SEARCH

SEARCH BY CITATION

References

  • 1
    Carmeliet P, Dor Y, Herbert JM, et al . Role of HIF-1alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature. 1998; 394: 48590.
  • 2
    Ryan HE, Lo J, Johnson RS. HIF-1 alpha is required for solid tumor formation and embryonic vascularization. EMBO J. 1998; 17: 300515.
  • 3
    Maxwell PH, Wiesener MS, Chang GW, et al . The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature. 1999; 399: 2715.
  • 4
    Ivan M, Kondo K, Yang H, et al . HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science. 2001; 292: 4648.
  • 5
    Jaakkola P, Mole DR, Tian YM, et al . Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science. 2001; 292: 46872.
  • 6
    Haase VH, Glickman JN, Socolovsky M, et al . Vascular tumors in livers with targeted inactivation of the von Hippel-Lindau tumor suppressor. Proc Natl Acad Sci USA. 2001; 98: 15838.
  • 7
    Kondo K, Klco J, Nakamura E, et al . Inhibition of HIF is necessary for tumor suppression by the von Hippel-Lindau protein. Cancer Cell. 2002; 1: 23746.
  • 8
    Rankin EB, Higgins DF, Walisser JA, et al . Inactivation of the arylhydrocarbon receptor nuclear translocator (Arnt) suppresses von Hippel-Lindau disease-associated vascular tumors in mice. Mol Cell Biol. 2005; 25: 316372.
  • 9
    Lee S, Nakamura E, Yang H, et al . Neuronal apoptosis linked to EglN3 prolyl hydroxylase and familial pheochromocytoma genes: developmental culling and cancer. Cancer Cell. 2005; 8: 15567.
  • 10
    Isaacs JS, Jung YJ, Mole DR, et al . HIF overexpression correlates with biallelic loss of fumarate hydratase in renal cancer: novel role of fumarate in regulation of HIF stability. Cancer Cell. 2005; 8: 14353.
  • 11
    Erler JT, Bennewith KL, Nicolau M, et al . Lysyl oxidase is essential for hypoxia-induced metastasis. Nature. 2006; 440: 12226.
  • 12
    Kim WY, Safran M, Buckley MR, et al . Failure to prolyl hydroxylate hypoxia-inducible factor alpha phenocopies VHL inactivation in vivo. EMBO J. 2006; 25: 465062.
  • 13
    Ladroue C, Carcenac R, Leporrier M, et al . PHD2 mutation and congenital erythrocytosis with paraganglioma. N Engl J Med. 2008; 359: 268592.
  • 14
    Zhao S, Lin Y, Xu W, et al . Glioma-derived mutations in IDH1 dominantly inhibit IDH1 catalytic activity and induce HIF-1alpha. Science. 2009; 324: 2615.
  • 15
    Gordan JD, Simon MC. Hypoxia-inducible factors: central regulators of the tumor phenotype. Curr Opin Genet Dev. 2007; 17: 717.
  • 16
    Epstein AC, Gleadle JM, McNeill LA, et al . C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell. 2001; 107: 4354.
  • 17
    Ivan M, Haberberger T, Gervasi DC, et al . Biochemical purification and pharmacological inhibition of a mammalian prolyl hydroxylase acting on hypoxia-inducible factor. Proc Natl Acad Sci USA. 2002; 99: 1345964.
  • 18
    Kivirikko KI, Myllyharju J. Prolyl 4-hydroxylases and their protein disulfide isomerase subunit. Matrix Biol. 1998; 16: 35768.
  • 19
    Schofield CJ, Zhang Z. Structural and mechanistic studies on 2-oxoglutarate-dependent oxygenases and related enzymes. Curr Opin Struct Biol. 1999; 9: 72231.
  • 20
    Bruick RK, McKnight SL. A conserved family of prolyl-4-hydroxylases that modify HIF. Science. 2001; 294: 133740.
  • 21
    McNeill LA, Hewitson KS, Gleadle JM, et al . The use of dioxygen by HIF prolyl hydroxylase (PHD1). Bioorg Med Chem Lett. 2002; 12: 154750.
  • 22
    Ohh M, Park CW, Ivan M, et al . Ubiquitination of hypoxia-inducible factor requires direct binding to the beta-domain of the von Hippel-Lindau protein. Nat Cell Biol. 2000; 2: 4237.
  • 23
    Kamura T, Sato S, Iwai K, et al . Activation of HIF1alpha ubiquitination by a reconstituted von Hippel-Lindau (VHL) tumor suppressor complex. Proc Natl Acad Sci USA. 2000; 97: 104305.
  • 24
    Sutter CH, Laughner E, Semenza GL. Hypoxia-inducible factor 1alpha protein expression is controlled by oxygen-regulated ubiquitination that is disrupted by deletions and missense mutations. Proc Natl Acad Sci USA. 2000; 97: 474853.
  • 25
    Kallio PJ, Wilson WJ, O’Brien S, et al . Regulation of the hypoxia-inducible transcription factor 1alpha by the ubiquitin-proteasome pathway. J Biol Chem. 1999; 274: 651925.
  • 26
    Tanimoto K, Makino Y, Pereira T, et al . Mechanism of regulation of the hypoxia-inducible factor-1 alpha by the von Hippel-Lindau tumor suppressor protein. EMBO J. 2000; 19: 4298309.
  • 27
    Iwai K, Yamanaka K, Kamura T, et al . Identification of the von Hippel-lindau tumor-suppressor protein as part of an active E3 ubiquitin ligase complex. Proc Natl Acad Sci USA. 1999; 96: 1243641.
  • 28
    Semenza GL. HIF-1: mediator of physiological and pathophysiological responses to hypoxia. J Appl Physiol. 2000; 88: 147480.
  • 29
    Wenger RH. Mammalian oxygen sensing, signalling and gene regulation. J Exp Bio. 2000; 203: 125363.
  • 30
    Hickey MM, Simon MC. Regulation of angiogenesis by hypoxia and hypoxia-inducible factors. Curr Top Dev Biol. 2006; 76: 21757.
  • 31
    Hoffman MA, Ohh M, Yang H, et al . von Hippel-Lindau protein mutants linked to type 2C VHL disease preserve the ability to downregulate HIF. Hum Mol Genet. 2001; 10: 101927.
  • 32
    Clifford SC, Cockman ME, Smallwood AC, et al . Contrasting effects on HIF-1alpha regulation by disease-causing pVHL mutations correlate with patterns of tumourigenesis in von Hippel-Lindau disease. Hum Mol Genet. 2001; 10: 102938.
  • 33
    Kaelin WG Jr. The von Hippel-Lindau tumour suppressor protein: O2 sensing and cancer. Nat Rev. 2008; 8: 86573.
  • 34
    Young AP, Schlisio S, Minamishima YA, et al . VHL loss actuates a HIF-independent senescence programme mediated by Rb and p400. Nat Cell Biol. 2008; 10: 3619.
  • 35
    Neumann HP, Bender BU. Genotype-phenotype correlations in von Hippel-Lindau disease. J Intern Med. 1998; 243: 5415.
  • 36
    Zbar B, Kishida T, Chen F, et al . Germline mutations in the Von Hippel-Lindau disease (VHL) gene in families from North America, Europe, and Japan. Hum Mutat. 1996; 8: 34857.
  • 37
    Chen F, Kishida T, Yao M, et al . Germline mutations in the von Hippel-Lindau disease tumor suppressor gene: correlations with phenotype. Hum Mutat. 1995; 5: 6675.
  • 38
    Xie L, Xiao K, Whalen EJ, et al . Oxygen-regulated beta(2)-adrenergic receptor hydroxylation by EGLN3 and ubiquitylation by pVHL. Sci Signal. 2009; 2: ra33.
  • 39
    Kudva YC, Sawka AM, Young WF Jr. Clinical review 164: The laboratory diagnosis of adrenal pheochromocytoma: the Mayo Clinic experience. J Clin Endocrin Metabol. 2003; 88: 45339.
  • 40
    Maher ER, Eng C. The pressure rises: update on the genetics of phaeochromocytoma. Hum Mol Genet. 2002; 11: 234754.
  • 41
    Vogel KS, Brannan CI, Jenkins NA, et al . Loss of neurofibromin results in neurotrophin-independent survival of embryonic sensory and sympathetic neurons. Cell. 1995; 82: 73342.
  • 42
    Cowan WM. Viktor Hamburger and Rita Levi-Montalcini: the path to the discovery of nerve growth factor. Ann Rev Neurosci. 2001; 24: 551600.
  • 43
    Oppenheim RW. Cell death during development of the nervous system. Ann Rev Neurosci. 1991; 14: 453501.
  • 44
    Katsetos CD, Del Valle L, Legido A, et al . On the neuronal/neuroblastic nature of medulloblastomas: a tribute to Pio del Rio Hortega and Moises Polak. Acta Neuropathol. 2003; 105: 113.
  • 45
    Nakagawara A. Trk receptor tyrosine kinases: a bridge between cancer and neural development. Cancer Lett. 2001; 169: 10714.
  • 46
    Maroney AC, Finn JP, Bozyczko-Coyne D, et al . CEP-1347 (KT7515), an inhibitor of JNK activation, rescues sympathetic neurons and neuronally differentiated PC12 cells from death evoked by three distinct insults. J Neurochem. 1999; 73: 190112.
  • 47
    Eilers A, Whitfield J, Shah B, et al . Direct inhibition of c-Jun N-terminal kinase in sympathetic neurones prevents c-jun promoter activation and NGF withdrawal-induced death. J Neurochem. 2001; 76: 143954.
  • 48
    Harding TC, Xue L, Bienemann A, et al . Inhibition of JNK by overexpression of the JNL binding domain of JIP-1 prevents apoptosis in sympathetic neurons. J Biol Chem. 2001; 276: 45314.
  • 49
    Harris CA, Deshmukh M, Tsui-Pierchala B, et al . Inhibition of the c-Jun N-terminal kinase signaling pathway by the mixed lineage kinase inhibitor CEP-1347 (KT7515) preserves metabolism and growth of trophic factor-deprived neurons. J. Neurosci. 2002; 22: 10313.
  • 50
    Palmada M, Kanwal S, Rutkoski NJ, et al . c-jun is essential for sympathetic neuronal death induced by NGF withdrawal but not by p75 activation. J Cell Biol. 2002; 158: 45361.
  • 51
    Lipscomb EA, Sarmiere PD, Crowder RJ, et al . Expression of the SM-20 gene promotes death in nerve growth factor-dependent sympathetic neurons. J. Neurochem. 1999; 73: 42932.
  • 52
    Rantanen K, Pursiheimo J, Hogel H, et al . Prolyl hydroxylase PHD3 activates oxygen-dependent protein aggregation. Mol Biol Cell. 2008; 19: 223140.
  • 53
    Marxsen JH, Stengel P, Doege K, et al . Hypoxia-inducible factor-1 (HIF-1) promotes its degradation by induction of HIF-alpha-prolyl-4-hydroxylases. Biochem J. 2004; 381: 7617.
  • 54
    Aprelikova O, Chandramouli GV, Wood M, et al . Regulation of HIF prolyl hydroxylases by hypoxia-inducible factors. J Cell Biochem. 2004; 92: 491501.
  • 55
    Cioffi CL, Liu XQ, Kosinski PA, et al . Differential regulation of HIF-1 alpha prolyl-4-hydroxylase genes by hypoxia in human cardiovascular cells. Biochem Biophys Res Commun. 2003; 303: 94753.
  • 56
    Appelhoff RJ, Tian YM, Raval RR, et al . Differential function of the prolyl hydroxylases PHD1, PHD2, and PHD3 in the regulation of hypoxia-inducible factor. J Biol Chem. 2004; 279: 3845865.
  • 57
    Ginouves A, Ilc K, Macias N, et al . PHDs overactivation during chronic hypoxia “desensitizes” HIFalpha and protects cells from necrosis. Proc Natl Acad Sci USA. 2008; 105: 474550.
  • 58
    Berra E, Benizri E, Ginouves A, et al . HIF prolyl-hydroxylase 2 is the key oxygen sensor setting low steady-state levels of HIF-1alpha in normoxia. EMBO J. 2003; 22: 408290.
  • 59
    Takeda K, Ho VC, Takeda H, et al . Placental but not heart defects are associated with elevated hypoxia-inducible factor alpha levels in mice lacking prolyl hydroxylase domain protein 2. Mol Cell Biol. 2006; 26: 833646.
  • 60
    Takeda K, Aguila HL, Parikh NS, et al . Regulation of adult erythropoiesis by prolyl hydroxylase domain proteins. Blood. 2008; 111: 322935.
  • 61
    Minamishima YA, Moslehi J, Bardeesy N, et al . Somatic inactivation of the PHD2 prolyl hydroxylase causes polycythemia and congestive heart failure. Blood. 2008; 111: 323644.
  • 62
    Percy MJ, Zhao Q, Flores A, et al . A family with erythrocytosis establishes a role for prolyl hydroxylase domain protein 2 in oxygen homeostasis. Proc Natl Acad Sci USA. 2006; 103: 6549.
  • 63
    Eltzschig HK, Eckle T, Grenz A. PHD2 mutation and congenital erythrocytosis with paraganglioma. N Engl J Med. 2009; 360: 13612.
  • 64
    Schlisio S, Kenchappa RS, Vredeveld LC, et al . The kinesin KIF1Bbeta acts downstream from EglN3 to induce apoptosis and is a potential 1p36 tumor suppressor. Genes Dev. 2008; 22: 88493.
  • 65
    Bishop T, Gallagher D, Pascual A, et al . Abnormal sympathoadrenal development and systemic hypotension in PHD3-/- mice. Mol Cell Biol. 2008; 28: 3386400.
  • 66
    Kim WY, Kaelin WG. Role of VHL gene mutation in human cancer. J Clin Oncol. 2004; 22: 49915004.
  • 67
    Estus S, Zaks WJ, Freeman RS, et al . Altered gene expression in neurons during programmed cell death: identification of c-jun as necessary for neuronal apoptosis. J Cell Biol. 1994; 127: 171727.
  • 68
    Ham J, Babij C, Whitfield J, et al . A c-Jun dominant negative mutant protects sympathetic neurons against programmed cell death. Neuron. 1995; 14: 92739.
  • 69
    Schlingensiepen KH, Wollnik F, Kunst M, et al . The role of Jun transcription factor expression and phosphorylation in neuronal differentiation, neuronal cell death, and plastic adaptations in vivo. Cell Mol Neurobiol. 1994; 14: 487505.
  • 70
    Xia Z, Dickens M, Raingeaud J, et al . Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science. 1995; 270: 132631.
  • 71
    Selak MA, Armour SM, MacKenzie ED, et al . Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase. Cancer Cell. 2005; 7: 7785.
  • 72
    Dechant G. Chat in the trophic web: NGF activates Ret by inter-RTK signaling. Neuron. 2002; 33: 1568.
  • 73
    Lipscomb EA, Sarmiere PD, Freeman RS. SM-20 is a novel mitochondrial protein that causes caspase-dependent cell death in nerve growth factor-dependent neurons. J Biol Chem. 2001; 276: 508592.
  • 74
    Straub JA, Lipscomb EA, Yoshida ES, et al . Induction of SM-20 in PC12 cells leads to increased cytochrome c levels, accumulation of cytochrome c in the cytosol, and caspase-dependent cell death. J Neurochem. 2003; 85: 31828.
  • 75
    Wax SD, Tsao L, Lieb ME, et al . SM-20 is a novel 40-kd protein whose expression in the arterial wall is restricted to smooth muscle. Lab Invest J Tech Methods Pathol. 1996; 74: 797808.
  • 76
    Moschella MC, Menzies K, Tsao L, et al . SM-20 is a novel growth factor-responsive gene regulated during skeletal muscle development and differentiation. Gene Expr. 1999; 8: 5966.
  • 77
    Fu J, Menzies K, Freeman RS, et al . EGLN3 prolyl hydroxylase regulates skeletal muscle differentiation and myogenin protein stability. J Biol Chem. 2007; 282: 124108.
  • 78
    Madden SL, Galella EA, Riley D, et al . Induction of cell growth regulatory genes by p53. Cancer Res. 1996; 56: 538490.
  • 79
    Nangaku M, Sato-Yoshitake R, Okada Y, et al . KIF1B, a novel microtubule plus end-directed monomeric motor protein for transport of mitochondria. Cell. 1994; 79: 120920.
  • 80
    Zhao C, Takita J, Tanaka Y, et al . Charcot-Marie-Tooth disease type 2A caused by mutation in a microtubule motor KIF1Bbeta. Cell. 2001; 105: 58797.
  • 81
    Schwab M, Praml C, Amler LC. Genomic instability in 1p and human malignancies. Genes Chromosomes Cancer. 1996; 16: 21129.
  • 82
    Brodeur GM, Sekhon G, Goldstein MN. Chromosomal aberrations in human neuroblastomas. Cancer. 1977; 40: 225663.
  • 83
    Haag MM, Soukup SW, Neely JE. Chromosome analysis of a human neuroblastoma. Cancer Res. 1981; 41: 29959.
  • 84
    Stoler A, Bouck N. Identification of a single chromosome in the normal human genome essential for suppression of hamster cell transformation. Proc Natl Acad Sci USA. 1985; 82: 5704.
  • 85
    Ohira M, Kageyama H, Mihara M, et al . Identification and characterization of a 500-kb homozygously deleted region at 1p36.2-p36.3 in a neuroblastoma cell line. Oncogene. 2000; 19: 43027.
  • 86
    Yang HW, Chen YZ, Takita J, et al . Genomic structure and mutational analysis of the human KIF1B gene which is homozygously deleted in neuroblastoma at chromosome 1p36.2. Oncogene. 2001; 20: 507583.
  • 87
    Munirajan AK, Ando K, Mukai A, et al . KIF1Bbeta functions as a haploinsufficient tumor suppressor gene mapped to chromosome 1p36.2 by inducing apoptotic cell death. J Biol Chem. 2008; 283: 2442634.
  • 88
    Yeh IT, Lenci RE, Qin Y, et al . A germline mutation of the KIF1B beta gene on 1p36 in a family with neural and nonneural tumors. Human genetics. 2008; 124: 27985.
  • 89
    Takeda O, Homma C, Maseki N, et al . There may be two tumor suppressor genes on chromosome arm 1p closely associated with biologically distinct subtypes of neuroblastoma. Genes Chromosomes Cancer. 1994; 10: 309.
  • 90
    Bagchi A, Papazoglu C, Wu Y, et al . CHD5 is a tumor suppressor at human 1p36. Cell. 2007; 128: 45975.
  • 91
    Warburg O, Posener, K, Negelein, E. Über den Stoffwechsel der Tumoren. Biochemische Zeitschrift. 1924; 152: 31944.
  • 92
    Gatenby RA, Gillies RJ. Why do cancers have high aerobic glycolysis? Nat Rev. 2004; 4: 8919.
  • 93
    Fantin VR, St-Pierre J, Leder P. Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell. 2006; 9: 42534.
  • 94
    Yan H, Parsons DW, Jin G, et al . IDH1 and IDH2 mutations in gliomas. N Engl J Med. 2009; 360: 76573.
  • 95
    Balss J, Meyer J, Mueller W, et al . Analysis of the IDH1 codon 132 mutation in brain tumors. Acta Neuropathol. 2008; 116: 597602.
  • 96
    Koivunen P, Hirsila M, Remes AM, et al . Inhibition of hypoxia-inducible factor (HIF) hydroxylases by citric acid cycle intermediates: possible links between cell metabolism and stabilization of HIF. J Biol Chem. 2007; 282: 452432.
  • 97
    Warburg O. The prime cause and prevention of cancer. Lindau lecture at the meeting of the Nobel-Laureates at Lindau, Lake Constance, Germany. 1966.
  • 98
    Warburg O. On the origin of cancer cells. Science. 1956; 123: 30914.
  • 99
    MacKenzie ED, Selak MA, Tennant DA, et al . Cell-permeating alpha-ketoglutarate derivatives alleviate pseudohypoxia in succinate dehydrogenase-deficient cells. Mol Cell Biol. 2007; 27: 32829.