    Jastrzebski K, Hannan KM, Tchoubrieva EB, et al . Coordinate regulation of ribosome biogenesis and function by the ribosomal protein S6 kinase, a key mediator of mTOR function. Growth Factors. 2007; 25: 20926.
  • 103
    Brown JM, Wilson WR. Exploiting tumour hypoxia in cancer treatment. Nat Rev Cancer. 2004; 4: 43747.
  • 104
    Montanaro L, Trere D, Derenzini M. Nucleolus, ribosomes, and cancer. Am J Pathol. 2008; 173: 30110.
  • 105
    Ruggero D, Pandolfi PP. Does the ribosome translate cancer Nat Rev Cancer. 2003; 3: 17992.
  • 106
    Lee JW, Beebe K, Nangle LA, et al . Editing-defective tRNA synthetase causes protein misfolding and neurodegeneration. Nature. 2006; 443: 5055.
  • 107
    Nagatomo Y, Carabello BA, Hamawaki M, et al . Translational mechanisms accelerate the rate of protein synthesis during canine pressure-overload hypertrophy. Am J Physiol. 1999; 277: H217684.
  • 108
    Hannan RD, Jenkins A, Jenkins AK, et al . Cardiac hypertrophy: a matter of translation. Clin Exp Pharmacol Physiol. 2003; 30: 51727.
  • 109
    Kasinath BS, Mariappan MM, Sataranatarajan K, et al . Novel mechanisms of protein synthesis in diabetic nephropathy–role of mRNA translation. Rev Endocr Metab Disord. 2008; 9: 25566.
  • 110
    Komili S, Farny NG, Roth FP, et al . Functional specificity among ribosomal proteins regulates gene expression. Cell. 2007; 131: 55771.
  • 111
    Mauro VP, Edelman GM. The ribosome filter hypothesis. Proc Natl Acad Sci USA. 2002; 99: 120316.